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Theme for SRE 2006
Building The Base
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e At the 2002 JHU Summer Workshop, the SuperSID team
demonstrated the power of exploiting multiple levels of

speaker information in speech ‘
P P EMM 6LDS
* High-level features have shown
incremental improvements in LFA GSV
performance, but usually at NAP FM

substantial complexity and
computational cost

* |n keeping with our approach of
making speaker recognition
techniques robust and portable to
new domains and platforms, we
focused on spectral based

techniques

— direct attack on channel variability ¥ — computational speed

— robustness to language/dialect — Small support infrastructure
variability (e.g, no STT or phone rec)
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Core Detectors
Target model
\ +
ﬂm“' Feature |®_ LR score LA
Extraction normalization
Background /—
model
== New for System Features Classifier Znorm Tnorm E”an.
2006 M
GMM-ATNORM MFCC GMM 55 FM
—
GMM-LFA MFCC GMM 200 300 LFA
-
GMM mean .
SVM-GSV SuperVectors SVM 300 NAP
i
SVM-GLDS MFCC+LPCC SVM 300* NAP
[
SVM-MLLR MLLR coeff. SVM 400* NAP
_
Word lattice
SVM-WORD n-grams SVM
—
Top-512 word . 400
BT-WORD —y Binary Tree S 400
NGRAM-WORD Word lattice Lang. Model 400 400
—
SVM-WORD_DUR | Word dur. stats. | SVM 400
S |
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System Overview

Word lattices and MLLR parameters are from BBN Byblos STT system

MIT Lincoln Laboratory ===

* Post-eval



System Background Znorm Tnorm Chan. Comp
GMM-ATNORM | SWB2, SRE04 SRE04 fl‘e,a\:géil
* Dev data focused on =
primary English GMM-LFA SWB2, SRE04 SWB2 | 25 SWB2
condition =
SVM-GSV UbioWb2 SRE04 | SWB2
svm=FSH
* Post-eval found SVM-GLDS FSH-ENG SRE04 | SWB2
further gains in
using muliti- SVM-MLLR FSH-ENG SRE04 SWB2
language data
SVM-WORD FSH-ENG
BT-WORD FSH-ENG SRE05 | SRE05
NGRAM-WORD FSH-ENG SRE04 | SRE04
SVM-WORD_DUR | FSH-ENG SRE04
FUSION Cross-Validation on system scores from SRE05
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Feature
Extraction

Target model

Background
model

System Overview
Development Data

LR scare
narmalization
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System Processing Time*

* Input: ~230s speech
* Machine: Linux, Xeon 2-3GHz, 2 Gig memory
* All systems using STT output include STT time (~503s)

Proc time for 230s speech x RT gggcﬁ /S)
GMM-ATNORM [ — |5 0.12
. T |Spkr Rec

GMM-LFA | 0.61
SVM-GSV -:I 0.07
- SVM-GLDS [I 0.05
.§ SVM-MLLR | | 2.19
2 SVM-WORD | ] 2.31
BT-WORD | | 219
NGRAM-WORD | ] 2.20
SVM-WORD_DUR 1 ‘ ‘ ‘ ‘ ] 219

0 100 200 300 400 500 600

CPU sec
8 *Estimates from logfiles and reported times., Some times include model Ioac!v"T Lincoln Laboratory ===
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26-27 June 2006 and other 1/0. Systems not run in optimized throughput mode.
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e System Overview
— Building the Base
— Core systems
— Development data

* New for 2006
— GMM with Latent Factor Analysis (LFA) Compensation
— GMM SuperVector SVM
— Multi-feature GLDS SVM
— MLLR SVM with NAP Compensation

e Analysis
— System breakout
— Confidence score calibration
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e (Conclusion
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Spectral Systems
Motivations
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* Concentration on session and channel variability
compensation

— Latent Factors Analysis (LFA)
Effective in SRE-2005 modeling session variation
Gaussian Mixture Models

— Nuisance Attribute Projection (NAP)
Introduced in 2005 for SVM
Similarities to LFA for variation modeling
NAP is suited to high dimensional modeling (supervectors)
Support Vector Machines

e Combine best aspects of GMM and SVM systems
— Gaussian Super Vector (GSV) SVM system

— Hybrid of GMM-UBM distribution modeling with SVM
discriminative classification

m MIT Lincoln Laboratory ===
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LFA and NAP Compensation

e Both LFA and NAP attempt to remove undesired variation
coming from a low-dimensional source

A A
LFA| m \ Original vector NAP | m
N —
un K Latent factor or
/ nuisance attribute (I-P)m
e vector
m-Un - Compensated vector Pm
e  Amount of variation is hidden ° Based on reducing a metric

(latent) and described by source induced from SVM kernel
with a normal distribution .

