

INTERNATIONAL
COMPUTER SCIENCE
INSTITUTE

ICSI's SRE06 System

Nikki Mirghafori, Lara Stoll, Andy Hatch, Howard Lei

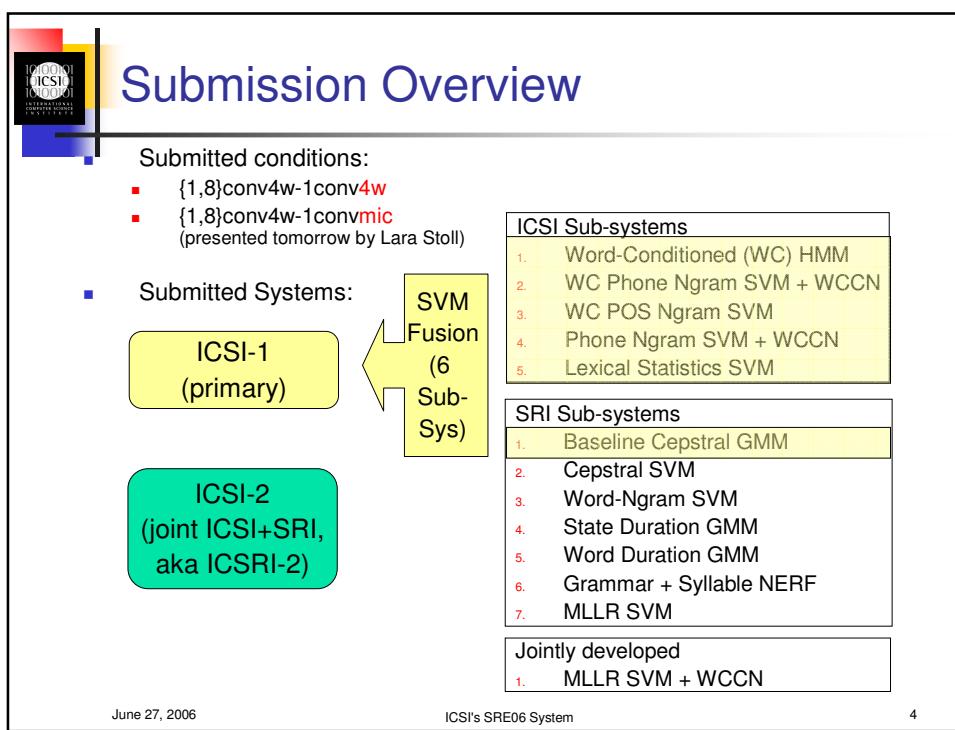
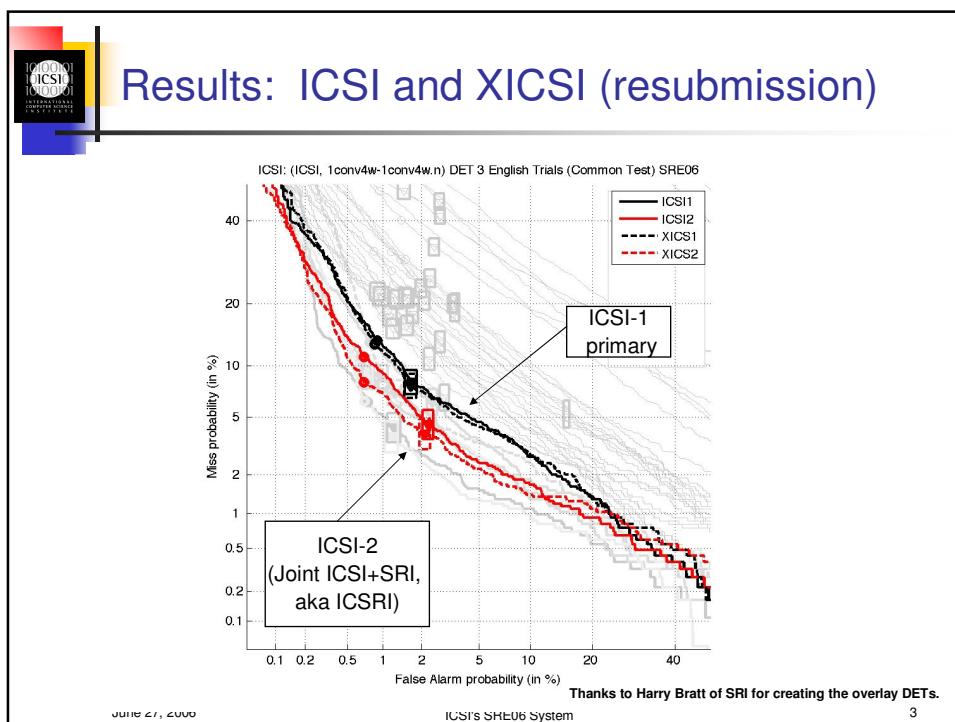
With special thanks to:
our collaborators at SRI
&
our advisor George Doddington

