
1

NIST SRE 2006 Workshop

STBU

SDV + TNO + BUT + SUN

STBU

SDV (Spescom DataVoice,
South Africa)

TNO (Netherlands)

BUT (Brno University of
Technology, Czech Republic)

SUN (Stellenbosch University,
South Africa)

2

STBU

Niko Brümmer

David van Leeuwen

Pavel Matejka, Lukas Burget, Petr Schwarz,

Ondrej Glembek, Martin Karafiat, Frantisek
Grezl and Jan Cernocky

Albert Strasheim,

Johan du Preez

Thanks to

• The NIST evaluations that have made our
progress possible. The drivers of this
progress include:
– The challenge posed by NIST and the data they

make available.

– The open sharing of knowledge by participants in
previous years. I hope that those who have
contributed so much to our knowledge (but whos
CDET’s didn’t make it to the bottom of the pile this
year) enjoy seeing their ideas flourish in the work
of others.

• My hard-working partners TNO, BUT and
SUN.

3

Good news

• Much of what we did is (after the fact)

relatively easy to implement.

– David will do a 6% EER in 24 hours slide.

• Most methods allow very fast

implementations.

STBU

• Each site developed their own systems,
but we worked very closely together,
with some common design principles.

• We shared (via wiki, email, sms)
papers, advice, ideas, formulas, code,
supervectors, scores, EER’s etc., over a
period of about 10 weeks. Over 600
emails were sent.

• Finally, we fused a selection of all our
sub-systems.

4

System Skeleton
Overview

Unifying design principle

• Express speaker information as a

variety of different forms of supervector.

• Do inter-session subspace
compensation in supervector space.

lead to neat system design

5

s
p
e
e
c
h

s
c
o
re

s

SVM

SVM

SVM

SVM

SVM

MFCC GMM

SDV

PLP
GMM

TNO

U-GMM SVM

F
u

s
io

n

C
a

lib
ra

ti
o

n

GMMMFCC

BUT

SUNNist ASR

MLLR

SVM

PLP

6

SVM

SVM

SVM

SVM

MFCC GMM

PLP
SVMGMM

U-GMM SVM

GMMMFCC

Nist ASR

MLLR

SVM

PLP

Supervector

subspace magic:

•GMM eigenchan
•SVM NAP

SVM

SVM

SVM

SVM

MFCC GMM

PLP
SVMGMM

U-GMM SVM

GMMMFCC

Nist ASR

MLLR

SVM

PLP

Supervector

subspace magic:

•GMM eigenchan
•SVM NAP

7

SVM

SVM

SVM

SVM

MFCC GMM

PLP
SVMGMM

U-GMM SVM

GMMMFCC

Nist ASR

MLLR

SVM

PLP

Supervector

subspace magic:

•GMM eigenchan
•SVM NAP

SVM

SVM

SVM

SVM

MFCC GMM

PLP
SVMGMM

U-GMM SVM

GMMMFCC

Nist ASR

MLLR

SVM

PLP

Supervector

subspace magic:

•GMM eigenchan
•SVM NAP

8

SVM

SVM

SVM

SVM

MFCC GMM

PLP
SVMGMM

U-GMM SVM

GMMMFCC

Nist ASR

MLLR

SVM

PLP
Supervector

subspace magic:

•GMM eigenchan
•SVM NAP

Main strengths
• Diversity (front-ends, data, implementations)

• Development data organization

• Many development experiments (fast SVM,
and BUT’s 100 CPUs)

• Supervector subspace channel compensation
(SVM-NAP, GMM-Eigenchannel)

• Fusion

• Calibration

9

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

10

Development data

• Switchboard (UBM, feature mapping)

• Fisher (SVM background, t-norm, UBM,

feature mapping)

• SRE-04 (NAP + Eigenchannel

subspace training, t-norm, feature

mapping, UBM)

• SRE-05 (development test set,

fusion/calibration training)

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

11

Fast SVM

• It is known that linear SVMs can score test
segments really fast when all support vectors
are folded into a single model supervector.

• But training can also be done really fast.
– To train an SVM it needs to form all of the dot-

products between all (thousands of) training
vectors. This product matrix is called the Gram or
kernel matrix.

