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Thanks to

» The NIST evaluations that have made our
progress possible. The drivers of this
progress include:

— The challenge posed by NIST and the data they
make available.

— The open sharing of knowledge by participants in
previous years. | hope that those who have
contributed so much to our knowledge (but whos
Cper's didn’t make it to the bottom of the pile this
year) enjoy seeing their ideas flourish in the work
of others.

» My hard-working partners TNO, BUT and
SUN.
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« Much of what we did is (after the fact)
relatively easy to implement.
— David will do a 6% EER in 24 hours slide.

» Most methods allow very fast
implementations.

] .
Good news 14'5"

STBU "4'5‘

« Each site developed their own systems,
but we worked very closely together,
with some common design principles.

« We shared (via wiki, email, sms)
papers, advice, ideas, formulas, code,
supervectors, scores, EER’s etc., over a
period of about 10 weeks. Over 600
emails were sent.

 Finally, we fused a selection of all our
sub-systems.
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System Skeleton
Overview

Unifying design principle

» Express speaker information as a
variety of different forms of supervector.

» Do inter-session subspace
compensation in supervector space.

lead to neat system design
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Nist ASR
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Main strengths

 Diversity (front-ends, data, implementations)
» Development data organization
» Many development experiments (fast SVM,

and BUT’s 100 CPUs)

» Supervector subspace channel compensation
(SVM-NAP, GMM-Eigenchannel)

* Fusion
» Calibration
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Agenda

 Diversity

» Development data

« Fast SVM

« Supervectors

» Sub-system performance
» Fusion

» Calibration
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Agenda

* Development data
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Development data

» Switchboard (UBM, feature mapping)

» Fisher (SVM background, t-norm, UBM,
feature mapping)

« SRE-04 (NAP + Eigenchannel
subspace training, t-norm, feature
mapping, UBM)

« SRE-05 (development test set,
fusion/calibration training)

Agenda

 Fast SVM
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Fast SVM

* It is known that linear SVMs can score test
segments really fast when all support vectors
are folded into a single model supervector.

» But training can also be done really fast.

— To train an SVM it needs to form all of the dot-
products between all (thousands of) training
vectors. This product matrix is called the Gram or
kernel matrix.

— When the same background set is used for every
speaker model, almost the whole Gram matrix
stays constant. We implemented our SVM training
code to make use of this fact.

Fast SVM

Linear SVM allows fast single dot-product scoring:

score — %
«— train SVM

test model support

vector vector vectors

11



thousands of background vectors

o (this is constant and can be done once only)

® single training vector Gram
(or kernel)
matrix

« [

Pre-computed Gram-matrix allows
fast training. train SVM

(0.75s per model)

Fast SVM

« With fast SVM train/test, we were able
to run whole development test cycles in
a few minutes.

* This allowed us to:

—re-do and re-do and re-do our NAP
transforms

— experiment with the selection of
background and T-norm sets

until we eventually got our various SVMs
working well.

12



Fast SVM

« See [1] for Albert’s (Google sponsored)
Python code which builds a fast SVM
implementation on top of LibSVM [2].

Agenda

» Supervectors
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Supervectors

» We used 2 kinds of supervector:
— MLLR-transform supervectors (due to SRl

[3][4]).

— GMM-mean supervectors (has origins in
speech recognition, see e.g. [5]. You will
see a lot more of this idea at NIST’06 and

Odyssey’06.)

GMM-SVM

: train GMM model
train speech l GMM | supervector

l

train
SVM

> Score

SVM

train GMM model
test speech l GMM | supervector

14



Supervector Subspace Magic

» Two types of inter-session sub-space
compensation:
— GMM: eigen-channel MAP-adaptation
— SVM: nuisance attribute projection (NAP),

applied to both GMM and MLLR
supervectors.

GMM eigen-channel

* There are a few different variants and
as many different names.

» Was brought to Odyssey’04 by CRIM [5]
and NIST SRE '04 by SDV [6].

« CRIM, SDV and QUT [7][8] again
fielded eigen-channel systems for NIST
SRE’05.

15



GMM eigen-channel

* I’'m going to leave detailed explanations of
GMM subspace compensation to other
presenters today: BUT, QUT, LPT, CRIM and
MIT.

» Variants include:

— Model MAP-adaptation during test (BUT,MIT), or
train and test (QUT).

— Feature adaptation, prior to test and train (LPT).
— Integration over all possible adaptations (CRIM).

SVM NAP

* Due to MIT in 2004 [9][10]
 Variants, based on:

— Supervised discrete channels

— Unsupervised continuous inter-session

« We used the latter variant, which is very
similar to eigen-channel.

