
MIT Lincoln Laboratory Site Presentation

**Bill Campbell, Doug Sturim, Wade Shen,
Jiri Navratil*, and Doug Reynolds**

NIST Speaker Recognition Workshop

26 June 2006

***IBM**

This work was sponsored by the Department of Defense under Air Force contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

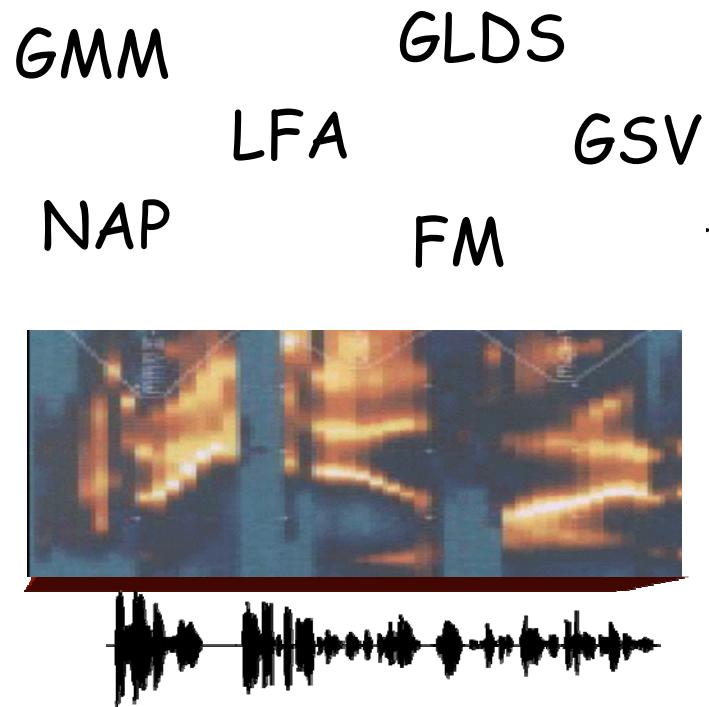
Outline

- **System Overview**
 - Theme: *Building the Base*
 - Core systems
 - Development data
- **New for 2006**
 - GMM with Latent Factor Analysis (LFA) Compensation
 - GMM SuperVector SVM
 - Multi-feature GLDS SVM
 - MLLR SVM with NAP Compensation
- **Analysis**
 - System breakout
 - Confidence score calibration
 - Final post-eval system and historic performance
- **Conclusion**

Theme for SRE 2006

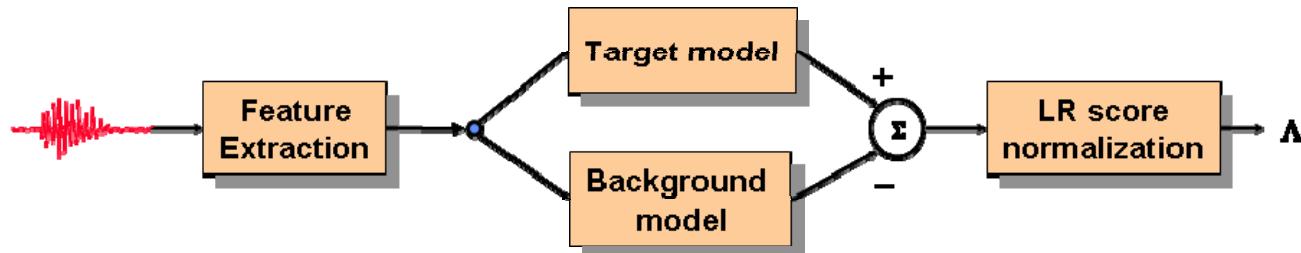
Building The Base

- At the 2002 JHU Summer Workshop, the SuperSID team demonstrated the power of exploiting multiple levels of speaker information in speech
- High-level features have shown incremental improvements in performance, but usually at substantial complexity and computational cost
- In keeping with our approach of making speaker recognition techniques **robust** and **portable** to new domains and platforms, we focused on **spectral based techniques**
 - direct attack on channel variability
 - robustness to language/dialect variability
 - computational speed
 - Small support infrastructure (e.g, no STT or phone rec)



System Overview

Core Detectors

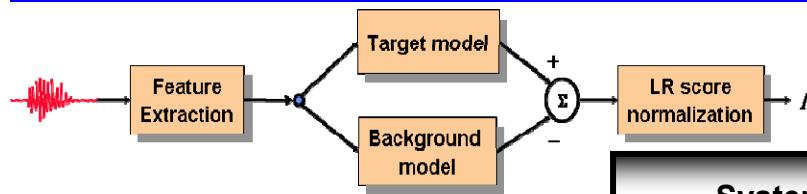


New for
2006

System	Features	Classifier	Znorm	Tnorm	Chan. Comp.
GMM-ATNORM	MFCC	GMM		55	FM
GMM-LFA	MFCC	GMM	200	300	LFA
SVM-GSV	GMM mean SuperVectors	SVM		300*	NAP
SVM-GLDS	MFCC+LPCC	SVM		300*	NAP
SVM-MLLR	MLLR coeff.	SVM		400*	NAP
SVM-WORD	Word lattice n-grams	SVM			
BT-WORD	Top-512 word occ.	Binary Tree	400 cnorm	400	
NGRAM-WORD	Word lattice	Lang. Model	400	400	
SVM-WORD_DUR	Word dur. stats.	SVM		400	

System Overview

Development Data

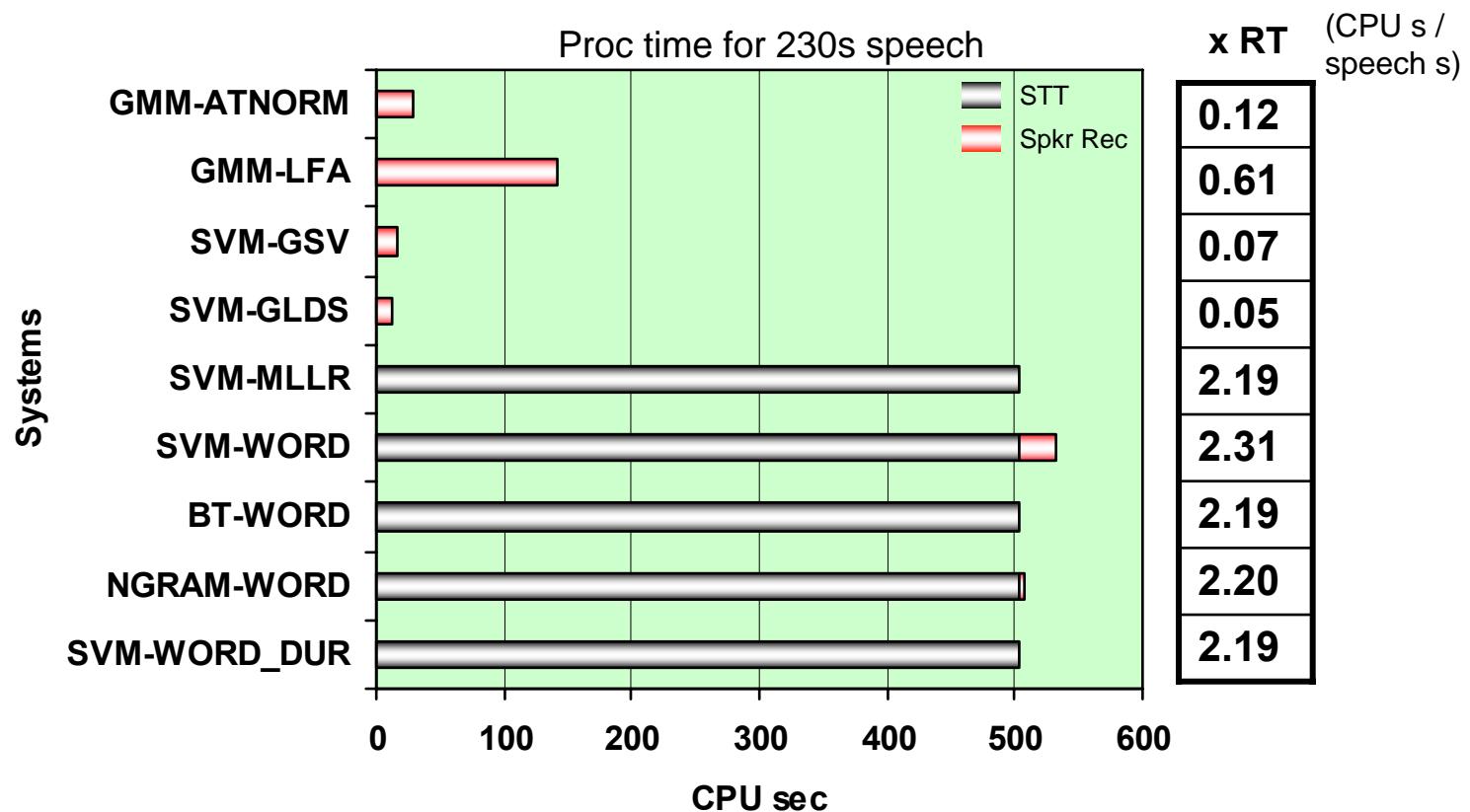


- Dev data focused on primary English condition
- Post-eval found further gains in using multi-language data

System	Background	Znorm	Tnorm	Chan. Comp
GMM-ATNORM	SWB2, SRE04		SRE04	SWB2, NatCell
GMM-LFA	SWB2, SRE04	SWB2	SRE04, FSH	SWB2
SVM-GSV	ubm=SWB2 svm=FSH		SRE04	SWB2
SVM-GLDS	FSH-ENG		SRE04	SWB2
SVM-MLLR	FSH-ENG		SRE04	SWB2
SVM-WORD	FSH-ENG			
BT-WORD	FSH-ENG	SRE05	SRE05	
NGRAM-WORD	FSH-ENG	SRE04	SRE04	
SVM-WORD_DUR	FSH-ENG		SRE04	
FUSION	Cross-Validation on system scores from SRE05			

System Processing Time*

- Input: ~230s speech
- Machine: Linux, Xeon 2-3GHz, 2 Gig memory
- All systems using STT output include STT time (~503s)



Outline

- **System Overview**
 - Building the Base
 - Core systems
 - Development data
- **New for 2006**
 - **GMM with Latent Factor Analysis (LFA) Compensation**
 - **GMM SuperVector SVM**
 - **Multi-feature GLDS SVM**
 - **MLLR SVM with NAP Compensation**
- **Analysis**
 - System breakout
 - Confidence score calibration
 - Final post-eval system and historic performance
- **Conclusion**