– When the same background set is used for every
speaker model, almost the whole Gram matrix
stays constant. We implemented our SVM training
code to make use of this fact.

train SVM

support

vectors

fold

model

vector

×=score

test

vector

Linear SVM allows fast single dot-product scoring:

Fast SVM

12

× =

Gram

(or kernel)
matrix

thousands of background vectors

(this is constant and can be done once only)

single training vector

train SVM
Pre-computed Gram-matrix allows
fast training.

(0.75s per model)

Fast SVM

• With fast SVM train/test, we were able
to run whole development test cycles in
a few minutes.

• This allowed us to:
– re-do and re-do and re-do our NAP

transforms

– experiment with the selection of
background and T-norm sets

until we eventually got our various SVMs
working well.

13

Fast SVM

• See [1] for Albert’s (Google sponsored)

Python code which builds a fast SVM

implementation on top of LibSVM [2].

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

14

Supervectors

• We used 2 kinds of supervector:

– MLLR-transform supervectors (due to SRI
[3][4]).

– GMM-mean supervectors (has origins in
speech recognition, see e.g. [5]. You will
see a lot more of this idea at NIST’06 and
Odyssey’06.)

GMM-SVM

train speech
extract

features

train

GMM

GMM model

supervector

score

train

SVM

SVM

test speech
extract

features

train

GMM

GMM model

supervector

15

Supervector Subspace Magic

• Two types of inter-session sub-space

compensation:

– GMM: eigen-channel MAP-adaptation

– SVM: nuisance attribute projection (NAP),
applied to both GMM and MLLR

supervectors.

GMM eigen-channel

• There are a few different variants and

as many different names.

• Was brought to Odyssey’04 by CRIM [5]
and NIST SRE ’04 by SDV [6].

• CRIM, SDV and QUT [7][8] again

fielded eigen-channel systems for NIST

SRE’05.

16

GMM eigen-channel

• I’m going to leave detailed explanations of
GMM subspace compensation to other
presenters today: BUT, QUT, LPT, CRIM and

MIT.

• Variants include:

– Model MAP-adaptation during test (BUT,MIT), or
train and test (QUT).

– Feature adaptation, prior to test and train (LPT).

– Integration over all possible adaptations (CRIM).

SVM NAP

• Due to MIT in 2004 [9][10]

• Variants, based on:

– Supervised discrete channels

– Unsupervised continuous inter-session

• We used the latter variant, which is very

similar to eigen-channel.

17

SVM

MLLR

NAP

score

SVM

GMM

NAP

score

eigen-channel

MAP-adaptation

score

supervector

sub-space adaptation

Our SVM-NAP recipe

• SRE-04 works really well as training data!

• Get multiple recording sessions of all
speakers (about 310 speakers in 2004).

• Create a supervector per session.

• Calculate speaker mean supervectors.

• Subtract each speaker mean from all
sessions of that speaker. This leaves a data
matrix with most speaker info removed, but
inter-session variability still present.

• Simply do a principal component analysis
(PCA) on this ‘channel’ data. MATLAB’s
eigs() works well for this.

18

SVM NAP recipe

• (For eigenchannel you need principal
eigenvectors and eigenvalues.)

• For NAP, you need only the principal
eigenvectors. You need to optimize for the
number of eigenvectors. We used more for
large GMM supervectors and fewer for
smaller MLLR vectors.

• Make sure your eigenvectors are nicely ortho-
normal. If they are not, they don’t project
completely away. Singular-value-
decomposition (SVD) is good for ensuring
ortho-normality.

SVM NAP recipe

• Project NAP subspace (principal

eigenvectors) away from all

supervectors involved in SVM training.

You have to do it prior to training.

• You don’t need to project NAP

subspace away during test. (But it does

no harm).

19

SVM NAP recipe

• NAP projection, where

– v is original supervector,

– w is projected supervector

– S is matrix of principal (ortho-normal) inter-
session covariance eigenvectors

– T is transpose

)(vSSvw
T−=

Eigenchannel vs NAP?

• Is it better to do
• eigenchannel GMM, or

• to do straight GMM and then SVM-NAP?

• SDV did both and found the latter to work
better.

• BUT did both and found the former to work
better.

• TNO and SUN did the latter and found it to
work well.

• Who cares. They fuse!

20

Warning

• Methods that use database-wide

training such as NAP and eigen-channel

can wreck your calibration, because

performance becomes overoptimistic.

• Make sure you train fusions and

calibrations on fresh data which has not

been exposed to such training.