(Bayesian type assumption) Projects out nuisance space
y P mp e Applied in a SVM framework
o Estimates latent variables and

. g ° i
subtracts out variation Handles channel, session, general

o nuisance
* Applied in a GMM framework — In 2005 NAP used on channel

— LFA used on session variability (cell, cb, elec) variability

— In 2006 NAP used on session
variability

” MIT Lincoln Laboratory ===
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GMM with LFA Compensation

Training and Recognition

TRAINING

—pfe-——>

MAP
Training

Extract \

o

Latent Factors

SuperVec / “] Calculation
m_tr
T N T Un_trn Session Compensated
GMM UBM _ Speaker SuperVector
Factor Loading
Matrix-U
RECOGNITION l
m_ts n_tst |
MAP Extract Latent Factors +>
Training SuperVec Calculation
T . Session Adapted
» +
GMM UBM Speaker and UBM
SuperVectors
................. Y e
Speaker
model
| Feature
"| Extraction Znorm [ Tnorm [— A
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model

Tnorm scores from LFA
compensated cohort models
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& GMM with LFA Compensation

* Details:
— 2048 Mixtures (512 mixtures in 1c)
— Factor loading matrix calculated using kpca to calculate the eigenvectors
— Znorm 200 utterances from SWB I
— Tnorm drawn from Eval04 speakers

607 Cohorts on 8c 4-wire, 448 Cohorts on 3c {2,4}-wire, 394 Cohorts
on 1c 4wire

— Based on the model estimation algorithm presented in [Vogt06]
— Did not use speaker factor estimation as in [Kenny05]

* Performance SRE-2006 DCF versus Training condition-pooling all
— GMM-LFA did slightly better than 3.5
GMM-Atnorm at 1c/1c 31

— At 8c/1c the GMM-LFA did 3 2.5
significantly better than . ® GMM-Atnorm
GMM-Atnorm § 1.5 B GMM-LFA

1-
0.5
0-

1c/1c 8c/1c

13 [VogtO6] R. Vogt, etal, Experiments In Session Variability Modeling For Speaker Verification, ICASMEB(’G.'"COIn Laboratory

soor ) SRE 2 Kenny05] P, Kenny, etal, “Eigenvoice Modeling With Sparse Training Data” IEEE Trans SAP 2005.
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GMM with LFA Compensation

@
Variation of Subspace Dimension
Score File Sweep EER vs Subspace Rank Males 3¢ - 4wire

* Subspace dimension varies R
for with number of i s S o s
enrollment conversations . 1convtest

* Tuning critical to achieve L N S S Eval0s
good performance ) .

Score File Sweep EER vs Subspace Rank | Males 1c - 4wire

1 conv test

Eval05

6.5%— .................... ....................... T .........
0 50 100 150 200

Subspace Rank (Min [8, 6.26])
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140
Subspace Rank (Min [174 , 2.46])

H ; H H ;
40 60 80 100 120

Subspace dimension
parameters were surprisingly
stable from Eval05 to Eval06
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GMM SuperVector SVM
Using Stacked Means

Utterance 1 GMM*UBM Utterance 2

Feature \ MAP : Feature ”HW""
‘*Wh‘"‘ > Extraction Adaptation Extraction |+ I,
\ /
\

\ P /

PR
K&

< = ¥
/ml I\;‘; fml\

m, e m,

= =t

.m, .~:’ . 3
- My )

AR
v ! UBM

-~ 7

Different movements of means gives clues to speaker identity
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&3 GMM SuperVector SVM

o

* Use the GMM $ l
supervector in an SVM

ml ml
* Supervectors are really g, m, m, o
just another way of . .
describing a GMM
m2048 m2048
* Desirable to have a
kernel that is computed
directly from the

supervectors Kernel
Computation

l

K(x,y)

s MIT Lincoln Laboratory ===
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GMM SuperVector SVM

®* Our approach:
— KL divergence approximation
— L2 kernel
— NAP session compensation
* Related Work:
— (Wan-Sheffield) Fisher Kernels
— (Ho/Moreno- HP Labs) KL divergence

— (Campbell) SVM/GMM using GMM as a “decoder” to localize the
scoring—but no stacking of means

— CRIM
— Persay
* References:

— Campbell, W. M., D. Sturim, D. Reynolds, “Support vector
machines using GMM supervectors for speaker verification,”
IEEE Signal Processing Letters, vol 13, no. 5, pp. 308-311, 2006.

