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D. Reynolds, et al., “The SuperSID Project: Exploiting High-level Information
for High-accuracy Speaker Recognition,” ICASSP 2003

• High-level features have shown 
incremental improvements in 
performance, but usually at 
substantial complexity and 
computational cost

• In keeping with our approach of 
making speaker recognition 
techniques robustrobust and portableportable to 
new domains and platforms, we 
focused on spectral based 
techniques

• At the 2002 JHU Summer Workshop, the SuperSID team 
demonstrated the power of exploiting multiple levels of 
speaker information in speech

– direct attack on channel variability
– robustness to language/dialect 

variability 

– computational speed
– Small support infrastructure 

(e.g, no STT or phone rec)

Theme for SRE 2006
Building The Base

NAP
LFA

FM
GSV

GMM GLDS
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System Overview
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System Overview
Development Data
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• Dev data focused on 
primary English 
condition

• Post-eval found 
further gains in 
using multi-
language data
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System Processing Time*
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• Input: ~230s speech
• Machine: Linux, Xeon 2-3GHz, 2 Gig memory
• All systems using STT output include STT time (~503s)

*Estimates from logfiles and reported times., Some times include model load 
and other I/O. Systems not run in optimized throughput mode.
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Outline

• System Overview
– Building the Base 
– Core systems
– Development data

• New for 2006
– GMM with Latent Factor Analysis (LFA) Compensation
– GMM SuperVector SVM
– Multi-feature GLDS SVM
– MLLR SVM with NAP Compensation

• Analysis
– System breakout
– Confidence score calibration 
– Final post-eval system and historic performance 

• Conclusion
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Spectral Systems
Motivations

• Concentration on session and channel variability 
compensation

– Latent Factors Analysis (LFA) 
 Effective in SRE-2005 modeling session variation
 Gaussian Mixture Models

– Nuisance Attribute Projection (NAP)
 Introduced in 2005 for SVM
 Similarities to LFA for variation modeling 
 NAP is suited to high dimensional modeling (supervectors)
 Support Vector Machines

• Combine best aspects of GMM and SVM systems
– Gaussian Super Vector (GSV) SVM system
– Hybrid of GMM-UBM distribution modeling with SVM 

discriminative classification



MIT Lincoln Laboratory11
NIST SRE 

26-27 June 2006

Original vector 

Compensated vector 

LFA and NAP Compensation

• Both LFA and NAP attempt to remove undesired variation 
coming from a low-dimensional source

• Amount of variation is hidden 
(latent) and described by source 
with a normal distribution 
(Bayesian type assumption)

• Estimates latent variables and 
subtracts out variation

• Applied in a GMM framework
– LFA used on session variability

• Based on reducing a metric 
induced from SVM kernel

• Projects out nuisance space
• Applied in a SVM framework
• Handles channel, session, general 

nuisance
– In 2005 NAP used on channel 

(cell, cb, elec) variability
– In 2006 NAP used on session 

variability

m

m - Un

Un

LFA m

Pm

(I-P)m

NAP
Latent factor or 
nuisance attribute 
vector
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GMM with LFA Compensation
Training and Recognition
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GMM with LFA Compensation

• Details:
– 2048 Mixtures (512 mixtures in 1c)
– Factor loading matrix calculated using kpca to calculate the eigenvectors
– Znorm 200 utterances from SWB II
– Tnorm drawn from Eval04 speakers

 607 Cohorts on 8c 4-wire, 448 Cohorts on 3c {2,4}-wire, 394 Cohorts 
on 1c 4wire 

– Based on the model estimation algorithm presented in [Vogt06] 
– Did not use speaker factor estimation as in [Kenny05]

• Performance
– GMM-LFA did slightly better than

GMM-Atnorm at 1c/1c 
– At 8c/1c the GMM-LFA did 

significantly better than 
GMM-Atnorm
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[Vogt06] R. Vogt, etal, Experiments In Session Variability Modeling For Speaker Verification, ICASSP 2006.                         
Kenny05] P, Kenny, etal, “Eigenvoice Modeling With Sparse Training Data” IEEE Trans SAP 2005.