16



_| eigen-channel
LA i | MAP-adaptation
\ 4 \ 4
NAP NAP
\ 4 A 4
score score score

- supervector

[ | sub-space adaptation

Our SVM-NAP recipe

SRE-04 works really well as training data!

Get multiple recording sessions of all
speakers (about 310 speakers in 2004).

Create a supervector per session.
Calculate speaker mean supervectors.

Subtract each speaker mean from all
sessions of that speaker. This leaves a data
matrix with most speaker info removed, but
inter-session variability still present.

Simply do a principal component analysis
(PCA) on this ‘channel’ data. MATLAB's
eigs () works well for this.

17



SVM NAP recipe

(For eigenchannel you need principal
eigenvectors and eigenvalues.)

For NAP, you need only the principal
eigenvectors. You need to optimize for the
number of eigenvectors. We used more for
large GMM supervectors and fewer for
smaller MLLR vectors.

Make sure your eigenvectors are nicely ortho-
normal. If they are not, they don’t project
completely away. Singular-value-
decomposition (SVD) is good for ensuring
ortho-normality.

SVM NAP recipe

Project NAP subspace (principal
eigenvectors) away from all
supervectors involved in SVM training.
You have to do it prior to training.

You don’t need to project NAP

subspace away during test. (But it does
no harm).

18



SVM NAP recipe

* NAP projection, where
— vis original supervector,
— wis projected supervector

— Sis matrix of principal (ortho-normal) inter-
session covariance eigenvectors

— Tis transpose

w=v—S5(5"v)

Eigenchannel vs NAP?

* lsit better to do
eigenchannel GMM, or
to do straight GMM and then SVM-NAP?
« SDV did both and found the latter to work
better.

 BUT did both and found the former to work
better.

« TNO and SUN did the latter and found it to
work well.

*  Who cares. They fuse!

19



Warning

» Methods that use database-wide
training such as NAP and eigen-channel
can wreck your calibration, because
performance becomes overoptimistic.

« Make sure you train fusions and
calibrations on fresh data which has not
been exposed to such training.

Subspace methods
VS
Feature mapping

* Both BUT and TNO used traditional discrete-
channel-and-gender-based feature mapping,
in combination with their subspace methods.

» However, BUT’s post-eval experiments show
that simpler (2-class) male-female mapping is
sufficient, letting subspace methods alone
deal with channel mismatch.

20



Agenda

» Sub-system performance
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Sub-system result analysis

* 11 sub-systems:
— 2 GMM systems (x Thorm)
— 5 GMM-SVM systems
— 3 MLLR-SVM systems
— 1 unsupervised adaptation GMM-SVM

21
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Observations

There is a mild increase in error-rate

from development (2005) to evaluation

(2006).

— Worst affected was unsupervised
adaptation.

On 2006 data, all systems do somewhat

better on DET3 than on DETA.

Observations

MLLR, which is partly dependent on
English ASR input, seems not to be
affected by the DET3 / DET1 difference
any more than the short-time cepstral
systems.

23
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* Fusion
I @
Terminology

« Combination in Western USA
» Fusion elsewhere.

24



Proposal for a unified
terminology:

combination fusion

comfusion?

Fusion

* In SRE’'05, the SDV+TNO fusion proved
that multiple mediocre (EER 10%)
systems can produce good (EER 6%)
results.

25



(1 c4w)2 all: 9-system fusion

N\
S\

Vs

A ;
0 N sub-systems
30 K
\ \\‘ \\
20 — \ ‘\
£10
£ ]
>
5 sH 1.GMM \%\
< .
e 2. EigChan GMM F+R N §
o 2 L 3. EigenChan GMM F
£ 4. EigenChan GMM R M~
1H —— 5DOTF
—— 6DOTR
05+ —— 7TNOGMM
—— B8TNOSVM
021 —— 9 Grand Log. Regr.
01+ —— SDV-1fusion
I I I I I I I

0102 05 1 2 5 10 20 30 40
False Alarm probability (in %)

Fusion

» This year we wanted to repeat that
exercise over four sites, but then my
partners started cheating! Suddenly
they were contributing good (5%, 6%
EER) systems to the fusion.

* This makes the fusion more difficult.
Does fusion still work when
development error-rates are low?
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DET1: 1convdw-1conv4w
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Fusion

There are many ways to fuse, including both
generative and discriminative methods.

(In language recognition generative methods
like LDA seem to be more popular.)

In speaker detection discriminative methods
like Logistic Regression, MLP and SVM are
popular.

Simple equal-weight summation of T-normed
scores is also not a bad idea at all. (Requires
no training.)
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Fusion

| chose to use logistic regression again this
year.

» But I did a 10-fold cross-validation as a sanity
check to see if the fusion would remain stable
on unseen data, which it did.