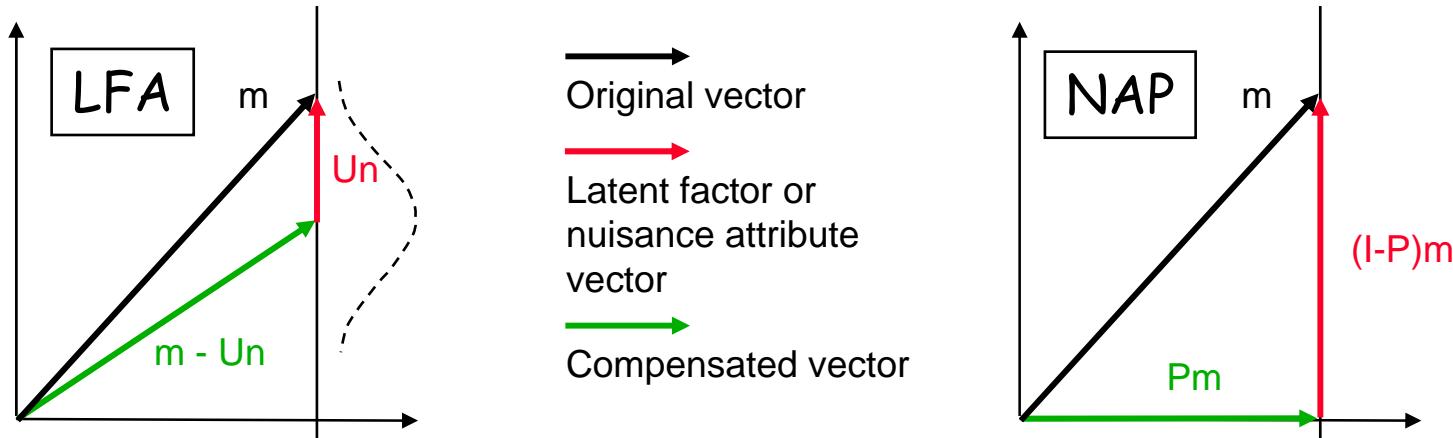
Spectral Systems

Motivations

- Concentration on session and channel variability compensation
 - Latent Factors Analysis (LFA)
 - Effective in SRE-2005 modeling session variation
 - Gaussian Mixture Models
 - Nuisance Attribute Projection (NAP)
 - Introduced in 2005 for SVM
 - Similarities to LFA for variation modeling
 - NAP is suited to high dimensional modeling (supervectors)
 - Support Vector Machines
- Combine best aspects of GMM and SVM systems
 - Gaussian Super Vector (GSV) SVM system
 - Hybrid of GMM-UBM distribution modeling with SVM discriminative classification

LFA and NAP Compensation

- Both LFA and NAP attempt to remove undesired variation coming from a low-dimensional source

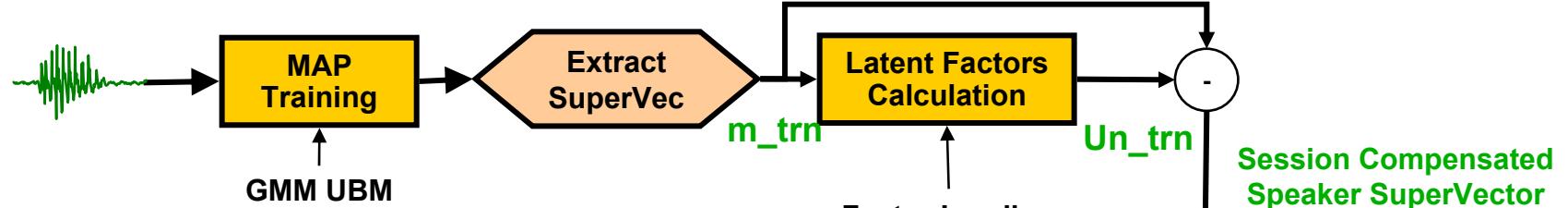


- Amount of variation is hidden (latent) and described by source with a normal distribution (Bayesian type assumption)
- Estimates latent variables and subtracts out variation
- Applied in a GMM framework
 - LFA used on session variability
- Based on reducing a metric induced from SVM kernel
- Projects out nuisance space
- Applied in a SVM framework
- Handles channel, session, general nuisance
 - In 2005 NAP used on channel (cell, cb, elec) variability
 - In 2006 NAP used on session variability

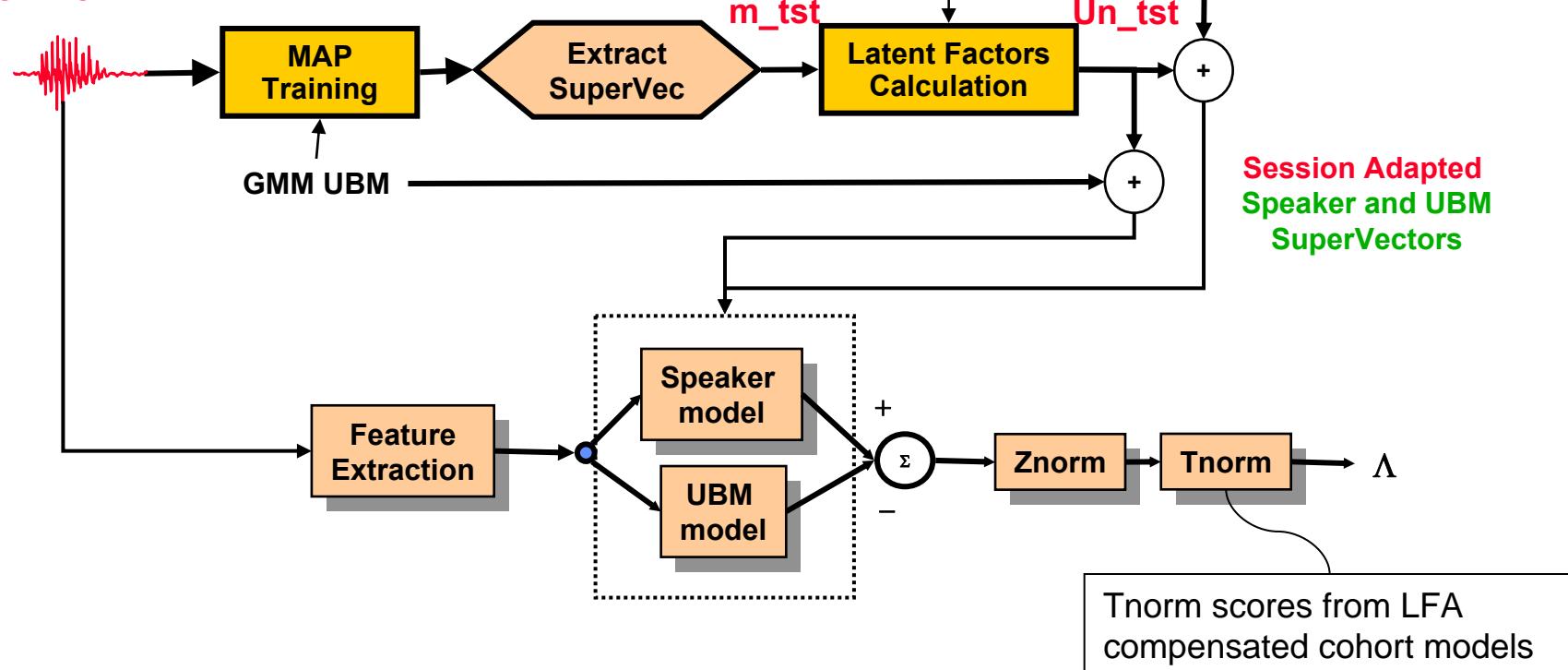
GMM with LFA Compensation

Training and Recognition

TRAINING



RECOGNITION



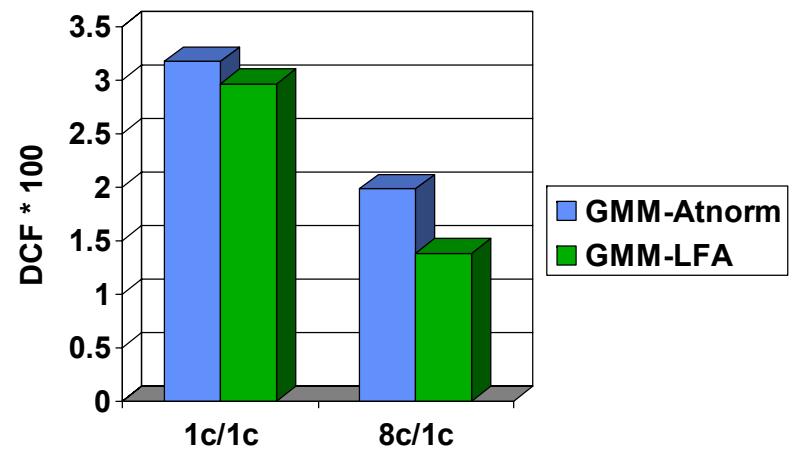
GMM with LFA Compensation

- **Details:**
 - **2048 Mixtures (512 mixtures in 1c)**
 - **Factor loading matrix calculated using kPCA to calculate the eigenvectors**
 - **Znorm 200 utterances from SWB II**
 - **Tnorm drawn from Eval04 speakers**
607 Cohorts on 8c 4-wire, 448 Cohorts on 3c {2,4}-wire, 394 Cohorts on 1c 4wire
 - **Based on the model estimation algorithm presented in [Vogt06]**
 - **Did not use speaker factor estimation as in [Kenny05]**

- **Performance**

- **GMM-LFA did slightly better than GMM-Atnorm at 1c/1c**
- **At 8c/1c the GMM-LFA did significantly better than GMM-Atnorm**

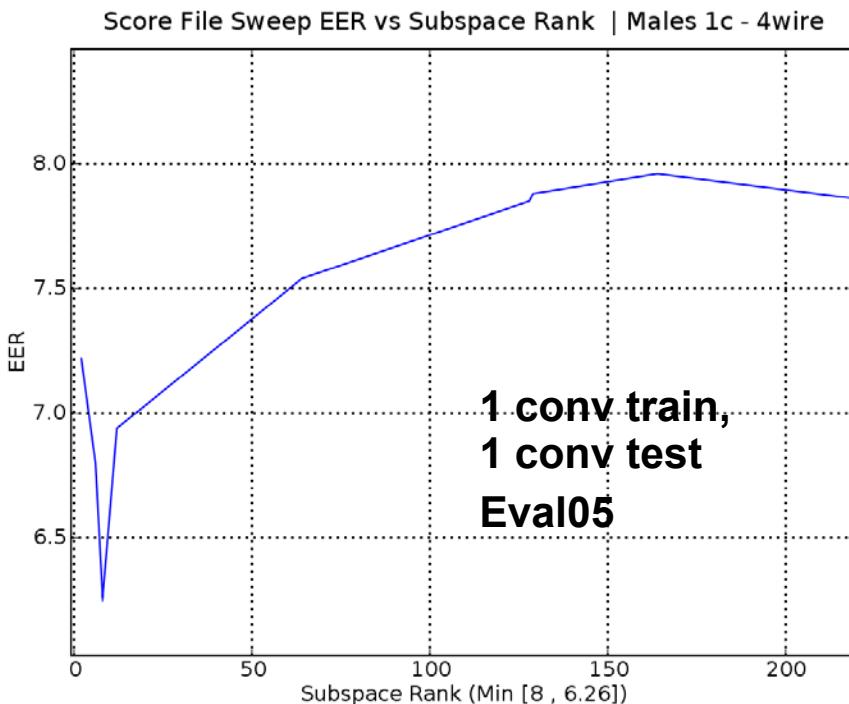
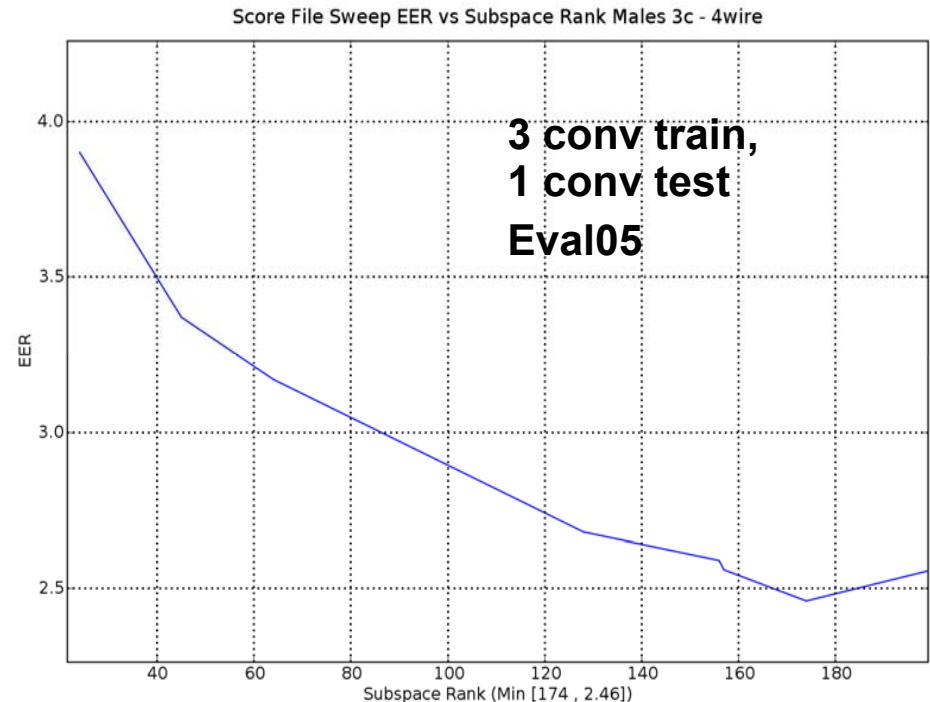
SRE-2006 DCF versus Training condition-pooling all