Updated presentation can be downloaded from:
www.icsi.berkeley.edu/~nikki/ICSI.pdf.gz

June 27, 2006

ICSI's SRE06 System

1



Summary: The Tale of Two Evaluations

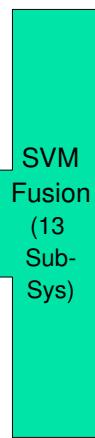
- **The Good...**
 - 5 ICSI sub-systems this year
 - 4/5 new or improved
 - 3/5 use word-conditioning
 - All "high-level": rely on phone/word recognition
 - 1 new normalization method developed
 - WCCN: Within-Class Covariance Normalization
 - 2006 system improved by **~10% on 1-side** and **~25% on 8-side** compared to 2005 (on SRE05)
- **The Bad...**
 - Problems with the evaluation caused submission results and, especially, the researchers who re-ran them, to suffer...
- **No Ugly!**

June 27, 2006

ICSI's SRE06 System

2

Submission Overview


Submitted conditions:

- {1,8}conv4w-1conv4w
- {1,8}conv4w-1convmic
(presented tomorrow by Lara Stoll)

Submitted Systems:

ICSI-1
(primary)

ICSI-2
(joint ICSI+SRI,
aka ICSRI)

ICSI Sub-systems

1. Word-Conditioned (WC) HMM
2. WC Phone Ngram SVM + WCCN
3. WC POS Ngram SVM
4. Phone Ngram SVM + WCCN
5. Lexical Statistics SVM

SRI Sub-systems

1. Baseline Cepstral GMM
2. Cepstral SVM
3. Word-Ngram SVM
4. State Duration GMM
5. Word Duration GMM
6. Grammar + Syllable NERF
7. MLLR SVM

Jointly developed

1. MLLR SVM + WCCN

June 27, 2006

ICSI's SRE06 System

5

Word-Conditioned HMM

Main idea:

- Capitalize on advantages of text-dependent systems in a text-independent domain
- Use frequent keywords that are rich with speaker characteristic cues (total of 19):
 - **Discourse markers:** {actually, anyway, like, see, well, now, you_know, you_see, i_think, i_mean}
 - **Filled pauses:** {um, uh}
 - **Backchannels:** {yeah, yep, okay, uhhuh, right, i_see, i_know }
- Use whole-word HMMs, instead of GMMs, to model the evolution of speech in time

Same system used in SRE05

- For more details, see: *K. Boakye & B. Peskin, "Text-Constrained Speaker Recognition on a Text-Independent Task", Odyssey 2004*

June 27, 2006

ICSI's SRE06 System

6

Phone Lattice Ngram SVM System

- **Main idea:**
 - Compute relative frequency of phone Ngrams using lattice open-loop phone decoding
- **Modeling with SVM:**
 - Relative frequencies of phone Ngrams used as feature vectors
 - One feature vector for every conversation side
 - Target model's conversation(s): positive example(s)
 - Background model's conversations: negative examples
 - Use kernelized form of LLR [Campbell et al., NIPS 2003]
- **The System:**
 - Used a vocabulary of 46 phone units
 - Used only phone bigrams and the top 8500 phone trigrams
 - For more information, see: A. O. Hatch, B. Peskin, A. Stolcke, "Improved Phonetic Speaker Recognition Using Lattice Decoding", ICASSP 2005