Subspace methods
vs

Feature mapping

• Both BUT and TNO used traditional discrete-
channel-and-gender-based feature mapping,
in combination with their subspace methods.

• However, BUT’s post-eval experiments show
that simpler (2-class) male-female mapping is
sufficient, letting subspace methods alone
deal with channel mismatch.

21

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Sub-system result analysis

• 11 sub-systems:

– 2 GMM systems (± Tnorm)

– 5 GMM-SVM systems

– 3 MLLR-SVM systems

– 1 unsupervised adaptation GMM-SVM

22

4 5 6 7 8 9 10
4

5

6

7

8

9

10

EER% 2005

E
E

R
%

 2
0
0

6

DET1: 2005 vs 2006

MLLR
MLLR
GMM-SVM
MLLR
GMM-SVM

GMM-SVM
GMM-SVM
GMM-SVM
GMM-SVM-U
GMM
GMM

BUT’s eigenchannel GMM

(without and with Tnorm)

TNO’s

U-adap.

Development vs Eval (DET1)

5 6 7 8 9
3

3.5

4

4.5

5

5.5

6

6.5

7

EER% DET1

E
E

R
%

 D
E

T
3

2006: DET1 vs DET 3

MLLR
MLLR
GMM-SVM
MLLR
GMM-SVM

GMM-SVM
GMM-SVM
GMM-SVM
GMM-SVM-U
GMM
GMM

Effect of non-English (2006)

23

Observations

• There is a mild increase in error-rate

from development (2005) to evaluation

(2006).

– Worst affected was unsupervised
adaptation.

• On 2006 data, all systems do somewhat

better on DET3 than on DET1.

Observations

• MLLR, which is partly dependent on

English ASR input, seems not to be

affected by the DET3 / DET1 difference

any more than the short-time cepstral

systems.

24

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Terminology

• Combination in Western USA

• Fusion elsewhere.

25

Proposal for a unified
terminology:

fusioncombination

logistic
regression

comfusion?

Fusion

• In SRE’05, the SDV+TNO fusion proved

that multiple mediocre (EER 10%)

systems can produce good (EER 6%)

results.

26

0.1 0.2 0.5 1 2 5 10 20 30 40

0.1

0.2

0.5

 1

 2

 5

10

20

30

40

False Alarm probability (in %)

M
is

s
 p

ro
b
a

b
ili

ty
 (

in
 %

)

(1c4w)
2
 all: 9-system fusion

1. GMM
2. EigChan GMM F+R
3. EigenChan GMM F
4. EigenChan GMM R
5 DOT F
6 DOT R
7 TNO GMM
8 TNO SVM
9 Grand Log. Regr.
SDV-1 fusion

2005
fusion

sub-systems

Fusion

• This year we wanted to repeat that

exercise over four sites, but then my

partners started cheating! Suddenly

they were contributing good (5%, 6%

EER) systems to the fusion.

• This makes the fusion more difficult.

Does fusion still work when

development error-rates are low?

27

0.1 0.2 0.5 1 2 5 10 20 30 40

0.1

0.2

0.5

 1

 2

 5

10

20

30

40

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

DET1: 1conv4w-1conv4w

2006
sub-systems

fusion

Fusion

• There are many ways to fuse, including both
generative and discriminative methods.

• (In language recognition generative methods
like LDA seem to be more popular.)

• In speaker detection discriminative methods
like Logistic Regression, MLP and SVM are
popular.

• Simple equal-weight summation of T-normed
scores is also not a bad idea at all. (Requires

no training.)

28

Fusion

• I chose to use logistic regression again this
year.

• But I did a 10-fold cross-validation as a sanity
check to see if the fusion would remain stable
on unseen data, which it did.

• Finally, I used the same procedure as last
year, which indeed:

– Gave a nice gain over the whole DET-curve (EER

2.3% for English; 3.3% all)

– Gave reasonable calibration

Logistic Regression Fusion

• Logistic regression fusion is an affine
transform from multi-score space to log-
likelihood-ratio.

• It is easy to implement: see Focal toolkit
[11].

• In addition to fusion, it also calibrates.
We had no need to choose an empirical
decision threshold.

• It is robust

29

Why Robust?

• Training is a convex optimization problem:
there is a unique global optimum.

• It has a low number of parameters, N+1, for N
scores.