GMM with LFA Compensation

Variation of Subspace Dimension

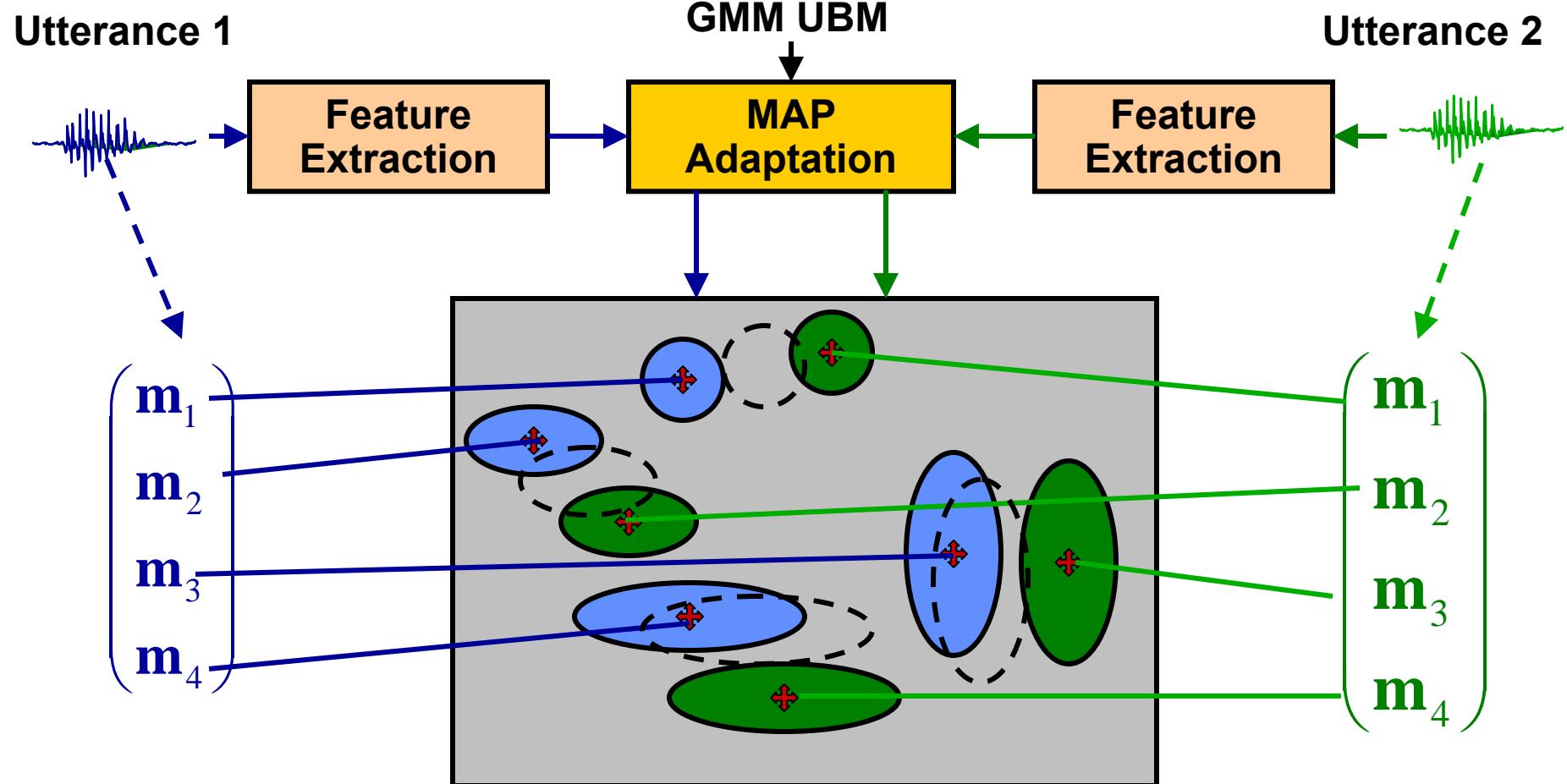
- Subspace dimension varies for with number of enrollment conversations
- Tuning critical to achieve good performance



- Subspace dimension parameters were surprisingly stable from Eval05 to Eval06

GMM SuperVector SVM

Using Stacked Means

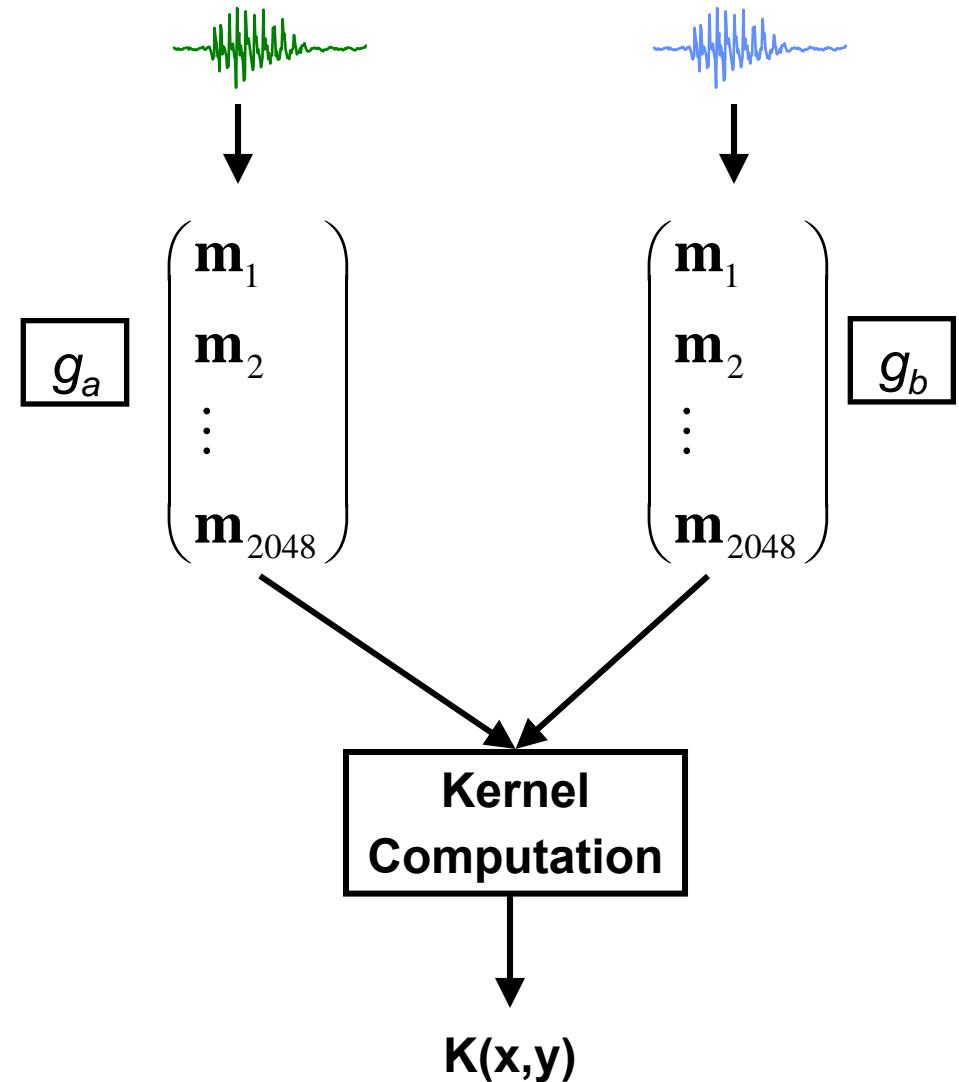


Different movements of means gives clues to speaker identity

MIT Lincoln Laboratory

GMM SuperVector SVM

- Use the GMM supervector in an SVM
- Supervectors are really just another way of describing a GMM
- Desirable to have a kernel that is computed directly from the supervectors



GMM SuperVector SVM

- Our approach:
 - KL divergence approximation
 - L^2 kernel
 - NAP session compensation
- Related Work:
 - (Wan-Sheffield) Fisher Kernels
 - (Ho/Moreno- HP Labs) KL divergence
 - (Campbell) SVM/GMM using GMM as a “decoder” to localize the scoring—but no stacking of means
 - CRIM
 - Persay
- References:
 - Campbell, W. M., D. Sturim, D. Reynolds, “Support vector machines using GMM supervectors for speaker verification,” IEEE Signal Processing Letters, vol 13, no. 5, pp. 308-311, 2006.
 - Campbell, W. M., D. Sturim, D. Reynolds, “SVM Based Speaker Verification using a GMM SuperVector Kernel and NAP Variability Compensation,” ICASSP 2006.

