

SRI's NIST 2006 Speaker Recognition Evaluation System: Alternate Microphone Condition

Sachin Kajarekar, Luciana Ferrer, Martin Graciarena,
Elizabeth Shriberg, Kemal Sönmez, Andreas Stolcke,
Gokhan Tur, Anand Venkataraman

SRI International, Menlo Park, CA, USA

Collaborators:

ICSI group

NIST SRE Workshop, June 2006, San Juan, PR

1

Outline

- System overview
- Detailed results on SRE06
- Exploration before evaluation
- Summary and Future work

NIST SRE Workshop, June 2006, San Juan, PR

2

Submission Overview

- ❑ This is our first year of participation in this condition
 - Our main focus was the telephone-channel condition
- ❑ The system used here are same as the ones used for telephone-channel condition, except that the test waveforms were cleaned up using “wiener filtering”

Type	Features	Model	Trials Scored
Acoustic	MFCC	GMM	ALL
	MFCC	SVM	ALL
	Phone-loop MLLR 4 transforms	SVM	ALL
Stylistic	Word N-gram	SVM	English-only

Submission	Systems	Combiner
SRI_1 (primary) and SRI_2	SRI (4)	
SRI_3 (SRI+ICSI)	SRI (4) + ICSI (5)	Neural Network(*)

* SVM combiner training ran for really long time w/o converging ... as if it is going in an infinite loop

NIST SRE Workshop, June 2006, San Juan, PR

3

More details

- ❑ English and non-English trials were combined separately using SRE05 altmic data
 - The output was normalized and thresholded (from SRE05) for each condition
 - The results are pooled into one submission
- ❑ This strategy worked fine except for 8-side non-English condition, SRE05 non-English data did not have any target trials
 - SRE05 altmic English data was used to train the combiner
- ❑ As it turns out, SRE05 and SRE06 data was similar and thresholds generalized very well

NIST SRE Workshop, June 2006, San Juan, PR

4

Results on SRE06

- English trials only (defined by v1 release) - 22160 for 1side and 3738 for 8sides
- Neural network combiner

1conv4w-1convmic results

Submission	#systems	%EER	DCF(x10)
SRI_1	4	6.26	0.23919
SRI_1, best result	4	6.26	0.23919
SRI+ICSI	9	5.83	0.23921
SRI+ICSI, best result	8 (w/o mllr)	5.79	0.20559

8conv4w-1convmic results

Submission	#systems	%EER	DCF(x10)
SRI_1	4	3.19	0.13157
SRI_1, best result	2 (cep_svm, word_ngram)	2.96	0.11274
SRI+ICSI	9	2.05	0.08934
SRI+ICSI, best result	6 (w/o gmm_cep, word_ngram, LC+WCCN)	2.05	0.08323

NIST SRE Workshop, June 2006, San Juan, PR

5

Results with SVM combiner

- It converged after around t+5 mins !!!
 - Relatively fewer systems and inclusion of C5 in training

1conv4w-1convmic results

Submission	Combiner	#systems	%EER	DCF(x10)
SRI_1	NN	4	6.26	0.23919
SRI_1	SVM	4	5.95	0.23461
SRI_3	NN	9	5.83	0.23921
SRI_3	SVM	9	5.37	0.20986

8conv4w-1convmic results

Submission	Combiner	#systems	%EER	DCF(x10)
SRI_1	NN	4	3.19	0.13157
SRI_1	SVM	4	2.29	0.10974
SRI_3	NN	9	2.05	0.08934
SRI_3	SVM	9	2.27	0.09773

NIST SRE Workshop, June 2006, San Juan, PR

6

Exploratory Experiments

- ❑ Before the evaluation, we tried following techniques on SRE05 altmic data
 - Wiener filtering
 - Feature transformation (using different microphones as classes)
 - Probabilistic optimal filtering (POF)
- ❑ Wiener filtering
 - Commonly used noise cancellation technique that estimates the noise from the silence region and uses the estimate to clean the speech
 - This is the only technique that gave improvement on SRE05 data

SRE05 altmic data

GMM cepstral system (w/o TNORM)	All 8 microphones		7 microphones (w/o C5)	
	%EER	DCF(x10)	%EER	DCF(x10)
w/o Wiener filtering	11.97	0.8016	10.5	0.7819
w/ Wiener filtering	11.34	0.7870	9.95	0.7687

NIST SRE Workshop, June 2006, San Juan, PR

7

Feature Transformation for GMM

- ❑ The idea is similar to Reynolds' 2003 paper on the same topic and the implementation is similar to the one used in our cepstral GMM system
- ❑ Algorithm
 - Create gender and microphone specific models from the background model
 - While training and testing, for each feature frame, chose 1-best Gaussian from the background model
 - For that Gaussian, find the gender-microphone model that gives the highest likelihood
 - Use the mean and the standard deviation of the most likely gender-microphone model to normalize the features
- ❑ Implementation
 - Gender-microphone models were trained using SRE04 altmic devset
 - On top of the gender-handset normalized features
 - Alongside with gender-handset models
 - Transform applied on SRE05
- ❑ Results showed marginal or no improvement in performance

NIST SRE Workshop, June 2006, San Juan, PR

8

Probabilistic Optimum Filtering (POF)

- ❑ Motivation: significant WER reductions in noisy and multiple microphones speech recognition
- ❑ Algorithm (Neumeyer & Weintraub, ICASSP '94)
 - POF mapping is piecewise linear transformation of the mismatched (noisy) feature space into the matched (clean) feature space
 - It requires stereo data: time aligned waveforms from the matched and mismatched cases
 - A VQ partition of the noisy feature space is first computed
 - Using the MMSE criterion a transformation is trained for each VQ region
 - In testing the clean feature estimate is computed by a weighted average of the region-specific clean feature estimates
- ❑ Implementation
 - POF trained using SRE04 altmic devset
- ❑ Results show no improvement in performance.

NIST SRE Workshop, June 2006, San Juan, PR

9

Issues with SRE04 and SRE05 altmic data

- ❑ There is a big mismatch between the two datasets
 - Different collection sites?
different position of mics?
- ❑ Performance for some microphones is not much worse than the performance on clean condition
 - %EER is comparable
 - DCF is almost twice as bad

Microphone detector trained on SRE04 data

SRE05 MicType	% Detection
C1	21.57
C2	26.82
C3	86.25
C4	63.45
C5	84.54
C6	39.06
C7	44.89
C8	41.98

SRE05 Cepstral GMM system (w/o TNORM)

Chan	Teleph	C1	C2	C3	C4	C5	C6	C7	C8
%EER	8.18	7.69	7.31	12.69	10.3	21.92	10.74	10.74	7.72
DCF	0.3115	0.6934	0.6754	0.7848	0.7972	0.8682	0.7493	0.8220	0.7231

NIST SRE Workshop, June 2006, San Juan, PR

10

Summary and Future Work

- ❑ This was our first stab at the altmic condition. The submission used a subset of systems developed for the telephone condition.
 - SRI primary submission used 3 cepstral system and 1 stylistic feature based system
 - SRI secondary submission used SRI + ICSI systems
 - The performance is very competitive
- ❑ We explored three techniques for noise robustness
 - Wiener filtering – most successful
 - Feature transformation & POF – needs more work
- ❑ SRE04 altmic development data is very different from SRE05 altmic data
 - This hindered any efforts to investigate more sophisticated techniques
- ❑ Future work
 - Use all the SRI stylistic feature based systems on this data
 - Use SRE05 data for feature transformation and POF
 - SNR dependent processing