

Conversational Biometrics and Multimedia Mining Group
IBM Research

NIST 2006 Speaker Recognition Workshop

A collaborative journey

**Jason Pelecanos, Jiri Navratil
and Ganesh N Ramaswamy**

**Conversational Biometrics and Multimedia Mining Group
IBM T. J. Watson Research Center
Yorktown Heights, New York
<http://www.research.ibm.com/CBG>**

Overview

- ⌚ Goals for NIST 2006
- ⌚ Overview of Contributions
- ⌚ Binary Trees
- ⌚ Support Vector Machines
- ⌚ Results Overview
- ⌚ Conclusions

Goals for NIST 2006

Goals for NIST 2006

- § Supply collaborative partners with speaker recognition statistics that provide complementary information
- § These statistics may be in the form of:
 - Speaker recognition utterance pair scores
 - Utterance side information
- § Demonstrate improvements that are attributed to the inclusion of such statistics

Overview of Contributions

Contributions to MIT and QUT

QUT

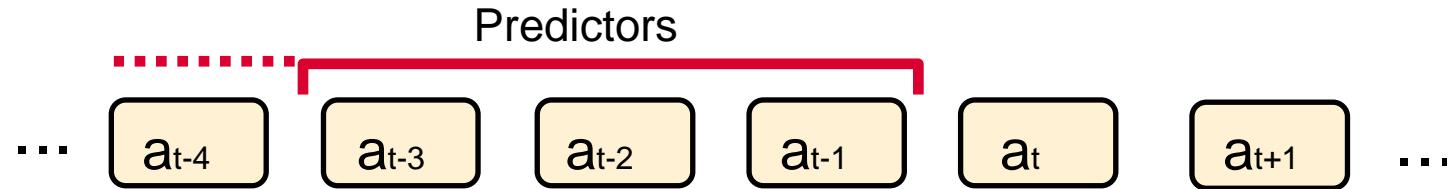
- Binary tree phonetic N-gram statistics
- GIX sequences
- SVM results
- Handset labels for the fusion component of the QUT system

MIT

- Word level N-gram statistics using Binary trees

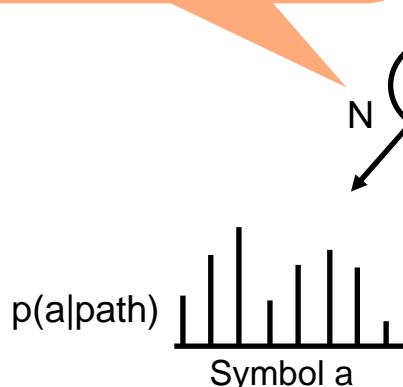
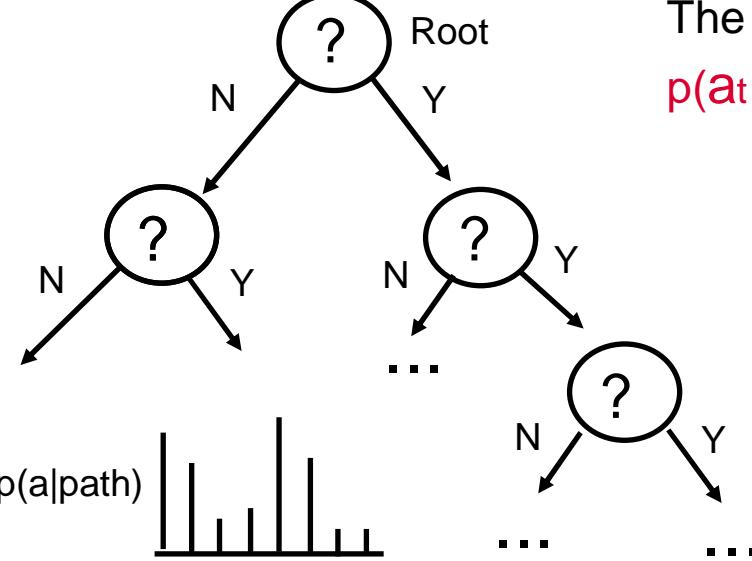
Binary Trees

Binary Tree Modeling



A non-terminal node is associated with:
a predictor and a token subset

Node Question Example:
Is a_{t-2} in {"a", "ae", "al"} ?