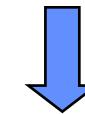
GMM SuperVector SVM

Linear Kernel

- We want to look for comparisons of the MAP adapted models that involve GMM supervectors
- Indirectly: KL divergence
- “Linearize” to get final kernel
- Final kernel involves only operations with supervector

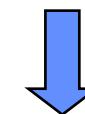
$$D(g_a \| g_b) = \int_{R^n} g_a(\mathbf{x}) \log \left(\frac{g_a(\mathbf{x})}{g_b(\mathbf{x})} \right) d\mathbf{x}$$

Upper Bound



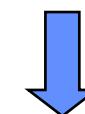
$$D(g_a \| g_b) \leq \sum_{i=1}^N \lambda_i D(\mathcal{N}(\cdot; \mathbf{m}_i^a, \Sigma_i) \| \mathcal{N}(\cdot; \mathbf{m}_i^b, \Sigma_i))$$

Compute



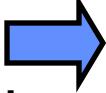
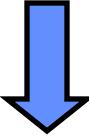
$$d(\mathbf{m}^a, \mathbf{m}^b) = \frac{1}{2} \sum_{i=1}^N \lambda_i (\mathbf{m}_i^a - \mathbf{m}_i^b) \Sigma_i^{-1} (\mathbf{m}_i^a - \mathbf{m}_i^b)$$

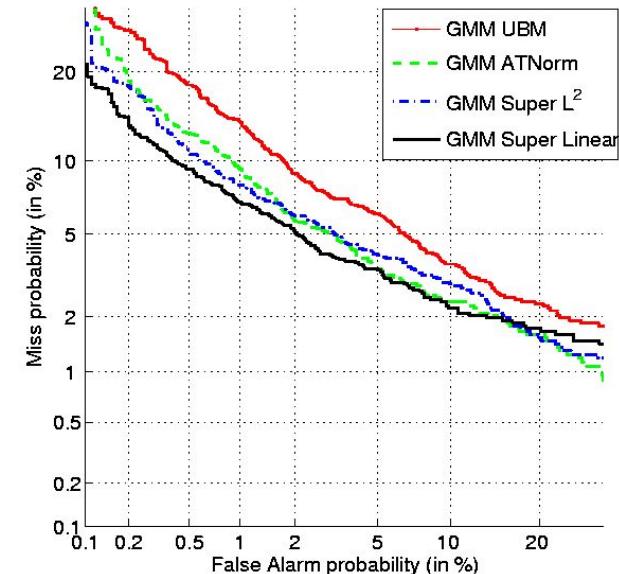
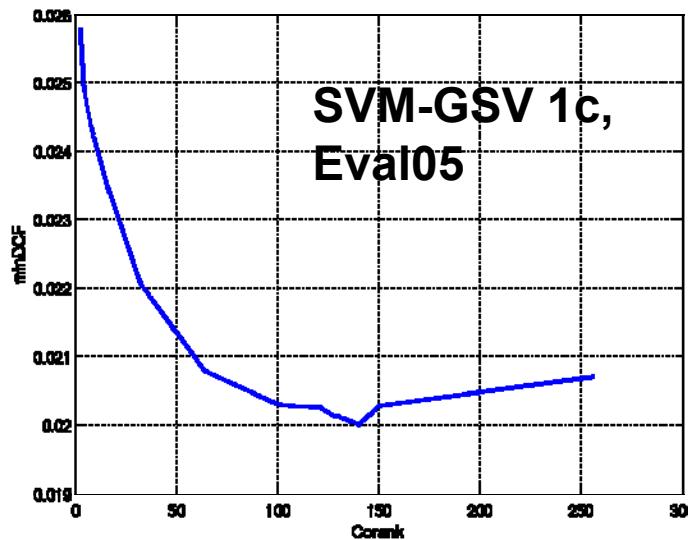
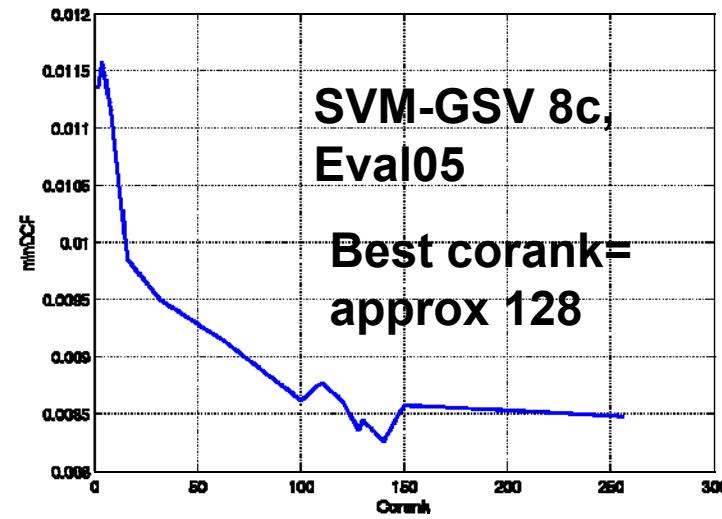
Polarization



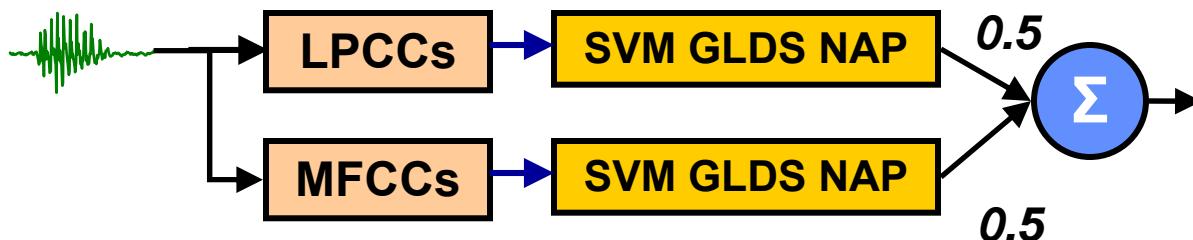
$$\begin{aligned} K(\mathbf{utt}_a, \mathbf{utt}_b) &= \sum_{i=1}^N \lambda_i \mathbf{m}_i^a \Sigma_i^{-1} \mathbf{m}_i^b \\ &= \sum_{i=1}^N \left(\sqrt{\lambda_i} \Sigma_i^{-\frac{1}{2}} \mathbf{m}_i^a \right)^t \left(\sqrt{\lambda_i} \Sigma_i^{-\frac{1}{2}} \mathbf{m}_i^b \right) \end{aligned}$$

GMM SuperVector SVM Tuning

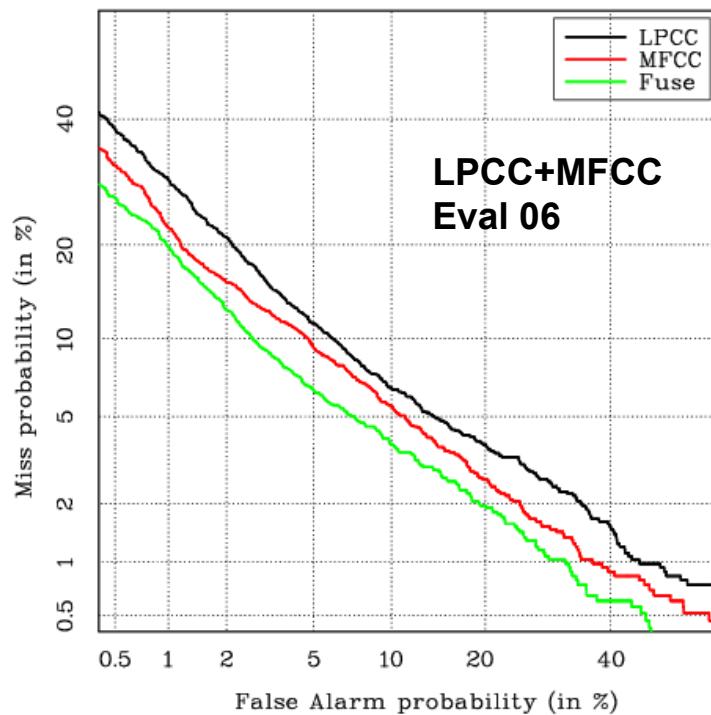
- Kernel selection: 
 - 8c Eval05 example
 - L^2 kernel was based upon standard integral inner product
 - Conclusion: Linear kernel worked the best and was easiest to implement
- Session NAP tuning:

 - As we vary the dimension of the nuisance subspace (corank) the EER performance varies
 - Optimal NAP corank fairly consistent across different enrollment durations



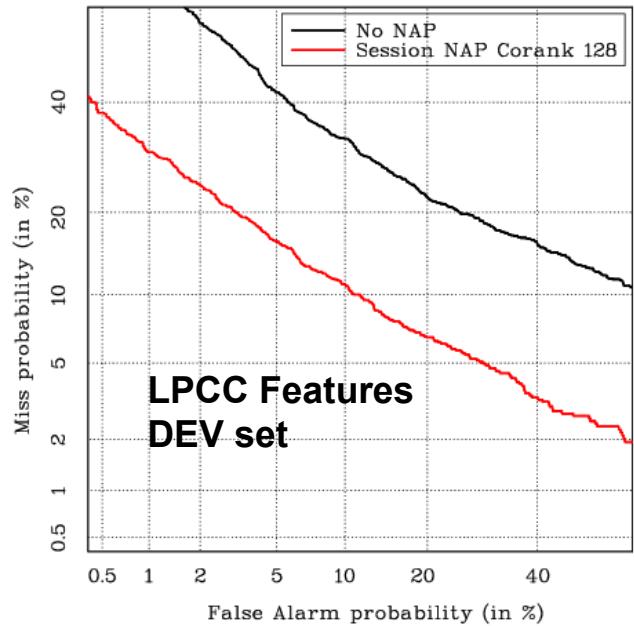
Multi-feature GLDS SVM



Eval06, 1c, English



NIST SRE05, Common Condition, 1c, Females

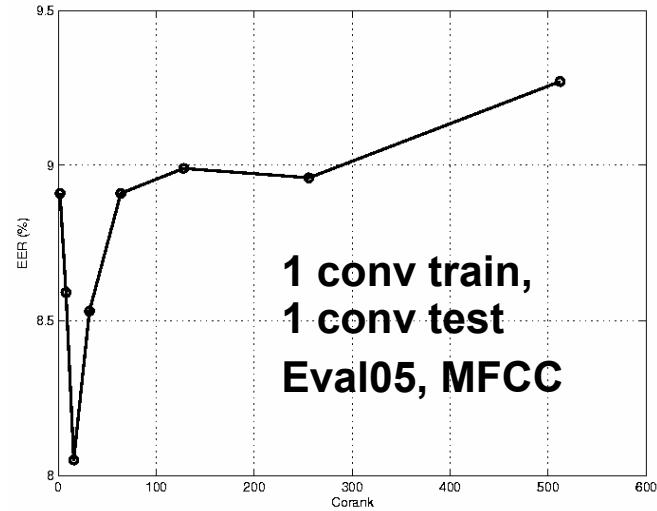
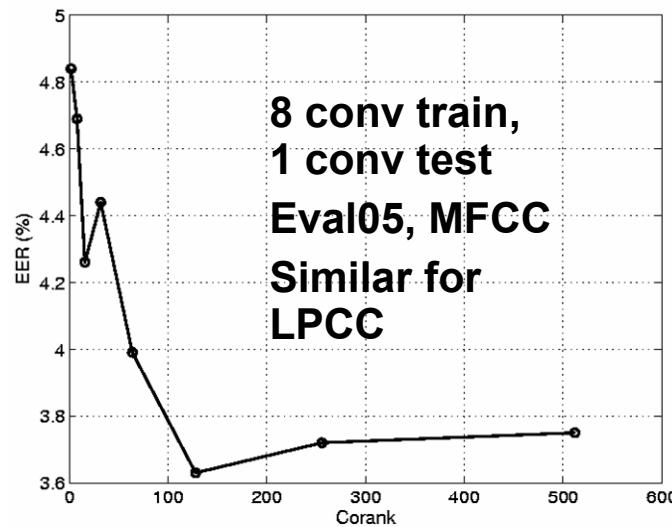