• It optimizes the fusion over the whole DET-
curve, not specifically at the CDET operating
point.

• Logistic regression also helped QNI, BUT,
CRIM and TNO to perform successful fusion

and/or calibration this year.

Fusion analysis

• We analyze DET1 and DET3 EER’s for

a few different fusions of subsets of our

original 11-system fusion.

• All fusions are trained on 2005 and

tested on 2006.

30

3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

5

5.5

6

EER% (DET1)

E
E

R
%

 (
D

E
T
3

)

Fusion Analysis: STBU 2006

MLLR(N) [3]
GMM-SVM(U) [1]
All(N) \ GMM-SVM [5]
GMM(N) [2]
All(N) \ GMM [8]
All(N) \ 2 GMM-SVMs [8]
GMM-SVM(N) [5]
All(N) \ MLLR [7]
All(N) [10]
All(U) [11]

N / U : adaptation mode

[n] : number of systems

\ : without

Observations
(for DET1, N-mode)

• All systems: EER = 3.9%

• All fast systems (no MLLR): EER = 4.4%

• Different methods fuse, but different
implementations of same methods also fuse:

– Effect of removing 2 weakest of the 5 GMM-SVM
systems increases EER from 3.9% to 4.8%

31

Cross-site fusion result

• As a post-eval experiment, we collected
1conv4w-1conv4w scores from multiple sites.

• In the end we fused a whole 44 sub-system
scores from 12 different sites.

• (No unsupervised adaptation was used.)

• Logistic regression fusion was trained on
2005 scores.

• Results are for 2006: DET1 and DET3

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability [%]

M
is

s
 p

ro
b
a
b
ili

ty
 [

%
]

Speaker Detection Performance

Fusion

LPT-1N

LPT-2N

LPT-3N

44-system

cross-site

fusion

DET1
2006

best original

single-site

fusion

32

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability [%]

M
is

s
 p

ro
b
a
b
ili

ty
 [

%
]

Speaker Detection Performance

Fusion

STBU-1N

STBU subsystems

44-system

cross-site

fusion

DET3
2006

best original

single-site

fusion

Cross-site fusion

• Fusion still works when using very many

systems and when error-rates are low!

• DET1 EER = 3.3%

• DET3 EER = 2.0%

33

Agenda

• Diversity

• Development data

• Fast SVM

• Supervectors

• Sub-system performance

• Fusion

• Calibration

Calibration

• If your speaker recognition ambitions
end at doing well in the NIST SRE, then
calibration means empirically choosing
a decision threshold that optimizes for
the single operating point represented
by actual CDET .

• Yes, you can go and re-optimize for
other single operating points. But there
are richer types of applications that
require simultaneous operation over a
wide range of operating points.

34

Examples

• A speaker recognizer that can advise the
user of things like:

– The probability of finding a target speaker in a

given set of recordings which it has processed.

– The expected time required of the user to find this
speaker amongst those recordings, when sorted in

order of likelihood.

• A forensic speaker recognition system that

delivers not hard decisions, but detection
confidence (weight-of-evidence) to the user.

Calibration

• If your application needs are more
general, there are many good reasons
(see my paper [12]) to use Cllr as
evaluation objective rather than CDET .

• Cllr represents performance over a wide
range of operating points.

• Calibration is now the act of designing a
mapping which outputs scores in log-
likelihood-ratio format, such that Cllr

(rather than CDET) is optimized.

35

Cllr is simply CDET integrated over
a wide range of operating
points.

score

in

log(LR)

form

decision

fa

miss

T

T

C

C

P

P

−−
1

log

PT

Cmiss , Cfa

α , β CDET=αPmiss+βPfa

∫ DETCCllr

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10

20
30
40

count

errors

36

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10

20
30
40

count
errors

decision

CDET=αPmiss+βPfa
PT

Cmiss , Cfa

fa

miss

T

T

C

C

P

P

−−
1

log

α , β

∫ DETCCllr

score

in

log(LR)

form

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10

20
30
40

count
errors

decision

CDET=αPmiss+βPfa
PT

Cmiss , Cfa

fa

miss

T

T

C

C

P

P

−−
1

log

α , β

∫ DETCCllr

score

in

log(LR)

form

37

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10

20
30
40

count
errors

decision

CDET=αPmiss+βPfa
PT

Cmiss , Cfa

fa

miss

T

T

C

C

P

P

−−
1

log

α , β

∫ DETCCllr

score

in

log(LR)

form

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10

20
30
40

count
errors

decision

CDET=αPmiss+βPfa
PT

Cmiss , Cfa

fa

miss

T

T

C

C

P

P

−−
1

log

α , β

∫ DETCCllr

score

in

log(LR)

form

38

Measuring calibration

• Point calibration can be measured via

the discrepancy between actual CDET

and minimum CDET ,

• General calibration can be:

– measured via discrepancy between actual
Cllr and minimum Cllr .