— Campbell, W. M., D. Sturim, D. Reynolds, “SVM Based Speaker
Verification using a GMM SuperVector Kernel and NAP Variability
Compensation,” ICASSP 2006.
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Linear Kernel

GMM SuperVector SVM

* We want to look for , - o { 9a(x)
= Dtgu- gb) - gu(X\J 1‘-’!% ¢ {EX
comparisons of the R gp(x)
MAP adapted models
that involve GMM Upper Bound ‘ |
supervectors N
D(gal gp) < Z A D (\'( m;, 3;)|[|N(; mff, E.e-})
* Indirectly: KL =1
divergence Compute ‘ |
e “Linearize” to get final d(m®, m”) = Z A:i(m$ —m?)E7H(m? —m?)
kernel =1
. . Polarization ﬂ
* Final kernel involves
only operations with N |
supervector K (utt,, utty,) = Z A IIl_f,J-"'E_g-_llllE
i=1
N 1
= Z (\,/ E__In ) (\,/ )\.;_E_:ﬁtn?)
i=1
" MIT Lincoln Laboratory ===



GMM SuperVector SVM

Tuning
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* Kernel selection: I el
— 8c Eval05 example e eMmsupert?
— L2 kernel was based upon standard Lnor b A el
integral inner product E
— Conclusion: Linear kernel worked the T I S S N -
best and was easiest to implement 8.l .
e Session NAP tuning: : S 0 O S O O =
— As we vary the dimension of the NN T
nuisance subspace (corank) the EER
performance varies i e e S S R
— Optimal NAP corank fairly consistent bz o 1z el m
across different enroliment durations
\ SVM-GSV ¢, A 'SVM-GSV 8¢
o \ EVal05 \ Eval05
gm \\ g o \ | be?t corank=
- \\ _ - \\ approx 14238
0z e s S acoms \\/\
001dy 50 100 150 2m o 300 e s 1 o;‘i‘."* zl" =0 3m
Corank
v MIT Lincoln Laboratory ===
NIST SRE
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&3 Multi-feature GLDS SVM
NIST SRE0S, Common Condition, le, Females
é_Ega].;'JM::.N»EILIF’C a k 128
LPCCs ¥ svMm GLDS NAP K 0-° ]  Session NAP Gor
P
MFCCs 1 SVM GLDS NAP ¥ oo
0.5 <
Evalﬂsl lc, EngIISh E e ..................................... .............. AN ........................................
; [fs] LPCCFeatures .......
. =« | DEV set S SN
. S b
é ™ False Alarm probability (in %)
g e Updated with new feature
5 o strategy
= * Found that substantial gains
B could be obtained by applying
. e _ _ NAP to LPCC features
05 1 2 5 10 20 40 * Resulting system had a fusion
False Alarm probability (in %) gain on 05 data and 06 data
0 MIT Lincoln Laboratory ===
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Multi-feature GLDS SVM

Variation of Session NAP with Corank

Different behaviors for:
— number of enroliment

conversations

— features

NAP behaves differentl
SVM-GSV versus SVM-

Tuning critical to achieve good
performance

for
LDS

1 conv test

8 conv train,

Eval05, MFCC

;@4.4’
v I W R S|m||arfor e e
o\ LPCC
38. erieaB e iisaicamiiaatiaaiiastias i aacimassmmtsaatsan i nataan _A ...........
36 . ; ; ; 5
0 100 200 300 400 500 600
Corank
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EER (%)

| 1 conv train,
s 1 "GQnV teSt _____ ______________ i
~ Eval05, MFCC
20\
* \ 1 conv train,
- 1 conv test
\ Eval05, LPCC

14
12 \

\//V\/‘\/_//‘
! 00 50 100 1 éO 200 250 300

Corank
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SVM MLLR with NAP Compensation

Applying Byblos STT to SID
‘ | Unadapted

)
%,

KX

»

Feature + Adapted
| Decode Ll Decode
Adaptation
e Trigram LM

Adapted Lattices For
High-level Systems
*4-gram LM

*GD xword Quinphone models
Used for

* Gl non-xword
Triphone models

MLR Coefficients

* Found Data! From our high-level

systems » Word Duration
« 3 transforms (derived from data « N-gram systems
driven classes)
* 1 root + 2 classes \