- Updated with new feature strategy
- Found that substantial gains could be obtained by applying NAP to LPCC features
- Resulting system had a fusion gain on 05 data and 06 data

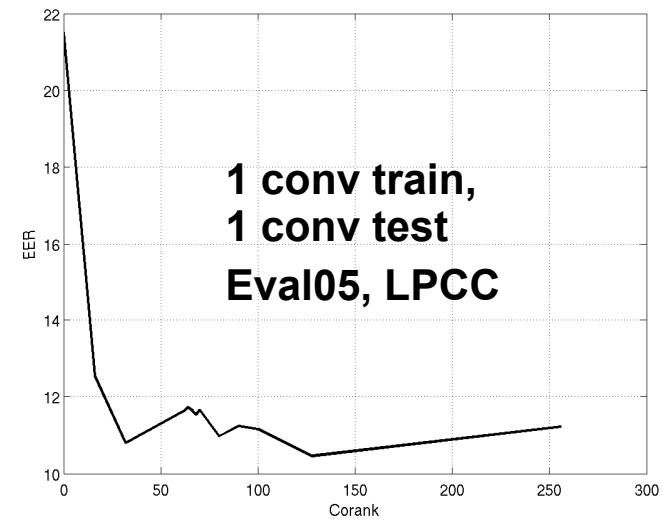
Multi-feature GLDS SVM

Variation of Session NAP with Corank

- Different behaviors for:
 - number of enrollment conversations
 - features
- NAP behaves differently for SVM-GSV versus SVM-GLDS
- Tuning critical to achieve good performance

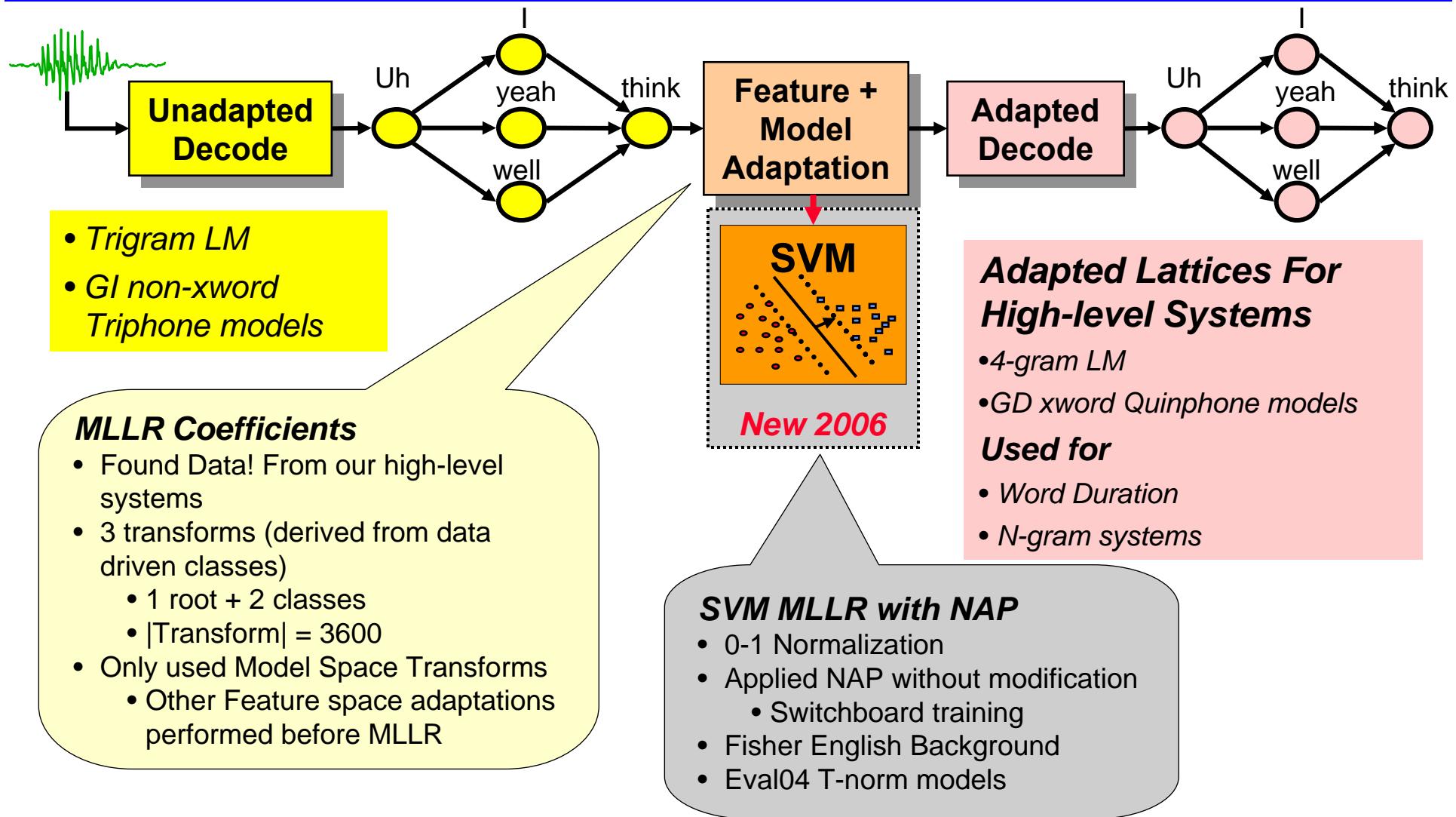


8 conv train,
1 conv test
Eval05, MFCC
Similar for
LPCC



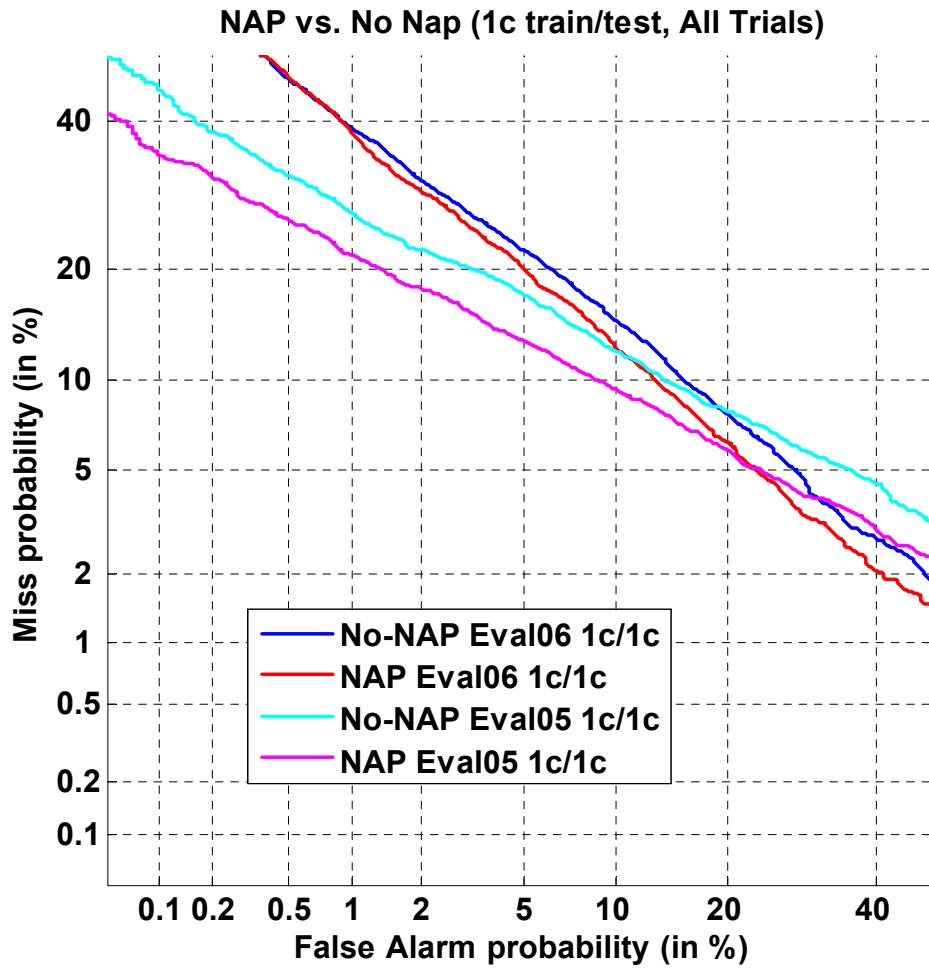
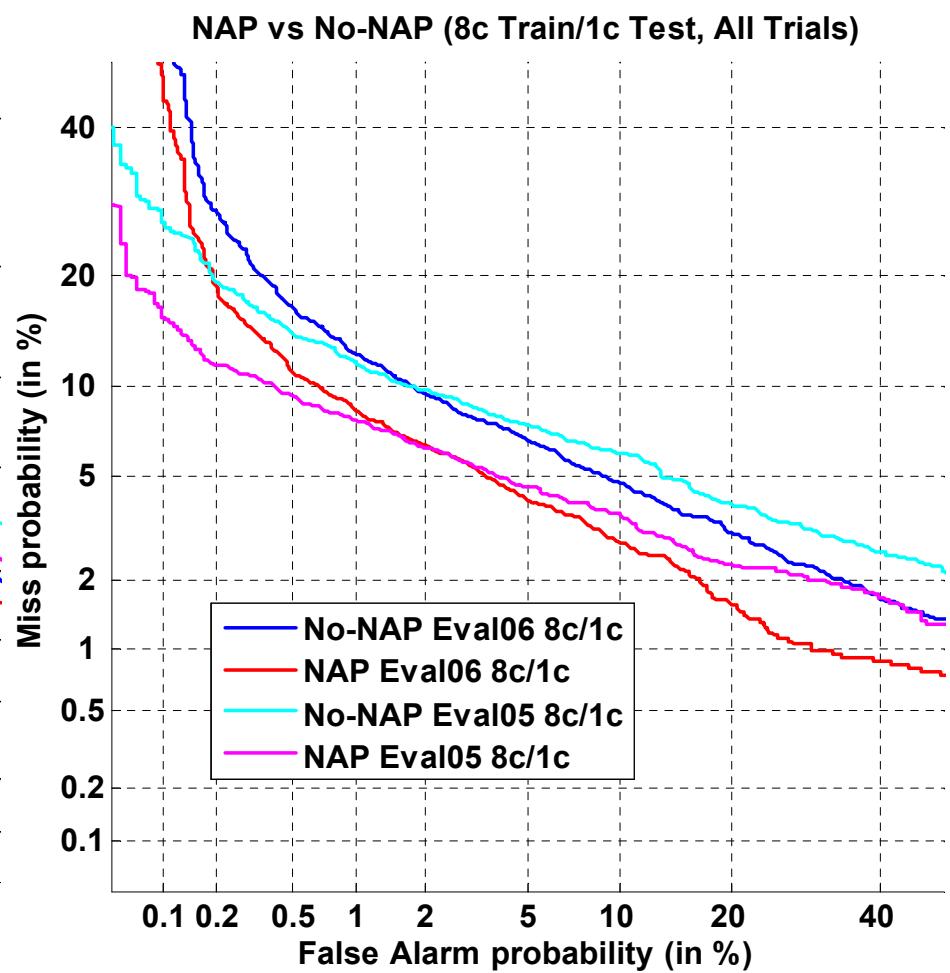
SVM MLLR with NAP Compensation