– analyzed with applied probability of error
(APE) curves.

-6 -4 -2 0 2 4 6
0

0.01

0.02

0.03

STBU-1U

P
(e

rr
o
r)

logit prior

0

0.05

0.1

0.15

0.2

C
llr

 [
b
it
s
]

discrimination loss
calibration loss

EER

min CDET
act CDET

39

-6 -4 -2 0 2 4 6
0

0.01

0.02

0.03

STBU-1U

P
(e

rr
o
r)

logit prior

0

0.05

0.1

0.15

0.2

C
llr

 [
b
it
s
]

discrimination loss
calibration loss

min C
llr

C
llr

- min C
llr

STBU-1 Calibration

11 sub-system scores

logistic regression fusion

threshold @ 2.29

decision

log(LR) score

prior = 0.0917

(to optimize wide

operating range

around CDET

operating point)

40

STBU-3 Calibration

11 sub-system scores

logistic regression fusion

S-cal

prior = 0.5

(to optimize Cllr)

log(LR) score
For S-cal, see [11].

-5 0 5
0

0.01

0.02

0.03

STBU-1U

P
(e

rr
o
r)

logit prior

-5 0 5
0

0.01

0.02

0.03

STBU-3U

logit prior

0

0.05

0.1

0.15

0.2

C
llr

 [
b
it
s
]

discrimination loss
calibration loss

point calibration

general calibration

41

Calibration complication

• For STBU-1, our development (2005)

EER and eval (2006) EER are almost

identical.

• But DET-curves are very different ….

0.1 0.2 0.5 1 2 5 10 20 30 40

0.1

0.2

0.5

 1

 2

 5

10

20

30

40

False Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ili
ty

 (
in

 %
)

STBU-1N: DET1,1conv4w-1conv4w

2005
2006

42

Calibration complication

• The ratio of target and non-target score
variances changed a lot between 2005
and 2006!

• This is part of the reason why our
calibration is not quite as neat as last
year.

• The challenge is therefore to get
calibration more stable across different
environments.

Conclusion

• Fast short-time cepstrum systems are

very effective when supervector

subspace compensations are applied.

• No single system gets it quite right ---

fusion between different systems

usually helps.

• Slower ASR-based systems can add

further value.

43

References

[1] Albert Strasheim’s Python SVM code: See
www.scipy.org (Available July 2006.)

[2] LibSVM: www.csie.ntu.edu.tw/~cjlin/libsvm/

[3] A. Stolcke et al. , “MLLR transforms as
features in speaker recognition” in
Eurospeech, 2005.

[4] A. Stolcke et al.,”Improvements in MLLR-
tranform-based speaker recognition” in
Odyssey 2006.

[5] Various papers by Patrick Kenny available
here: www.crim.ca/perso/patrick.kenny/

References

[6] N. Brummer. “SDV NIST SRE’04 System
description”, 2004.

[7] R. Vogt et al. “Modelling session variability in
text-independent speaker verification,” in
Interspeech – Eurospeech 2005.

[8] R. Vogt and S. Sridharan, “Experiments in
session variability for modelling for speaker
verification,” in ICASSP, 2006.

[9] Alex Solomonoff et al.“Channel
Compensation for SVM Speaker
Recognition“, Odyssey 2004.

44

References

[10] W. M. Campbell et al., “SVM Based
Speaker Verification Using a GMM
Supervector and NAP Variability
Compensation,” ICASSP 2006.

[11] FoCal: Toolkit for Fusion and Calibration.
See: www.dsp.sun.ac.za/~nbrummer/focal

[12] Niko Brümmer and Johan du Preez,
“Application-independent evaluation of
speaker detection”,in Computer Speech and
Language, 20, 2006: pp.230-275 .

