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NIST SRE 2006 Workshop

STBU

SDV + TNO + BUT + SUN 

STBU

SDV (Spescom DataVoice, 
South Africa)

TNO (Netherlands)

BUT (Brno University of 
Technology, Czech Republic)

SUN (Stellenbosch University, 
South Africa)
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STBU

Niko Brümmer

David van Leeuwen

Pavel Matejka, Lukas Burget, Petr Schwarz, 

Ondrej Glembek, Martin Karafiat, Frantisek 
Grezl and Jan Cernocky

Albert Strasheim, 

Johan du Preez

Thanks to

• The NIST evaluations that have made our 
progress possible. The drivers of this 
progress include:
– The challenge posed by NIST and the data they 

make available.

– The open sharing of knowledge by participants in 
previous years. I hope that those who have 
contributed so much to our knowledge (but whos
CDET’s didn’t make it to the bottom of the pile this 
year) enjoy seeing their ideas flourish in the work 
of others.

• My hard-working partners TNO, BUT and 
SUN.
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Good news

• Much of what we did is (after the fact) 

relatively easy to implement. 

– David will do a 6% EER in 24 hours slide.

• Most methods allow very fast 

implementations.

STBU

• Each site developed their own systems, 
but we worked very closely together, 
with some common design principles.

• We shared (via wiki, email, sms) 
papers, advice, ideas, formulas, code, 
supervectors, scores, EER’s etc., over a 
period of about 10 weeks. Over 600 
emails were sent.

• Finally, we fused a selection of all our 
sub-systems.  
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System Skeleton 
Overview

Unifying design principle

• Express speaker information as a 

variety of different forms of supervector. 

• Do inter-session subspace 
compensation in supervector space.

lead to neat system design
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Main strengths
• Diversity (front-ends, data, implementations)

• Development data organization

• Many development experiments (fast SVM, 
and BUT’s 100 CPUs)

• Supervector subspace channel compensation 
(SVM-NAP, GMM-Eigenchannel)

• Fusion 

• Calibration
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Development data

• Switchboard (UBM, feature mapping)

• Fisher (SVM background, t-norm, UBM, 

feature mapping)

• SRE-04 (NAP + Eigenchannel

subspace training, t-norm, feature 

mapping, UBM)

• SRE-05 (development test set, 

fusion/calibration training) 

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion 

• Calibration
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Fast SVM

• It is known that linear SVMs can score test 
segments really fast when all support vectors 
are folded into a single model supervector.

• But training can also be done really fast. 
– To train an SVM it needs to form all of the dot-

products between all (thousands of) training 
vectors. This product matrix is called the Gram or 
kernel matrix.

– When the same background set is used for every 
speaker model, almost the whole Gram matrix 
stays constant. We implemented our SVM training 
code to make use of this fact.

train SVM

support

vectors

fold

model

vector

×=score

test

vector

Linear SVM allows fast single dot-product scoring:

Fast SVM
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× =

Gram

(or kernel)
matrix

thousands of background vectors

(this is constant and can be done once only)

single training vector

train SVM
Pre-computed Gram-matrix allows 
fast training. 

(0.75s per model)

Fast SVM

• With fast SVM train/test, we were able 
to run whole development test cycles in 
a few minutes. 

• This allowed us to: 
– re-do and re-do and re-do our NAP 

transforms 

– experiment with the selection of 
background and T-norm sets 

until we eventually got our various SVMs
working well.
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Fast SVM

• See [1] for Albert’s (Google sponsored) 

Python code which builds a fast SVM 

implementation on top of LibSVM [2].

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion 

• Calibration
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Supervectors

• We used 2 kinds of supervector:

– MLLR-transform supervectors (due to SRI  
[3][4]).

– GMM-mean supervectors (has origins in 
speech recognition, see e.g. [5]. You will 
see a lot more of this idea at NIST’06 and 
Odyssey’06.)

GMM-SVM

train speech
extract 

features

train

GMM

GMM model

supervector

score

train

SVM

SVM

test speech
extract 

features

train

GMM

GMM model

supervector
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Supervector Subspace Magic

• Two types of inter-session sub-space 

compensation: 

– GMM: eigen-channel MAP-adaptation

– SVM: nuisance attribute projection (NAP),
applied to both GMM and MLLR 

supervectors.

GMM eigen-channel

• There are a few different variants and 

as many different names.

• Was brought to Odyssey’04 by CRIM [5] 
and NIST SRE ’04 by SDV [6].