Applying Byblos STT to SID



SVM MLLR with NAP Compensation

Results

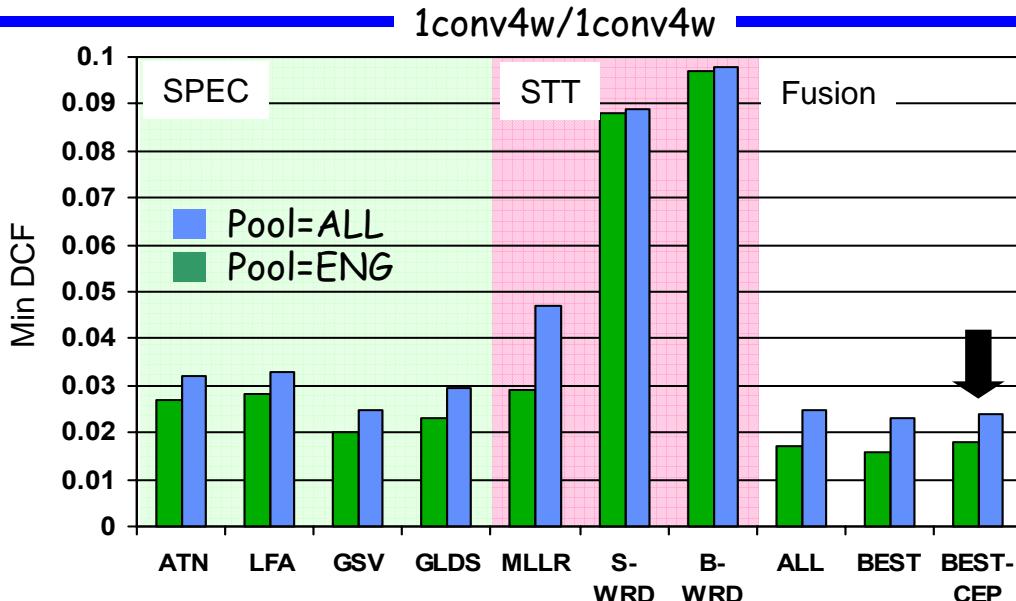


Outline

- **System Overview**
 - Building the Base
 - Core systems
 - Development data
- **New for 2006**
 - GMM with Latent Factor Analysis (LFA) Compensation
 - GMM SuperVector SVM
 - Multi-feature GLDS SVM
 - MLLR SVM with NAP Compensation
- **Analysis**
 - System breakout
 - Confidence score calibration
 - Final post-eval system and historic performance
- Conclusion

System Breakout

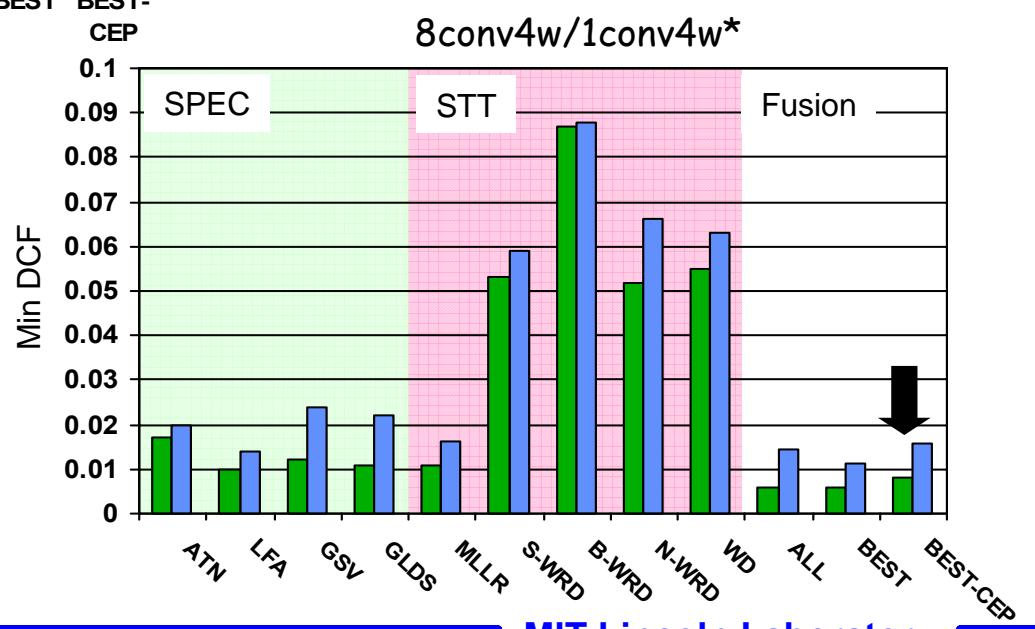
Min DCF for 1c/1c and 8c/1c



- Very low error rates for new data set (EER < 2% for 8c)
- Spectral based systems generally outperform STT based systems
 - MLLR is exception
 - But this is a spectral space transform

- Small accuracy loss from ENG to ALL pooling
- Fusion within spectral systems has performance similar to all fusion

ENG	1c/1c		8c/1c	
	EER	DCF	EER	DCF
Best	3.5	0.016	1.5	0.0056
Best cep	4.0	0.019	2.0	0.0080

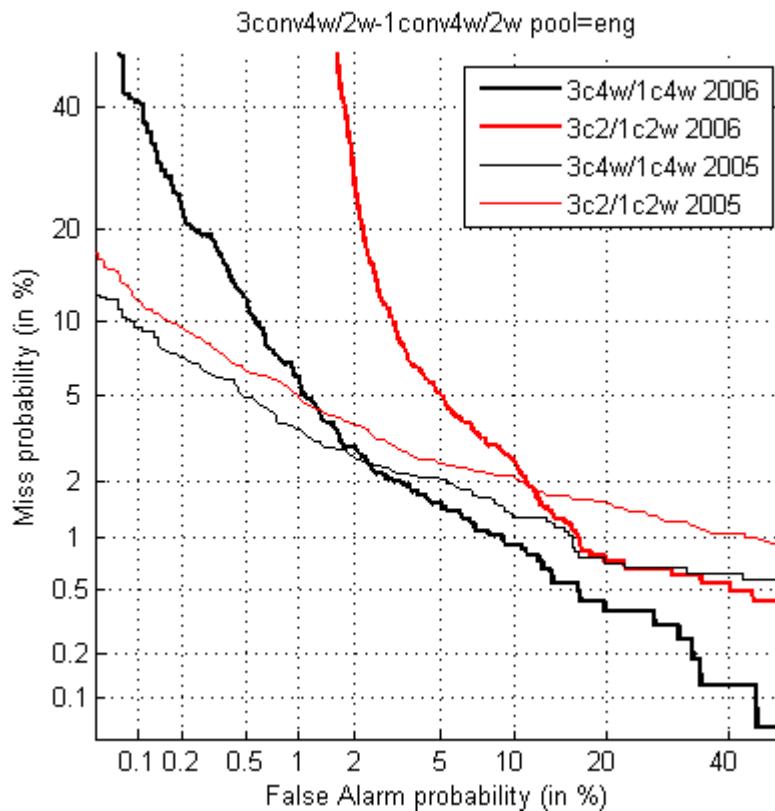
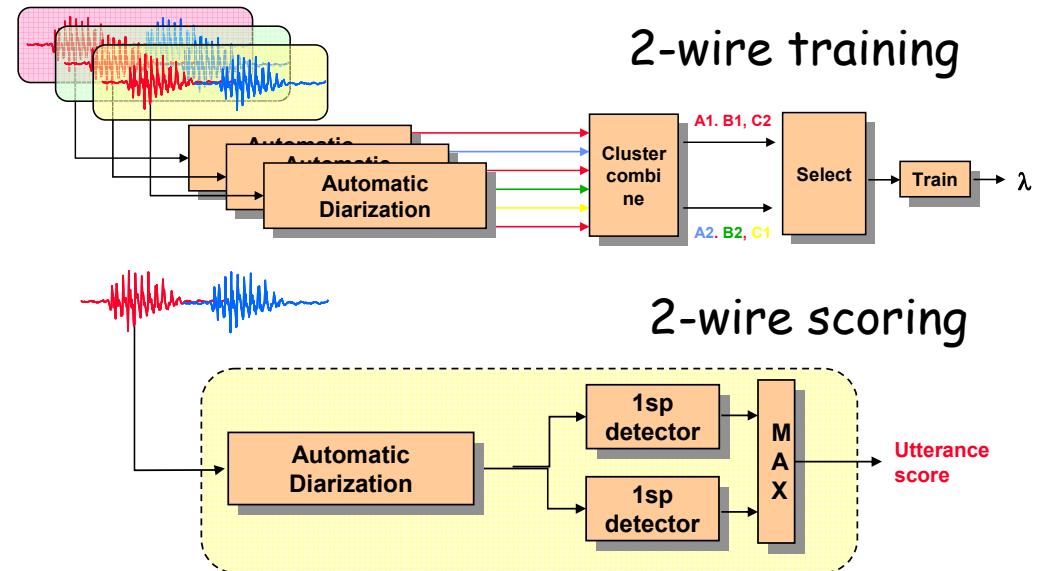


*8conv4w/1conv4w: not all systems T-normed

System Breakout

3c 2-wire Processing

- **Divide and conquer approach**
 - Allows application of optimized detection systems
- **Purification is critical step when using summed data**

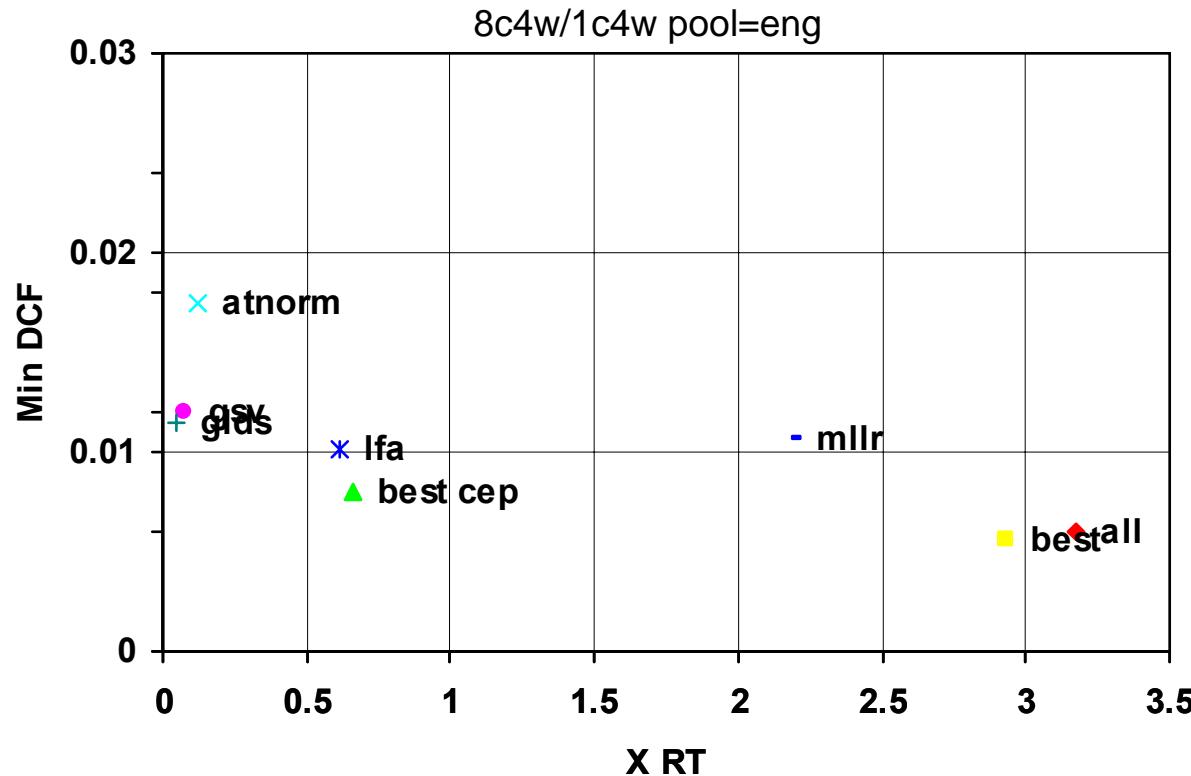


- **Loss of ~2.5% in EER between 2w and 4w processing**
- **Odd DET curve shape on 2006 data**
 - Problem in key?