conversation side, X

phone recognizer

phone lattice

phone ngram	relative freq.
jh	0.0254
zh eh	0.0068
k	0.0198

June 27, 2006

ICSI's SRE06 System

7

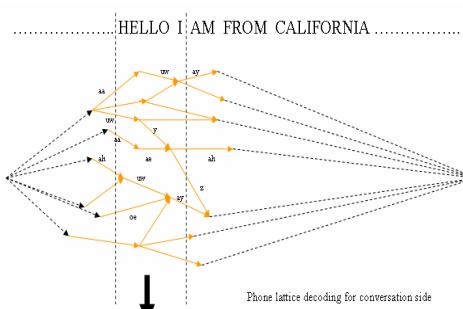
ICSI's SRE06 System

Word-Conditioned Phone Lattice N-gram SVM System

Main Idea

- Similar to previous system, except word conditioned

Features


- Relative frequencies of phone Ngrams from word-conditioned phone lattice segments
- Concatenate phone N-grams from different words for each conv. side

Modeling

- SVM with kernelized form of LLR

Vocabulary

- 52 word unigrams with highest frequency from background data
- Uni,bi,tri-phones from 46 different phones
- Use top 27,410 phone N-grams

Phone N-gram (P)	Cap(P W,C)
aa	0.12
aa_ee	0.04
aa_ee_ah	0.02
ah_uw	0.07
ah_uw_y	0.01
.....
uw_y	0.31
uw_y_z	0.10
uw_y_z	0.03

June 27, 2006

ICSI's SRE06 System

8

Word-Conditioned POS SVM System

- **Main idea:**
 - Similar to a word Ngram system [Doddington '01], except relative frequencies of the joint POS/words used
- **Features:**
 - Part of Speech (POS) tags generated using Brill's Supervised Tagger
 - Example: but/CC i/NN see/VB
 - (CC: Coordinating conjunction, NN: Noun, VB: Verb)
 - A total of 125,700 uni-, bi-, and tri-grams used
- **Model:**
 - SVM with a linear kernel trained using SVMLite

June 27, 2006

ICSI's SRE06 System

9

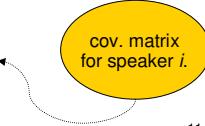
Lexical Statistics SVM System

- **Main Idea:**
 - Capture sentence and conversation level information
- **Features:**
 - Eight features per conv side, such as:
 - Number of conversation turns
 - Number of words (per conversation, per turn)
 - Number of characters (per conversation, per turn)
 - Speaking rate (words per second)
- **Model:**
 - SVM with a linear kernel trained using SVMLite

June 27, 2006

ICSI's SRE06 System

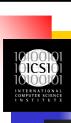
10


Within-Class Covariance Normalization (WCCN) [1/2]

■ Intuition:

- WCCN emphasizes “directions” in feature space that are informative while attenuating directions that are noisy.
- Session variability modeling ala NAP (Solomonoff 04), Factor Analysis (Kenny 04), Modeling Session Variability (Vogt 05)
- Can show that WCCN minimizes an upper bound on classification error in SVMs.
- Weighs the directions in feature space that are retained.

■ Main idea:


- Given a set of input feature vectors, normalize the expected *within-speaker covariance matrix* to equal the identity matrix over some training set.
- **Implementation:** A linear feature transformation, Φ , is used which is defined as:

$$\Phi(x) \equiv A^T x, \quad AA^T \equiv W^{-1}, \quad W \equiv \frac{1}{N} \sum_{i=1}^N C_i.$$

June 27, 2006

ICSI's SRE06 System

11

Within-Class Covariance Normalization (WCCN) [2/2]

How can we perform WCCN on large feature sets?