SRE-2006 DCF versus Training condition–pooling all
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GMM with LFA Compensation
Variation of Subspace Dimension

• Subspace dimension varies 
for with number of 
enrollment conversations

• Tuning critical to achieve 
good performance

3 conv train, 
1 conv test
Eval05

1 conv train, 
1 conv test
Eval05

• Subspace dimension 
parameters were surprisingly 
stable from Eval05 to Eval06 
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GMM SuperVector SVM
Using Stacked Means
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GMM SuperVector SVM

• Use the GMM 
supervector in an SVM

• Supervectors are really 
just another way of 
describing a GMM

• Desirable to have a 
kernel that is computed 
directly from the 
supervectors
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GMM SuperVector SVM

• Our approach:
– KL divergence approximation
– L2 kernel
– NAP session compensation

• Related Work:
– (Wan-Sheffield) Fisher Kernels
– (Ho/Moreno- HP Labs) KL divergence
– (Campbell) SVM/GMM using GMM as a “decoder” to localize the 

scoring—but no stacking of means
– CRIM
– Persay

• References:
– Campbell, W. M., D. Sturim, D. Reynolds, “Support vector 

machines using GMM supervectors for speaker verification,”
IEEE Signal Processing Letters, vol 13, no. 5, pp. 308-311, 2006.

– Campbell, W. M., D. Sturim, D. Reynolds, “SVM Based Speaker 
Verification using a GMM SuperVector Kernel and NAP Variability 
Compensation,” ICASSP 2006.



MIT Lincoln Laboratory18
NIST SRE 

26-27 June 2006

GMM SuperVector SVM 
Linear Kernel

• We want to look for 
comparisons of the 
MAP adapted models 
that involve GMM 
supervectors

• Indirectly: KL 
divergence

• “Linearize” to get final 
kernel

• Final kernel involves 
only operations with 
supervector

Upper Bound

Compute

Polarization
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GMM SuperVector SVM 
Tuning

• Kernel selection:
– 8c Eval05 example
– L2 kernel was based upon standard 

integral inner product 
– Conclusion: Linear kernel worked the 

best and was easiest to implement
• Session NAP tuning:

– As we vary the dimension of the 
nuisance subspace (corank) the EER 
performance varies

– Optimal NAP corank fairly consistent 
across different enrollment durations

SVM-GSV 1c,
Eval05

SVM-GSV 8c,
Eval05

Best corank=
approx 128
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Multi-feature GLDS SVM

• Updated with new feature 
strategy

• Found that substantial gains 
could be obtained by applying 
NAP to LPCC features

• Resulting system had a fusion 
gain on 05 data and 06 data

LPCC Features
DEV set

SVM GLDS NAPLPCCs

SVM GLDS NAPMFCCs
Σ

0.5

0.5

LPCC+MFCC
Eval 06
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Multi-feature GLDS SVM
Variation of Session NAP with Corank

• Different behaviors for: 
– number of enrollment 

conversations
– features

• NAP behaves differently for 
SVM-GSV versus SVM-GLDS

• Tuning critical to achieve good 
performance

8 conv train, 
1 conv test
Eval05, MFCC
Similar for 
LPCC

1 conv train, 
1 conv test
Eval05, MFCC

1 conv train, 
1 conv test
Eval05, LPCC
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SVM MLLR with NAP Compensation
Applying Byblos STT to SID

Unadapted
Decode

Unadapted
Decode

Uh

I

yeah

well

think

MLLR Coefficients
• Found Data! From our high-level 

systems
• 3 transforms (derived from data 

driven classes)
• 1 root + 2 classes
• |Transform| = 3600

• Only used Model Space Transforms
• Other Feature space adaptations 

performed before MLLR

Adapted 
Decode

Adapted 
Decode

Uh

I

yeah

well

thinkFeature + 
Model 

Adaptation

Feature + 
Model 

Adaptation

• Trigram LM
• GI non-xword

Triphone models

SVM

New 2006

Adapted Lattices For 
High-level Systems
•4-gram LM
•GD xword Quinphone models

Used for
• Word Duration
• N-gram systems

SVM MLLR with NAP
• 0-1 Normalization 
• Applied NAP without modification

• Switchboard training
• Fisher English Background
• Eval04 T-norm models
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SVM MLLR with NAP Compensation
Results
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Outline

• System Overview
– Building the Base 
– Core systems
– Development data

• New for 2006
– GMM with Latent Factor Analysis (LFA) Compensation
– GMM SuperVector SVM
– Multi-feature GLDS SVM
– MLLR SVM with NAP Compensation