System Breakout

Accuracy / Computation Tradeoff

- High-level features provide gains ... but at a cost
 - Computation and reliance on particular language (e.g. English)
- Most practical when STT is also needed in an application
 - May not allow speaker recognition ‘tweaks’ (e.g., MLLR classes)
- Are there less costly ways to extract the same information?

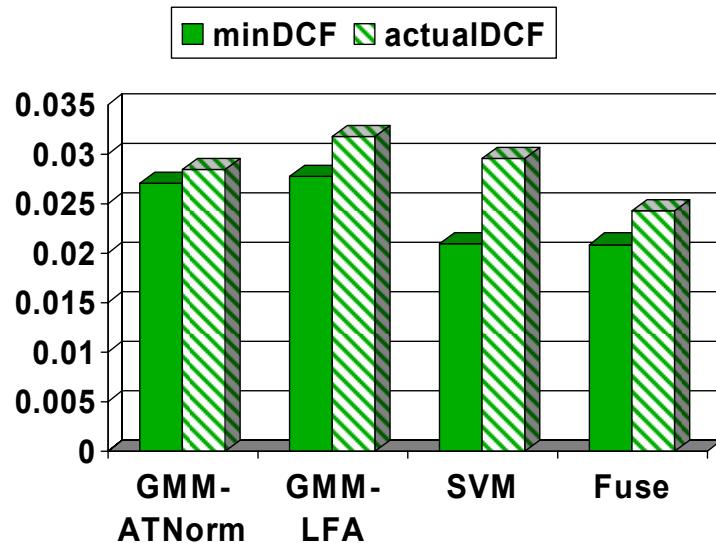
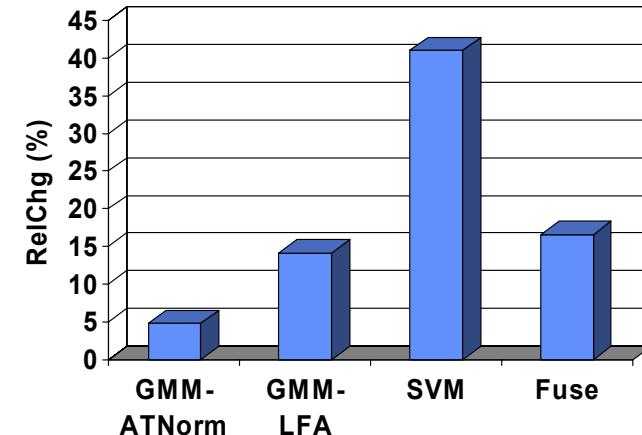


Score Calibration Analysis

Thresholds

- minDCF, actualDCF disparity
- Systems:
 - GMM LFA
 - GMM ATNorm
 - SVM-GLDS
 - SVM-GSV
 - SVM-MLLR
- SVM = Fusion of all SVMs
- Fuse = Fuse all 5 systems
- Measuring stability:
RelChg =
$$(\text{actDCF}-\text{minDCF})/\text{minDCF}$$
- Plots show submission systems
- Problem is worse for all trials

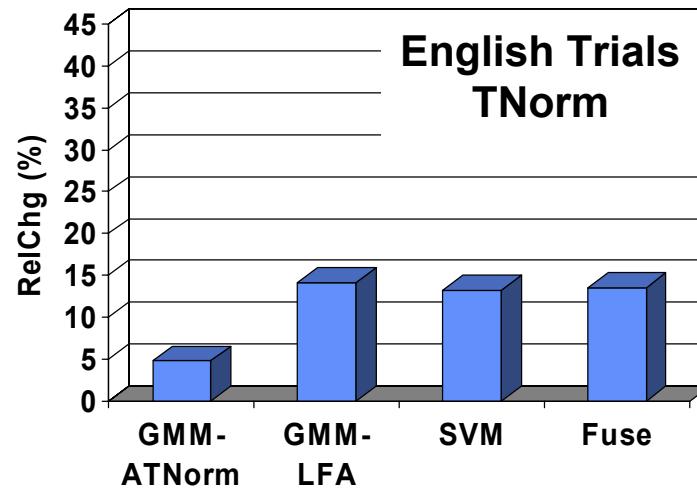
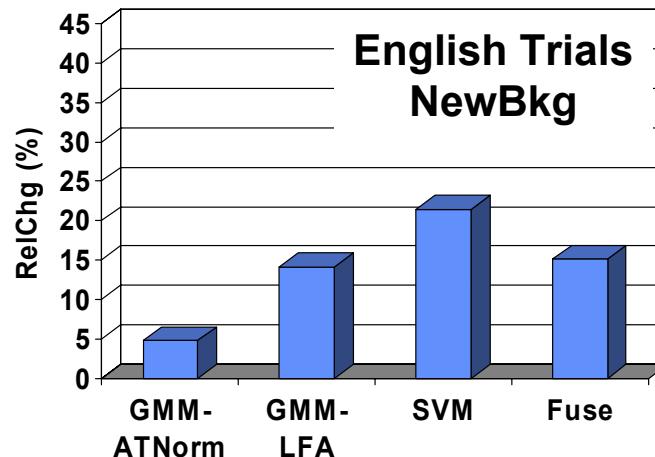
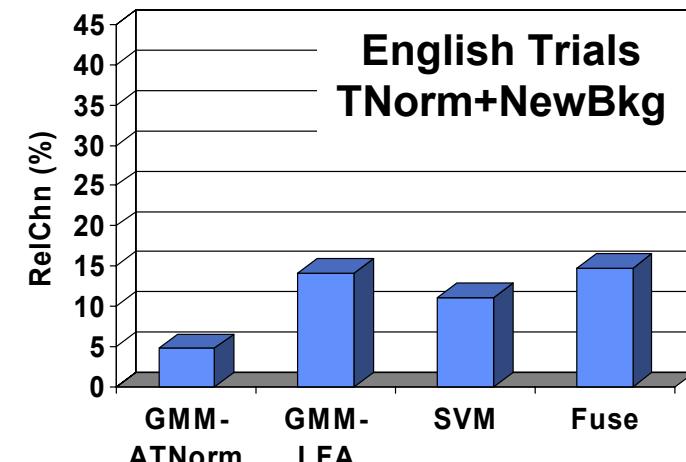
English Trials



Score Calibration Analysis

TNorm + Background

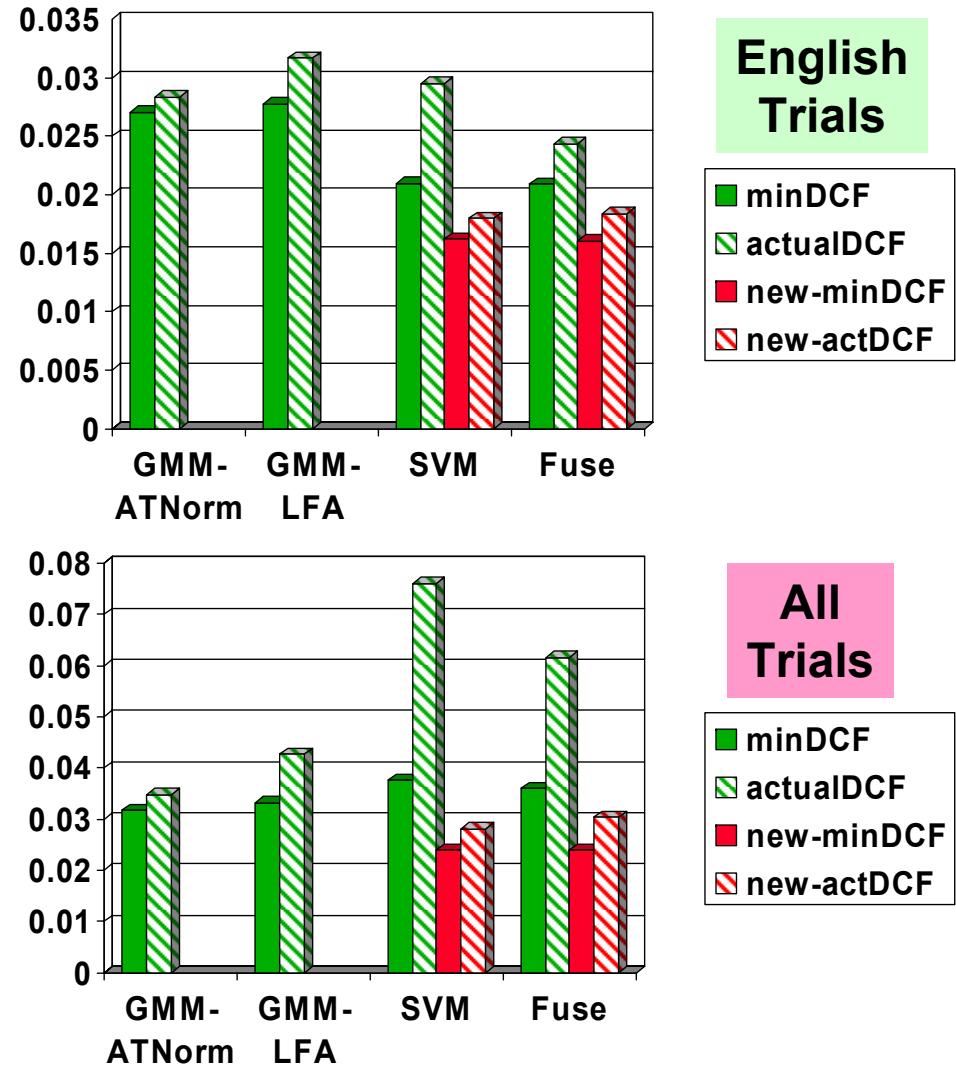
- **TNorm:**
 - Added TNorm to all SVM systems
 - TNorm speakers from Eval04
- **New Background:**
 - Added non-English Fisher data (Arabic/Mandarin) to SVM backgrounds
 - SVM-GLDS, SVM-GSV
- **Both: TNorm+Bkg**