■ Experimental Procedure:

1. Do per feature within class variance normalization.
2. Use PCA to reduce dimensionality of input feature vectors.
 1. PCA was trained on ~3600 files of SRE-2003.
3. Perform WCCN on reduced-dimensionality feature vectors.
 1. WCCN was trained on ~7200 files of SRE-2003.
 2. Linear smoothing was applied to the final estimate of the expected WCC matrix, W.
4. Concatenate each resulting feature vector with scaled version of its “PCA-complement” (i.e. the portion of the original feature vector that was filtered out by performing PCA).

WCCN was applied to the following systems: Phone Ngrams, WC-Phone Ngrams, and MLLR.

For more information, see: *A. Hatch, et al., “Within-class covariance normalization for SVM-based speaker recognition,” to appear at ICSLP 2006.*

June 27, 2006

ICSI's SRE06 System

12

Fusion Strategy

- SVMLite with a linear kernel in classification mode
- English and non-English scores combined separately
- For non-English:
 - GMM and PhoneNgram+WCCN were combined
- For English:
 - All systems were combined
- SRE05 used to train combiner and optimize DCF threshold
 - post-eval analysis showed using SRE04 would have similar results

June 27, 2006

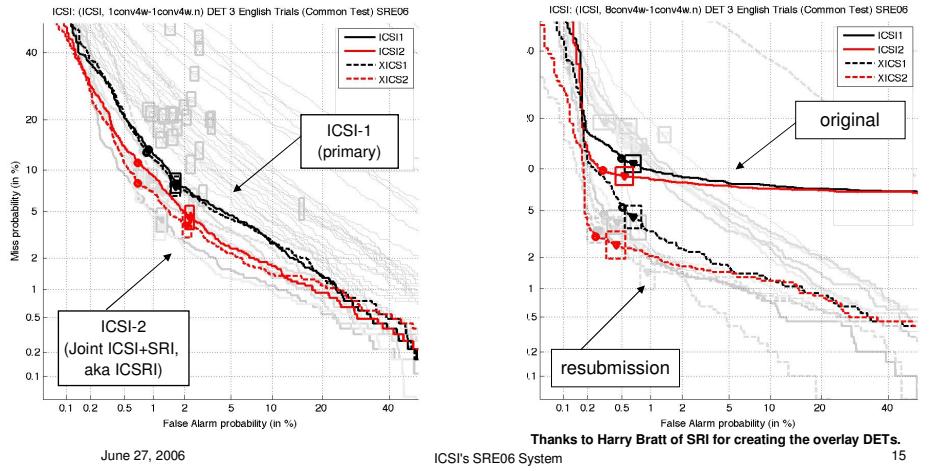
ICSI's SRE06 System

13

Resources common to All Sub-systems

- Background data
 - Used subset of SWBII and Fisher
- TNORM
 - 249 gender-balanced utterances from Fisher
- ASR
 - All our systems used word or phone recognition (from SRI)

June 27, 2006


ICSI's SRE06 System

14

Our (Re)submission (X)ICSI

- Problems with initial submission:
 - Difficulty determining English trials list (both 1s and 8s)
 - Assigned dummy scores for “presumed” empty files/models (8s)

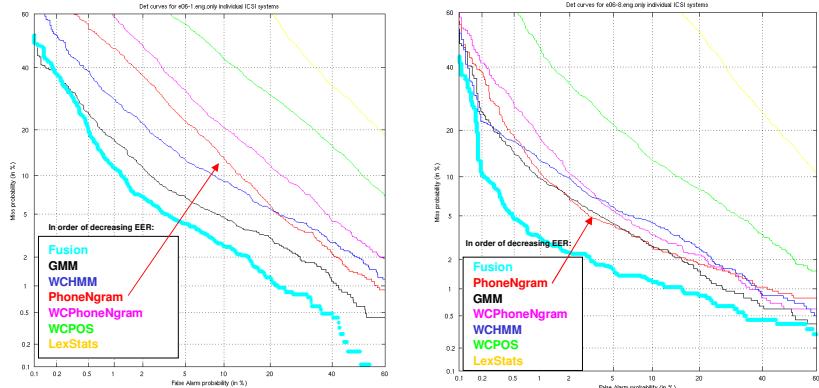
Performance on “English” trials

- As reported by Lucianna Ferrer to the SRE06 list, non-English trials were found in the core condition list
- Results on “cleaned v2” English lists are shown in the rest of the presentation (helps clarity of analysis)