• CRIM, SDV and QUT [7][8] again 

fielded eigen-channel systems for NIST 

SRE’05.
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GMM eigen-channel

• I’m going to leave detailed explanations of 
GMM subspace compensation to other 
presenters today: BUT, QUT, LPT, CRIM and 

MIT.

• Variants include: 

– Model MAP-adaptation during test (BUT,MIT), or 
train and test (QUT).

– Feature adaptation, prior to test and train (LPT).

– Integration over all possible adaptations (CRIM).

SVM NAP

• Due to MIT in 2004 [9][10] 

• Variants, based on:

– Supervised discrete channels

– Unsupervised continuous inter-session

• We used the latter variant, which is very 

similar to eigen-channel.
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Our SVM-NAP recipe

• SRE-04 works really well as training data!

• Get multiple recording sessions of all 
speakers (about 310 speakers in 2004).

• Create a supervector per session.

• Calculate speaker mean supervectors.

• Subtract each speaker mean from all 
sessions of that speaker. This leaves a data 
matrix with most speaker info removed, but 
inter-session variability still present.

• Simply do a principal component analysis 
(PCA) on this ‘channel’ data. MATLAB’s 
eigs() works well for this.
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SVM NAP recipe

• (For eigenchannel you need principal 
eigenvectors and eigenvalues.)

• For NAP, you need only the principal 
eigenvectors. You need to optimize for the 
number of eigenvectors. We used more for 
large GMM supervectors and fewer for 
smaller MLLR vectors.

• Make sure your eigenvectors are nicely ortho-
normal. If they are not, they don’t project 
completely away. Singular-value-
decomposition (SVD) is good for ensuring 
ortho-normality.

SVM NAP recipe

• Project NAP subspace (principal 

eigenvectors) away from all 

supervectors involved in SVM training. 

You have to do it prior to training.

• You don’t need to project NAP 

subspace away during test. (But it does 

no harm).
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SVM NAP recipe

• NAP projection, where 

– v is original supervector, 

– w is projected supervector

– S is matrix of principal (ortho-normal) inter-
session covariance eigenvectors

– T is transpose

)( vSSvw
T−=

Eigenchannel vs NAP?

• Is it better to do
• eigenchannel GMM, or

• to do straight GMM and then SVM-NAP?

• SDV did both and found the latter to work 
better.

• BUT did both and found the former to work 
better.

• TNO and SUN did the latter and found it to 
work well.

• Who cares. They fuse! 
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Warning

• Methods that use database-wide 

training such as NAP and eigen-channel 

can wreck your calibration, because 

performance becomes overoptimistic. 

• Make sure you train fusions and 

calibrations on fresh data which has not 

been exposed to such training.  

Subspace methods
vs 

Feature mapping

• Both BUT and TNO used traditional discrete-
channel-and-gender-based feature mapping,
in combination with their subspace methods. 

• However, BUT’s post-eval experiments show 
that simpler (2-class) male-female mapping is 
sufficient, letting subspace methods alone 
deal with channel mismatch. 
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Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion 

• Calibration

Sub-system result analysis

• 11 sub-systems:

– 2 GMM systems (± Tnorm)

– 5 GMM-SVM systems

– 3 MLLR-SVM systems

– 1 unsupervised adaptation GMM-SVM 
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Observations

• There is a mild increase in error-rate 

from development (2005) to evaluation 

(2006). 

– Worst affected was unsupervised 
adaptation.

• On 2006 data, all systems do somewhat 

better on DET3 than on DET1.

Observations

• MLLR, which is partly dependent on 

English ASR input, seems not to be 

affected by the DET3 / DET1 difference 

any more than the short-time cepstral 

systems. 
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Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Terminology

• Combination in Western USA

• Fusion elsewhere.
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Proposal for a unified 
terminology:

fusioncombination

logistic 
regression

comfusion?

Fusion

• In SRE’05, the SDV+TNO fusion proved 

that multiple mediocre (EER 10%) 

systems can produce good (EER 6%) 

results.
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2005
fusion

sub-systems

Fusion

• This year we wanted to repeat that 

exercise over four sites, but then my 

partners started cheating! Suddenly 

they were contributing good (5%, 6% 

EER) systems to the fusion.

• This makes the fusion more difficult. 

Does fusion still work when 

development error-rates are low?
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Fusion

• There are many ways to fuse, including both 
generative and discriminative methods.

• (In language recognition generative methods 
like LDA seem to be more popular.) 