• Analysis
– System breakout
– Confidence score calibration 
– Final post-eval system and historic performance 

• Conclusion
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System Breakout
Min DCF for 1c/1c and 8c/1c

• Very low error rates for new 
data set (EER < 2% for 8c)

• Spectral based systems 
generally outperform STT 
based systems

– MLLR is exception
– But this is a spectral space 

transform
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System Breakout
3c 2-wire Processing

• Divide and conquer approach
– Allows application of 

optimized detection 
systems

• Purification is critical step 
when using summed data 

A1. B1, C2

Cluster
combi
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Cluster
combi
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M
A
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Utterance 
score

2-wire scoring

2-wire training

• Loss of ~2.5% in EER 
between 2w and 4w 
processing

• Odd DET curve shape on 
2006 data

– Problem in key?
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System Breakout
Accuracy / Computation Tradeoff

• High-level features provide gains … but at a cost
– Computation and reliance on particular language (e.g. English)

• Most practical when STT is also needed in an application
– May not allow speaker recognition ‘tweaks’ (e.g., MLLR classes)

• Are there less costly ways to extract the same information?
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Score Calibration Analysis
Thresholds

• minDCF, actualDCF
disparity

• Systems:
– GMM LFA
– GMM ATNorm
– SVM-GLDS
– SVM-GSV
– SVM-MLLR

• SVM = Fusion of all SVMs
• Fuse = Fuse all 5 systems
• Measuring stability:

RelChg =
(actDCF-minDCF)/minDCF

• Plots show submission 
systems

• Problem is worse for all 
trials
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Score Calibration Analysis
TNorm + Background

• TNorm:
– Added TNorm to all SVM 

systems
– TNorm speakers from 

Eval04
• New Background:

– Added non-English 
Fisher data 
(Arabic/Mandarin) to 
SVM backgrounds 

– SVM-GLDS, SVM-GSV
• Both: TNorm+Bkg
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Score Calibration Analysis
Stabilization Results

• Final results show both 
English trials and all trials

• TNorm is a huge win for 
stabilizing thresholds for 
the SVMs—haven’t seen 
this behavior before

• Stabilizing thresholds is 
possible

• All trials still is a 
challenge

• RelChg improvement:
– English: 16.5% → 14.7%
– All: 71.5% → 27.0%
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Score Calibration
Calibration & Refinement

• English trials, new fusion system
• Calibration=How well does the 

output approximate a posterior?
• Refinement=Does the system 

produce scores near 0 & 1?

• Calibration still not good across all 
thresholds

• Chance: 
– h(Ptgt)=h(0.01)=0.081 bits

• Cross-entropy (CE): 
– 0.038 bits

• NCE = (Chance-CE)/Chance
– 53.0%, this is reasonable

• CE=calib+refinement
• Calibration error: 0.017 bits
• Refinement: 0.021 bits
• Calibration is a large part of the 

cross-entropy; ideally should be 
zero

Calibration

Refinement
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• Consistent and steady 
improvement for data/task 
focus

EER (%)
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• New data sets designed to be 
more challenging

• New features, classifiers and 
compensations drive error 
rates down over time

SVM-GSV, GMM-LFA,  MultiFeat
SVM-GLDS, SVM-MLLR+NAP

2006

NAP, TC-SV, word/phone lattices2005

Phone/Word-SVM, GMM-ATNORM2004

Feature Mapping, SVM-GLDS2003

SuperSID : High-level features2002

Text-const GMM, word-ngram2001
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Conclusions

• Excellent progress in 2006
– Many sites independently demonstrating effectiveness of new 

features, classifiers and compensations
• MITLL focus was on spectral based systems

– Direct attack on channel variability
– Robustness to language/dialect variability 
– Computational speed
– Minimal support infrastructure

• Highlights of new items for 2006 
– GMM with Latent Factor Analysis (LFA) Compensation
– GMM SuperVector SVM
– Multi-feature GLDS SVM
– MLLR SVM with NAP Compensation

• Threshold analysis highlighted need for Tnorm
– Unexplained calibration bias (mixer2 – mixer3)

• Retrospective look at performance shows a consistent and steady 
improvement for data/task focus

– High-level SuperSID features brought attention to extended data task
– Main drivers in performance improvement have been new spectral 

based systems and channel compensations
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