SVM MLLR with NAP

* 0-1 Normalization

» Applied NAP without modification
» Switchboard training

» Fisher English Background

* Eval04 T-norm models
N -

o MIT Lincoln Laboratory ===
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* |Transform| = 3600
* Only used Model Space Transforms
» Other Feature space adaptations
performed before MLLR




SVM MLLR with NAP Compensation

Results

ORRS
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NAP vs No-NAP (8c Train/1c Test, All Trials)

NAP vs. No Nap (1c train/test, All Trials)
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e System Overview
— Building the Base
— Core systems
— Development data

* New for 2006
— GMM with Latent Factor Analysis (LFA) Compensation
— GMM SuperVector SVM
— Multi-feature GLDS SVM
— MLLR SVM with NAP Compensation

* Analysis
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Min DCF

System Breakout
Min DCF for 1c/1c and 8c/1c

K
1conv4w/1conv4w
0.1
0.09 4 SPEC STT Fusion
0.08
0.07 G
0.06 M Pool=ALL

B Pool=ENG

ATN LFA GSV GLDS MLLR S-
WRD

B- ALL BEST BEST-

WRD

e Small accuracy loss from

ENG to ALL pooling

* Fusion within spectral

systems has performance
similar to all fusion
ENG 1c/1c 8clic
EER | DCF | EER | DCF
Best 35 0.016 | 1.5 0.0056
Bestcep | 4.0 0.019 | 2.0 0.0080

25
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Min DCF

CEP
0.1

* Very low error rates for new
data set (EER < 2% for 8c)

* Spectral based systems
generally outperform STT
based systems

— MLLR is exception

— But this is a spectral space
transform

8conv4w/1conv4w™

0.09 -
0.08

. SPEC

STT Fusion |

0.07

0.06

0.05

0.04

0.03

0.02
0.01 -

0 -

D, <4 Gy
v

*8conv4w/1conv4w: not all systems T-normed

’17< 8, €, 4 % % 0& G@
Y \y

S By By By o < N %,
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* Divide and conquer approach

Allows application of
optimized detection
systems

* Purification is critical step
when using summed data

Sconmed2w-1convdw 2w pool=eng

Jcdw cdw 2006
I e 2006

Scdw cdw 2005
Jc2M clw 2005

40

20

...................................

10

Miss probability (in %)
()]

0.z
a.1

..................................................................

1 ] 1 i | i ] 1
0102 05 1 2 5 10 20
False Alarm probability {in %)

40

26
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System Breakout
3¢ 2-wire Processing

il iyl \‘
g

2-wire training

T 1L - ]
- A1.B1, C2
n : F—
A ai | Cluster
_' Automatic ) combi Select __, A
N ne
g Diarization —
.B2,

2-wire scoring

1sp
detector
Automatic Utterance
iari i score
Diarization 1sp
detector

* Loss of ~2.5% in EER
between 2w and 4w
processing

* Odd DET curve shape on
2006 data

Problem in key?

MIT Lincoln Laboratory ===



System Breakout
Accuracy /| Computation Tradeoff
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* High-level features provide gains ... but at a cost

— Computation and reliance on particular language (e.g. English)
* Most practical when STT is also needed in an application

— May not allow speaker recognition ‘tweaks’ (e.g., MLLR classes)
* Are there less costly ways to extract the same information?

8c4w/1c4w pool=eng

0.03
0.02
S atnorm
(]
£
s i
0.01 L = mlir
best cep
] begta"
0
0 0.5 1 1.5 2 2.5 3 3.5
X RT
27 *RT for combinations does not assume any computation sharing which wouIN"T Lincoln Laboratory

NIST SRE . . .
26-27 June 2006 likely occur in front-end processing.



Score Calibration Analysis

Thresholds
minDCF, actualDCF English Trials
disparity :
S stems: B minDCF © actualDCF
y ; 0.035
— GMM LFA pey
— GMM ATNorm 0.025.
— SVM-GLDS 0.021
— SVM-GSV 0.0151
SVM-MLLR o
SVM Fusion of all SVMs 0-

Fuse = Fuse all 5 systems
Measuring stability:
RelChg =
(actDCF-minDCF)/minDCF

Plots show submission
systems

Problem is worse for all
trials

26-27 June 2006

GMM- GMM- SVM Fuse
ATNorm LFA

45
40+
351

T 301

o 251

S 20

2 151
10-

5,
0,

GMM- GMM- SVM Fuse
ATNorm LFA
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Score Calibration Analysis

