

UNIFR-INT
University of Fribourg
Institut National des Télécommunications

Asmaa El Hannani

Dr Dijana Petrovska-Delacrétaz

NIST Speaker Recognition Workshop
26-27 June 2006

1. Motivation
2. Systems Description
 - GMM system
 - ALISP-Ngram system
 - ALISP-LM system
 - ALISP-Duration system
3. Results
4. Conclusions

1. Motivation

- ➔ Use the ALISP data-driven units instead of phonemes in speaker verification
- ➔ Exploit High-level features automatically derived using language and task independent technology
 - ➔ Data-driven speech segmentation **ALISP** (Automatic Language Independent Speech Processing) tools
 - ➔ No annotated databases needed
 - ➔ Language and task independent

2.1 GMM system

- ➔ Front-end
 - ➔ 16 Frequency Cepstral Coefficients + First order Deltas + Delta-energy
 - ➔ 20ms frames every 10ms
 - ➔ Only bands in 300-3400 Hz frequency range are used
 - ➔ The parameter vectors are normalized to fit a zero mean and a unit variance distribution
- ➔ Description
 - ➔ Based on ALIZE-LIA-SpkDet tools
 - ➔ The feature vectors are modeled by a 2048 GMMs
 - ➔ The background models are trained using Fisher and 2003 NIST SRE data
 - ➔ Speakers' models are trained via a MAP adaptation.
 - ➔ The verification is performed using the 10-best Gaussian components

- ❖ Front-end
 - ❖ 15 Mel Frequency Cepstral Coefficients + energy + First order Deltas
 - ❖ 20ms frames every 10ms
 - ❖ Only bands in 300-3400 Hz frequency range are used
 - ❖ Cepstral Mean Subtraction is applied
- ❖ Description:
 - ❖ Gender dependent ALISP HMMs
 - ❖ 65 ALISP classes
 - ❖ Left-to-right HMMs having three emitting states and containing up to 8 Gaussians each
 - ❖ Trained on the (1999, 2001 and 2003) NIST SRE data

2.2 ALISP-Ngram system

- ❖ Exploiting Speakers-specific ALISP-sequences
 - ❖ Only ALISP sequences are used to model speakers
 - ❖ ALISP-sequences models are generated using a n-gram (1-2-3 gram) frequency count
 - ❖ For the scoring phase each ALISP-sequence is tested against a speaker specific model and a background model using a traditional likelihood ratio
- ❖ The gender dependent background models are trained using Fisher and 2003 NIST SRE data.

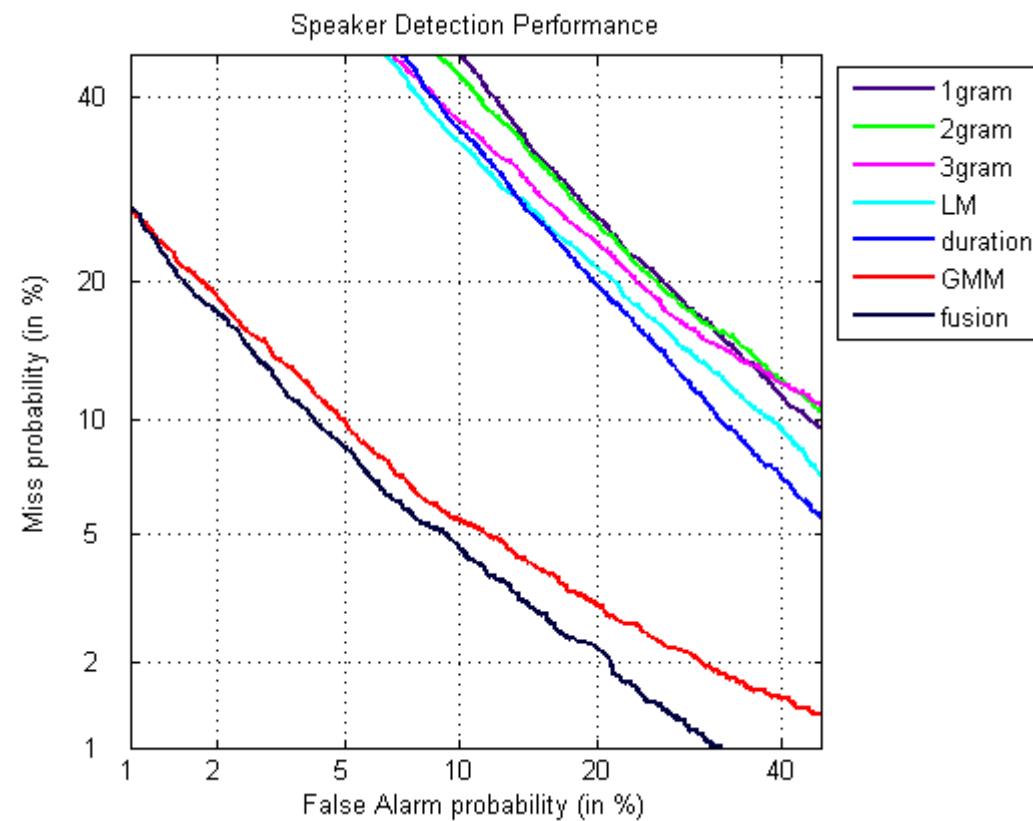
2.3 ALISP-LM system

- ❖ Exploiting Speakers-specific ALISP-sequences
 - ❖ Label sequences produced by the ALISP recognizer are used to train ALISP trigrams using the HTK LM tools
 - ❖ The trigram language models is used to predict each symbol in the sequence given its tow predecessors.
 - ❖ Speaker models created by interpolation:
 - ❖ 8c-1c: Speaker-models = 0.3 BM + 0.8 Speaker-data-model
 - ❖ 1c-1c: Speaker-models = 0.9 BM + 0.1 Speaker-data-model
- ❖ The gender dependent background models are trained using Fisher and 2003 NIST data.

2.4 ALISP-Duration system



- ❖ Exploiting Speakers-specific ALISP-duration
 - ❖ Each ALISP unit is represented by a feature vector comprised of its duration
 - ❖ A background GMM of 8 mixtures is trained for each ALISP class (65 models)
 - ❖ Target models (65 models per speaker) are trained via MAP adaptation.
- ❖ The gender dependent background models are trained using Fisher and 2003 NIST data.


- Scores from the systems:
 - GMM
 - ALISP-Ngram
 - ALISP-LM
 - ALISP-Duration (post-eval)

are fused with an SVM

3. Results (1c4w-1c4w)

3. Results (8c4w-1c4w)

4. Conclusions

- Using data-driven (ALISP) segmentation, instead of the phonetic segmentation, for speaker verification
- Fusing the ALISP and GMM systems improves speaker recognition results for the 8c4w-1c4w task but not for the 1c4w-1c4w task