» Finally, | used the same procedure as last
year, which indeed:

— Gave a nice gain over the whole DET-curve (EER
2.3% for English; 3.3% all)

— Gave reasonable calibration

Logistic Regression Fusion

Logistic regression fusion is an affine
transform from multi-score space to log-
likelihood-ratio.

It is easy to implement: see Focal toolkit
[11].
In addition to fusion, it also calibrates.

We had no need to choose an empirical
decision threshold.

It is robust

28



Why Robust?

Training is a convex optimization problem:
there is a unique global optimum.

It has a low number of parameters, N+1, for N
scores.

It optimizes the fusion over the whole DET-
curve, not specifically at the CDET operating
point.

Logistic regression also helped QNI, BUT,
CRIM and TNO to perform successful fusion
and/or calibration this year.

Fusion analysis

We analyze DET1 and DET3 EER'’s for
a few different fusions of subsets of our
original 11-system fusion.

All fusions are trained on 2005 and
tested on 2006.

29



Fusion Analysis: STBU 2006

]

MLLR(N) [3]
GMM-SVM(U) [1]

Al(N)\ GMM-SVM [5]
GMM(N) [2]

Al(N) \ GMM [8]

Al(N)\ 2 GMM-SVMs [8]
GMM-SVM(N) [5]
Al(N)\MLLR[7]

AI(N) [10]

Al(U) [11]

EER% (DET3)
N
s+
+ % >0

Ly

0 X ¥ < ¢«

3 4 5 6 7 8
EER% (DET1)

Observations
(for DET1, N-mode)

* All systems: EER = 3.9%

+ All fast systems (no MLLR): EER = 4.4%

» Different methods fuse, but different
implementations of same methods also fuse:

— Effect of removing 2 weakest of the 5 GMM-SVM
systems increases EER from 3.9% to 4.8%
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Cross-site fusion result

As a post-eval experiment, we collected
1conv4w-1conv4w scores from multiple sites.

In the end we fused a whole 44 sub-system
scores from 12 different sites.

(No unsupervised adaptation was used.)

Logistic regression fusion was trained on
2005 scores.

Results are for 2006: DET1 and DET3
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Cross-site fusion

* Fusion still works when using very many
systems and when error-rates are low!

« DETI EER =3.3%
 DET3 EER =2.0%
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« Calibration
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Calibration

« |If your speaker recognition ambitions
end at doing well in the NIST SRE, then
calibration means empirically choosing
a decision threshold that optimizes for
the single operating point represented
by actual Cper

 Yes, you can go and re-optimize for
other single operating points. But there
are richer types of applications that
require simultaneous operation over a
wide range of operating points.
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Examples

» A speaker recognizer that can advise the
user of things like:

— The probability of finding a target speaker in a
given set of recordings which it has processed.

— The expected time required of the user to find this
speaker amongst those recordings, when sorted in
order of likelihood.

A forensic speaker recognition system that
delivers not hard decisions, but detection
confidence (weight-of-evidence) to the user.

Calibration

If your application needs are more
general, there are many good reasons
(see my paper [12]) to use C;, as
evaluation objective rather than Cpgr.

C,, represents performance over a wide
range of operating points.

Calibration is now the act of designing a
mapping which outputs scores in log-
likelihood-ratio format, such that C,,
(rather than Cper) is optimized.
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C,, is simply Cperintegrated over
a wide range of operating
points.
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Measuring calibration

* Point calibration can be measured via
the discrepancy between actual Cper
and minimum Cpgr,

« General calibration can be:

— measured via discrepancy between actual
C,-and minimum C,,

— analyzed with applied probability of error
(APE) curves.

=

STBU-1U

logit prior

0.15

C,, Ibits]
o

discrimination loss

0.05 calibration loss
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STBU-1U

logit prior

discrifination loss
calibrdtion loss

STBU-1 Calibration

11 sub-system scores prior = 0.0917
(to optimize wide
operating range
around Cppp
operating point)

log(LR) score

decision




STBU-3 Calibration

11 sub-system scores

Jogivie egenion o
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Calibration complication

« For STBU-1, our development (2005)
EER and eval (2006) EER are almost
identical.

« But DET-curves are very different ....
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Calibration complication

» The ratio of target and non-target score
variances changed a lot between 2005
and 2006!

 This is part of the reason why our
calibration is not quite as neat as last
year.

» The challenge is therefore to get
calibration more stable across different
environments.

Conclusion

» Fast short-time cepstrum systems are

very effective when supervector
subspace compensations are applied.

» No single system gets it quite right ---

fusion between different systems
usually helps.

» Slower ASR-based systems can add

further value.
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