&
&
= TNorm + Background
* TNorm: 45 : :
— Added TNorm to all SVM 40 English Trials -
systems 35- TNorm |
— TNorm speakers from = 30
Eval04 o ;g
* New Background: S 15,
— Added non-English 10+
Fisher data 5
(Arabic/Mandarin) to 0-

SVM backgrounds GMM- GMM-  SVM  Fuse
— SVM-GLDS, SVM-GSV ATNorm — LFA

* Both: TNorm+Bkg

45- 45-

40- English Trials - st English Trials
35- NewBkg 35- TNorm+NewBKkg
= 304 s3] 1
g) 25’ : 25_
o 201 S 20
&, 151 nd:é 15-
10 10
5 5
0- 0-
GMM- GMM- SVM Fuse GMM- GMM- SVM Fuse

ATNorm  LFA ATNorm  LFA

0 MIT Lincoln Laboratory ===
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Score Calibration Analysis
Stabilization Results

'Y

e Final results show both 0035

. . . 0.03- N EﬂgllSh
English trials and all trials . (;25_ \ \ Trials
* TNorm is a huge win for 0.0 § § e
stabilizing thresholds for N N ﬂ
9 0.0151 N S actualDCF
the SVMs—haven’t seen I\ § B new-minDCF
this behavior before 005, § \ S new-actDCF
* Stabilizing thresholds is Nl NE \
possible GMM- GMM- SVM Fuse
. o ATNorm LFA
e All trials still is a 0.08-
challenge 0.071 All
* RelChg improvement: 332 Trials
— English: 16.5% — 14.7% 0.04. = minDCF
=4 actua
— All: 71.5% — 27.0% 0.03- B new-minDCF
0.021 new-actDCF
0.01
0_1

GMM- GMM- SVM Fuse
ATNorm LFA

v MIT Lincoln Laboratory ===
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Score Calibration
Calibration & Refinement
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] ] . Calibration
* English trials, new fusion system — T T

* Calibration=How well does the "
output approximate a posterior? -

* Refinement=Does the system
produce scores near 0 & 1?

e Calibration still not good across all
thresholds II
* Chance: pE -l“lll | I |

h(Ptgt)=h(001)=0081 bits % o1 o0z o3
* Cross-entropy (CE):

1

4 131 06 07 08 0.8

PIO(E)=C fo=1)

. 0.038 bits Refinement
* NCE = (Chance-CE)/Chance
— 53.0%, this is reasonable
e CE=calib+refinement
e Calibration error: 0.017 bits
e Refinement: 0.021 bits £
e C(Calibration is a large part of the
cross-entropy; ideally should be
zero

0 —
0 0.1 02 0.3 0.4 05 0.6 Q.7 08 0.9
c
i

> MIT Lincoln Laboratory ===
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MITLL Submissions

Historic Performance
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-
o

e Consistent and steady ) 1conv4w/1convaw E'ER o
improvement for data/task g N °
focus , 5 N .

2001 2002 | 2003 | 2004 | 2005 | 2006 6 \ \ minDCF
SWB1 SWB2 MIXER2-3 5 \ x100
. . =

* New data sets designed to be *_ u

more challenging = e
e 2

* New features, classifiers and 1l 2 R
compensations drive error g
rates down over time

8conv4w/1conv4w
2001 Text-const GMM, word-ngram i
3

2002 SuperSID : High-level features \\

2003 Feature Mapping, SVM-GLDS 2 R\ \'

2004 | Phone/Word-SVM, GMM-ATNORM 1

2005 NAP, TC-SV, word/phone lattices : \ :

0 | | | T T

2006 | SVM-GSV, GMM-LFA, MultiFeat
SVM-GLDS, SVM-MLLR+NAP 2001 2002 2003 2004 2005 2006

™ MIT Lincoln Laboratory ===
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Conclusions

e Excellent progress in 2006

— Many sites independently demonstrating effectiveness of new
features, classifiers and compensations

* MITLL focus was on spectral based systems
— Direct attack on channel variability
— Robustness to language/dialect variability
— Computational speed
— Minimal support infrastructure
* Highlights of new items for 2006
— GMM with Latent Factor Analysis (LFA) Compensation
— GMM SuperVector SVM
— Multi-feature GLDS SVM
— MLLR SVM with NAP Compensation
* Threshold analysis highlighted need for Thorm
— Unexplained calibration bias (mixer2 — mixer3)

* Retrospective look at performance shows a consistent and steady
improvement for data/task focus
— High-level SuperSID features brought attention to extended data task

— Main drivers in performance improvement have been new spectral
based systems and channel compensations

o MIT Lincoln Laboratory ===
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