• In speaker detection discriminative methods 
like Logistic Regression, MLP and SVM are 
popular.

• Simple equal-weight summation of T-normed
scores is also not a bad idea at all. (Requires 

no training.)
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Fusion

• I chose to use logistic regression again this 
year. 

• But I did a 10-fold cross-validation as a sanity 
check to see if the fusion would remain stable 
on unseen data, which it did.

• Finally, I used the same procedure as last 
year, which indeed:

– Gave a nice gain over the whole DET-curve (EER 

2.3% for English;  3.3% all)

– Gave reasonable calibration

Logistic Regression Fusion

• Logistic regression fusion is an affine 
transform from multi-score space to log-
likelihood-ratio.

• It is easy to implement: see Focal toolkit 
[11].

• In addition to fusion, it also calibrates. 
We had no need to choose an empirical 
decision threshold.

• It is robust
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Why Robust?

• Training is a convex optimization problem: 
there is a unique global optimum.

• It has a low number of parameters, N+1, for N
scores.

• It optimizes the fusion over the whole DET-
curve, not specifically at the CDET operating 
point.

• Logistic regression also helped QNI, BUT, 
CRIM and TNO to perform successful fusion 

and/or calibration this year.

Fusion analysis

• We analyze DET1 and DET3 EER’s for 

a few different fusions of subsets of our 

original 11-system fusion.

• All fusions are trained on 2005 and 

tested on 2006. 
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[n]  : number of systems

\ : without

Observations
(for DET1, N-mode)

• All systems: EER = 3.9%

• All fast systems (no MLLR): EER = 4.4%

• Different methods fuse, but different 
implementations of same methods also fuse: 

– Effect of removing 2 weakest of the 5 GMM-SVM 
systems increases EER from 3.9%  to 4.8%
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Cross-site fusion result

• As a post-eval experiment, we collected 
1conv4w-1conv4w scores from multiple sites. 

• In the end we fused a whole 44 sub-system 
scores from 12 different sites.

• (No unsupervised adaptation was used.)

• Logistic regression fusion was trained on 
2005 scores.

• Results are for 2006: DET1 and DET3
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Cross-site fusion

• Fusion still works when using very many 

systems and when error-rates are low!

• DET1 EER = 3.3% 

• DET3 EER = 2.0%



33

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Calibration

• If your speaker recognition ambitions 
end at doing well in the NIST SRE, then 
calibration means empirically choosing 
a decision threshold that optimizes for 
the single operating point represented 
by actual CDET . 

• Yes, you can go and re-optimize for 
other single operating points. But there 
are richer types of applications that 
require simultaneous operation over a 
wide range of operating points.
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Examples

• A speaker recognizer that can advise the 
user of things like:

– The probability of finding a target speaker in a 

given set of recordings which it has processed.

– The expected time required of the user to find this 
speaker amongst those recordings, when sorted in 

order of likelihood.

• A forensic speaker recognition system that 

delivers not hard decisions, but detection 
confidence (weight-of-evidence) to the user.

Calibration

• If your application needs are more 
general, there are many good reasons 
(see my paper [12]) to use Cllr as 
evaluation objective rather than CDET .

• Cllr represents performance over a wide 
range of operating points.

• Calibration is now the act of designing a 
mapping which outputs scores in log-
likelihood-ratio format, such that Cllr 

(rather than CDET ) is optimized.
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Cllr is simply CDET integrated over 
a wide range of operating 
points.
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Measuring calibration

• Point calibration can be measured via 

the discrepancy between actual CDET 

and minimum CDET , 

• General calibration can be: 

– measured via discrepancy between actual
Cllr and minimum Cllr .

– analyzed with applied probability of error 
(APE) curves.
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STBU-3 Calibration

11 sub-system scores

logistic regression fusion

S-cal

prior  =  0.5

(to optimize Cllr)

log(LR) score
For S-cal, see [11].
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Calibration complication 

• For STBU-1, our development (2005) 

EER and eval (2006) EER are almost 

identical.

• But DET-curves are very different …. 
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Calibration complication

• The ratio of target and non-target score 
variances changed a lot between 2005 
and 2006!

• This is part of the reason why our 
calibration is not quite as neat as last 
year. 

• The challenge is therefore to get 
calibration more stable across different 
environments. 

Conclusion

• Fast short-time cepstrum systems are 

very effective when supervector

subspace compensations are applied.

• No single system gets it quite right ---

fusion between different systems 

usually helps.

• Slower ASR-based systems can add 

further value.
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