Score Calibration Analysis

Stabilization Results

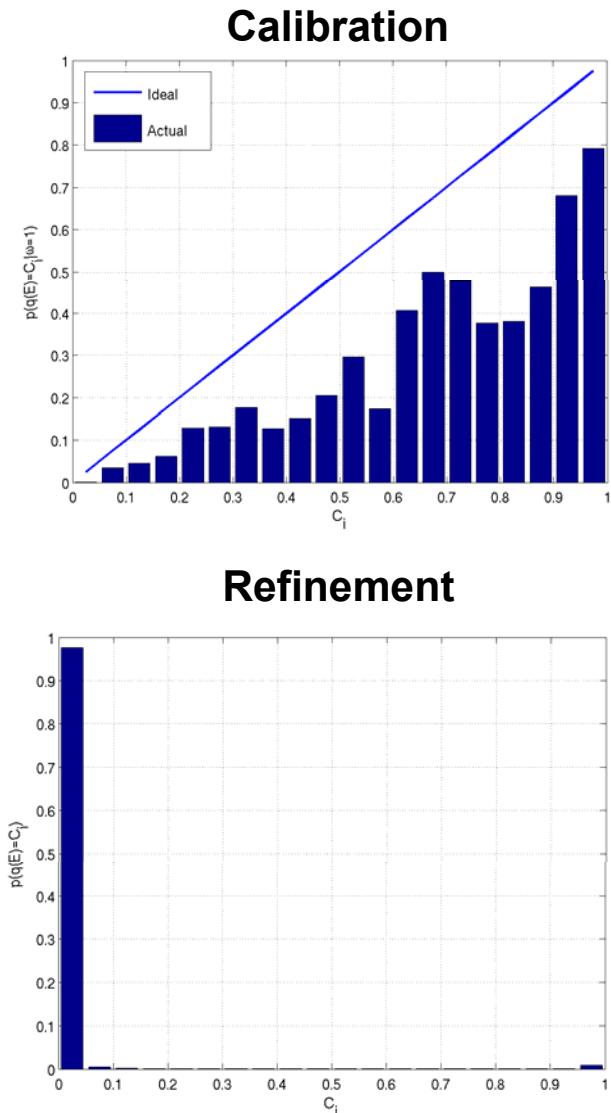
- Final results show both English trials and all trials
- TNorm is a huge win for stabilizing thresholds for the SVMs—haven't seen this behavior before
- Stabilizing thresholds is possible
- All trials still is a challenge
- RelChg improvement:
 - English: 16.5% → 14.7%
 - All: 71.5% → 27.0%



Score Calibration

Calibration & Refinement

- English trials, new fusion system
- **Calibration**=How well does the output approximate a posterior?
- **Refinement**=Does the system produce scores near 0 & 1?
- Calibration still not good across all thresholds
- Chance:
 - $h(P_{tgt})=h(0.01)=0.081$ bits
- Cross-entropy (CE):
 - 0.038 bits
- NCE = (Chance-CE)/Chance
 - 53.0%, this is reasonable
- CE=calib+refinement
- Calibration error: 0.017 bits
- Refinement: 0.021 bits
- Calibration is a large part of the cross-entropy; ideally should be zero



MITLL Submissions

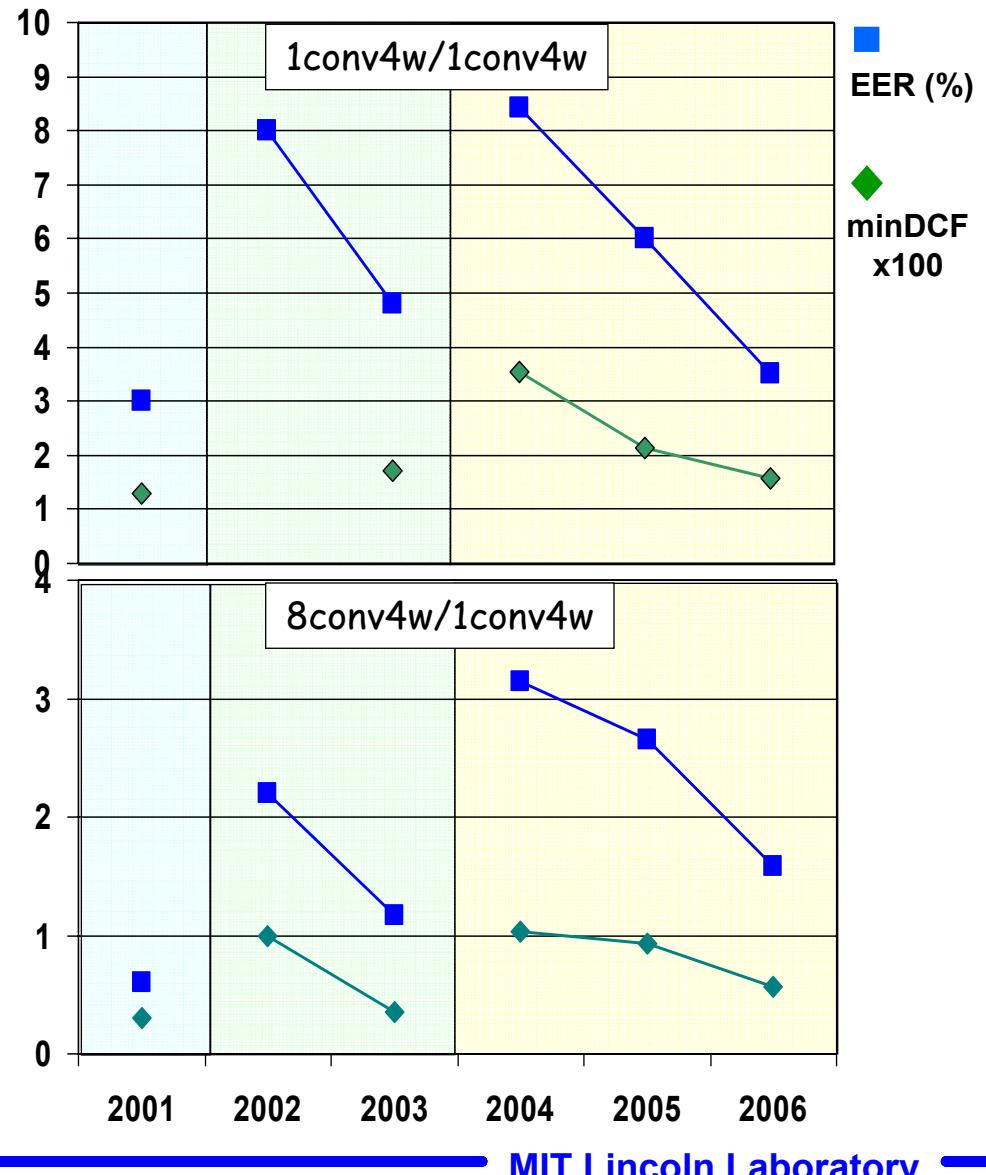
Historic Performance

- **Consistent and steady improvement for data/task focus**

2001	2002	2003	2004	2005	2006
SWB1	SWB2		MIXER2-3		

- **New data sets designed to be more challenging**
- **New features, classifiers and compensations drive error rates down over time**

2001	Text-const GMM, word-ngram
2002	SuperSID : High-level features
2003	Feature Mapping, SVM-GLDS
2004	Phone/Word-SVM, GMM-ATNORM
2005	NAP, TC-SV, word/phone lattices
2006	SVM-GSV, GMM-LFA, MultiFeat SVM-GLDS, SVM-MLLR+NAP



Conclusions

- **Excellent progress in 2006**
 - Many sites independently demonstrating effectiveness of new features, classifiers and compensations
- **MITLL focus was on spectral based systems**
 - Direct attack on channel variability
 - Robustness to language/dialect variability
 - Computational speed
 - Minimal support infrastructure
- **Highlights of new items for 2006**
 - GMM with Latent Factor Analysis (LFA) Compensation
 - GMM SuperVector SVM
 - Multi-feature GLDS SVM
 - MLLR SVM with NAP Compensation
- **Threshold analysis highlighted need for Tnorm**
 - Unexplained calibration bias (mixer2 – mixer3)
- **Retrospective look at performance shows a consistent and steady improvement for data/task focus**
 - High-level SuperSID features brought attention to extended data task
 - Main drivers in performance improvement have been new spectral based systems and channel compensations

Selected References

Cepstral GMM

- D.A. Reynolds, T.F. Quatieri, R.B. Dunn. "Speaker Verification using Adapted Gaussian Mixture Models," Digital Signal Processing, 10(1-3), January/April/July 2000
- Sturim, D.E. Reynolds, D.A. "Speaker Adaptive Cohort Selection for Tnorm in Text-Independent Speaker Verification", ICASSP '05.

Cepstral SVM

- W. Campbell, "Generalized linear discriminant sequence kernels for speaker recognition," ICASSP 2002

GMM SuperVector SVM

- Campbell, W. M., D. Sturim, D. Reynolds, "SVM Based Speaker Verification using a GMM SuperVector Kernel and NAP Variability Compensation", ICASSP 2006.
- Campbell, W. M., D. Sturim, D. Reynolds, "Support vector machines using GMM supervectors for speaker verification", IEEE Signal Processing Letters, vol 13, no. 5, pp. 308-311, 2006.

NAP

- A. Solomonoff, W. Campbell, I. Boardman, "Advances In Channel Compensation For SVM Speaker Recognition," ICASSP 2005
- Alex Solomonoff, William M. Campbell, Carl Quillen, "Nuisance Attribute Projection", To appear in Speech Communications.

Latent Factor Analysis

- R. Vogt, S..Sridharan, Experiments In Session Variability Modeling For Speaker Verification, ICASSP 2006.
- P. Kenny, G. Boulianne, P. Dumouchel, "Eigenvoice Modeling With Sparse Training Data" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING VOL. 13, NO. 3, MAY 2005.
- M. Tipping, C. Bishop, "Mixtures of Probabilistic Principal Component Analyzers", Neural Computation 11, 443-482 (1999).

MLLR

- Stolcke, A. et al, "MLLR Transforms as Features in Speaker Recognition," in the Proceedings of Eurospeech 2005, Lisbon, Portugal 2005.

Word and Phonetic SVM and LLR

- A. Hatch, B. Peskin, A. Stolcke, "Improved Phonetic Speaker Recognition Using Lattice Decoding," ICASSP 2005
- W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, T. R. Leek, "High-Level Speaker Recognition with Support Vector Machines," Proceedings of ICASSP, 2004

Confidence Estimation and Fusion with metadata

- W. M. Campbell, D. A. Reynolds, J. P. Campbell, and K. J. Brady, "Estimating And Evaluating Confidence For Forensic Speaker Recognition," ICASSP 2005

Diarization for Speaker Recognition

- Sue Tranter and Douglas Reynolds, "An Overview of Automatic Speaker Diarisation Systems," Special Issue on Rich Transcription, IEEE Trans on Speech and Lang. Processing, to appear October 2006
- D. A. Reynolds and P. Torres-Carrasquillo, "Approaches and Applications of Audio Diarization," ICASSP 2005
- R.B. Dunn, D.A. Reynolds, T.F. Quatieri. "Approaches to Speaker Detection and Tracking in Multi-Speaker Audio," Digital Signal Processing, 10(1-3), January/April/July 2000.