Effect of non-English trials	1-side training				8-side training			
	EER	mDCF	aDCF	# Trials	EER	mDCF	aDCF	# Trials
NIST Eng v2 list	5.34%	0.271	0.301	22,433	2.34%	0.115	0.131	17,387
Cleaned Eng v2 list	4.35%	0.209	0.226	18,926	2.28%	0.095	0.103	15,887
Percent improvement	(19%)	(23%)	(25%)	N/A	(3%)	(17%)	(21%)	N/A

ICSI-2 submission (ICSI+SRI)	1-side training				8-side training			
	EER	mDCF	aDCF	# Trials	EER	mDCF	aDCF	# Trials
NIST Eng v2 list	3.60%	0.198	0.299	22,433	1.73%	0.060	0.0785	17,387
Cleaned Eng v2 list	2.84%	0.146	0.228	18,926	1.69%	0.050	0.0606	15,887
Percent improvement	(21%)	(26%)	(24%)	N/A	(2%)	(17%)	(23%)	N/A

■ Note: DCF refers to min DCF in all tables unless specified.

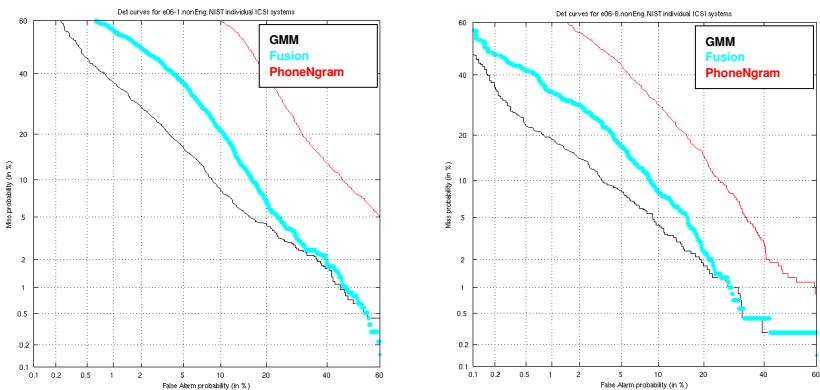

June 27, 2006

ICSI's SRE06 System

16

System for English: 1-side vs. 8-side Training

- Phone Ngram system (red DET) improved most with increased training data
- GMM remained the best in both training conditions
- But, the gap was close for 8-side training


June 27, 2006

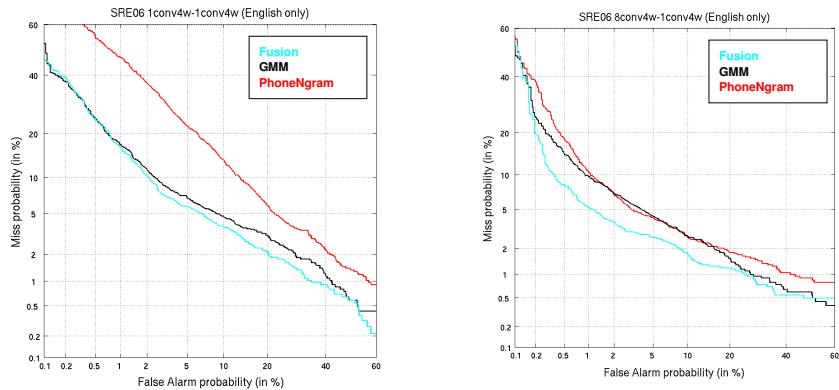
ICSI's SRE06 System

17

System for nonEnglish

- For nonEnglish, Phone Ngram system (red) **degraded** fusion results (thick blue)
- However, if the fusion weights are ideally trained (cheating experiment), addition of PhoneNgram improves results
- Explained if nonEnglish SRE06 data has different statistics compared to SRE05

June 27, 2006


ICSI's SRE06 System

18

nonEnglish Sub-Systems for English Trials

- From last slide, does addition of PhoneNgram to GMM degrade results also for English trials?
 - Addition of Phone N-gram **improves** fusion

June 27, 2006

ICSI's SRE06 System

19

Combination of Systems -- English 1-side

Observations:

- All, but LexStat, contributed to Min DCF
- WCHMM best system after GMM with most significant contribution

Best	GMM	WCHMM	PhoneNgram	WCPOS	WC Phone Ngram	LexStats	Min DCF	Pct. Chg
1 sys	X						0.2639	N/A
2 sys	X	X					0.2279	13.7%
3 sys	X	X	X				0.2111	7.3%
4 sys	X	X	X	X			0.2095	0.7%
5 sys	X	X	X	X	X		0.2077	0.9%
6 sys	X	X	X	X	X	X	0.2087	-0.5%

June 27, 2006

ICSI's SRE06 System

20

Combination of Systems -- English 8-side

Observations:

- WCPhoneNgram best system after GMM
- As amount of data increases, word-conditioned systems become more powerful

Best	GMM	WCPhone Ngram	WCHMM	WCPOS	Phone Ngram	LexStats	Min DCF	Pct. Chg
1 sys	X						0.1865	N/A
2 sys	X	X					0.1169	37.3%
3 sys	X	X	X				0.1023	12.5%
4 sys	X	X	X	X			0.0950	7.1%
5 sys	X	X	X	X	X		0.0946	0.4%
6 sys	X	X	X	X	X	X	0.0955	-0.9%

June 27, 2006

ICSI's SRE06 System

21

The contribution of WCCN

- On average, WCCN helps improve individual systems
- Especially for non-stylistic ones (i.e., MLLR)

MLLR	1-side training		8-side training	
	EER	DCF	EER	DCF
No WCCN	4.51%	0.2076	2.28%	0.0872
With WCCN	4.24%	0.1846	2.23%	0.0737
Percent imprvmt	(+6.0%)	(+11%)	(+2.1%)	(+15.4%)

Phone Ngram	1-side training		8-side training	
	EER	DCF	EER	DCF
No WCCN	13.25%	0.6174	5.28%	0.2638
With WCCN	12.69%	0.63528	4.63%	0.2457
Percent imprvmt	(+4.2%)	(-2.9%)	(+12.4%)	(+6.8%)

WCPhone Ngram	1-side training		8-side training	
	EER	DCF	EER	DCF
No WCCN	15.83%	0.6672	4.81%	0.2558
With WCCN	15.45%	0.6698	5.26%	0.2720
Percent imprvmt	(+2%)	(-0.4%)	(-9.3%)	(-6.3%)

June 27, 2006

ICSI's SRE06 System

22

SRE05 vs. SRE06

- ICSI's system has improved by **~10% on 1-side** and **~25% on 8-side** compared to 2005

ICSI's 2005 vs. 2006 system	1-side training		8-side training	
	EER	DCF	EER	DCF
2005 system on SRE05	6.08%	0.19049	3.64%	0.09695
2006 system on SRE05	5.34%	0.17298	2.65%	0.07669
Percent imprvmt	(+12%)	(+9%)	(+27%)	(+21%)

- SRE06 data produces lower EER and higher DCF compared to SRE05 data

ICSI's 2005 vs. 2006 system	1-side training		8-side training	
	EER	DCF	EER	DCF
2006 system on SRE05	5.34%	0.17298	2.65%	0.07669
2006 system on SRE06	4.35%	0.20874	2.28%	0.09546
Percent imprvmt	(+19%)	(-21%)	(+14%)	(-25%)

June 27, 2006

ICSI's SRE06 System

23

Summary

- 5 ICSI sub-systems this year
 - All “high-level”: rely on phone/word recognition
 - 3/5 use word-conditioning
 - 4/5 new or improved
- 1 new normalization method developed
 - WCCN: Within-Class Covariance Normalization
- 2006 system improved by **~10% on 1-side** and **~25% on 8-side** compared to 2005 (on SRE05)
- Problems with the evaluation caused difficulty
 - Request for English and Common Condition trial lists to be provided

June 27, 2006

ICSI's SRE06 System

24