The tree returns
 $p(a_t | f(\text{predictors}))$

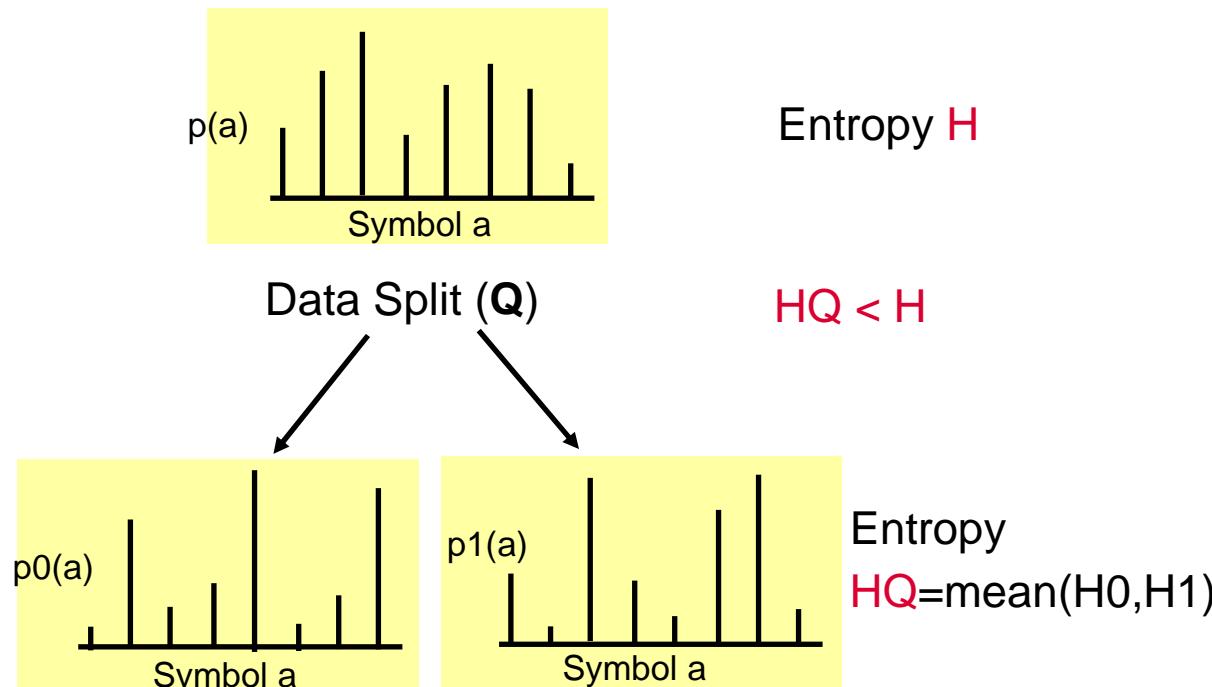
The model can exploit token context of arbitrary length, without the exponential parameter number growth connected with N-grams
Built to minimize overall token prediction entropy
Effective adaptation and smoothing

Growing Good Trees - I

Find a structure that minimizes overall prediction entropy
(minimizing “node impurity” [Breiman – CART])

Recursive tree growing algorithm

At each node: Find question Q ,
s.t. $H - HQ > r$ (r significance threshold)



Practice:

Occupancy constraints: Minimum N data count in each candidate split

Cross evaluation: Entropy reduction $R = H - HQ$ computed on a held-out set

Growing Good Trees - II

Minimum prediction entropy on training data = maximum likelihood of the training data

$$\overline{H} = \sum_l P_l \cdot H_l$$

$$\hat{P}_l(s_i) = \frac{\#(s_i|\alpha_l)}{|\alpha_l|}$$

$$H_l = - \sum_{s_i \in \mathcal{A}} P_l(s_i) \log_2 P_l(s_i)$$

$$\hat{P}_l = \frac{|\alpha_l|}{\sum_{l=1}^L |\alpha_l|}$$

$$\mathcal{L} = -\widehat{\overline{H}}_l$$

$$\begin{aligned} \mathcal{L} &= \frac{1}{T} \sum_{t=1}^T \log_2 P(a_t|BT) \\ &= \sum_{l=1}^L \hat{P}_l \sum_{s_i \in \mathcal{A}} \hat{P}_l(s_i) \log_2 \hat{P}_l(s_i) \end{aligned}$$

Growing Good Trees - III

Minimizing prediction entropy per iteration = maximizing mutual information between symbol distribution X and node question Q

$$\begin{aligned} R &= H - H_Q = \\ &= -p(c_1)H(S | c_1) - p(c_2)H(S | c_2) + H(S) \\ &= \sum_{c \in \{1, 2\}} \sum_{s \in A} p(c)p(s | c) \log p(s | c) / \log p(s) \\ &= \sum_{c, s} p(s, c) \log \frac{p(s, c)}{p(s)p(c)} \\ &= I(S, Q); \quad Q : A \mapsto \{0, 1\} \end{aligned}$$

Growing Good Trees - IV

1) Greedy Algorithm [Bahl et al. 1989]

Find Q : Is the value of predictor X_k in {symbol subset}

For all Predictors $k=1,2,\dots$:

- 1) Start with empty subset
- 2) Insert a symbol if H reduced (loop over all symbols)
- 3) Delete a symbol if H reduced (loop over all symbols)
- 4) Rep. 2-3 until convergence
(apply occupancy constraints)

Create two children if

$H - HQ > r$

Repeat recursively

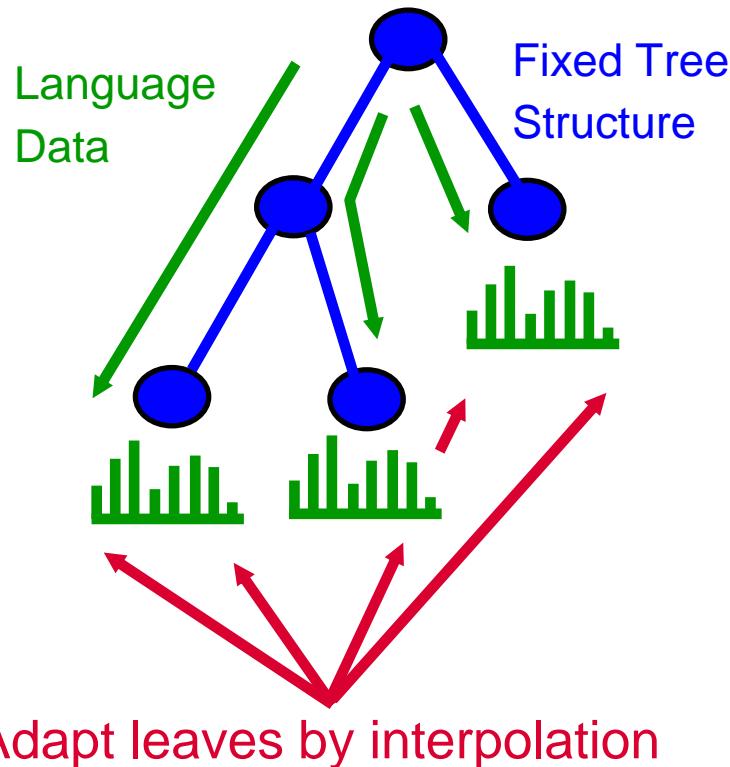
2) Flip-Flop Approximation Algorithm [Nadas1991]

5-10x faster training – used for large symbol vocabularies
BTs (i.e. lexical and Gaussian index)

“Tree Helpers”

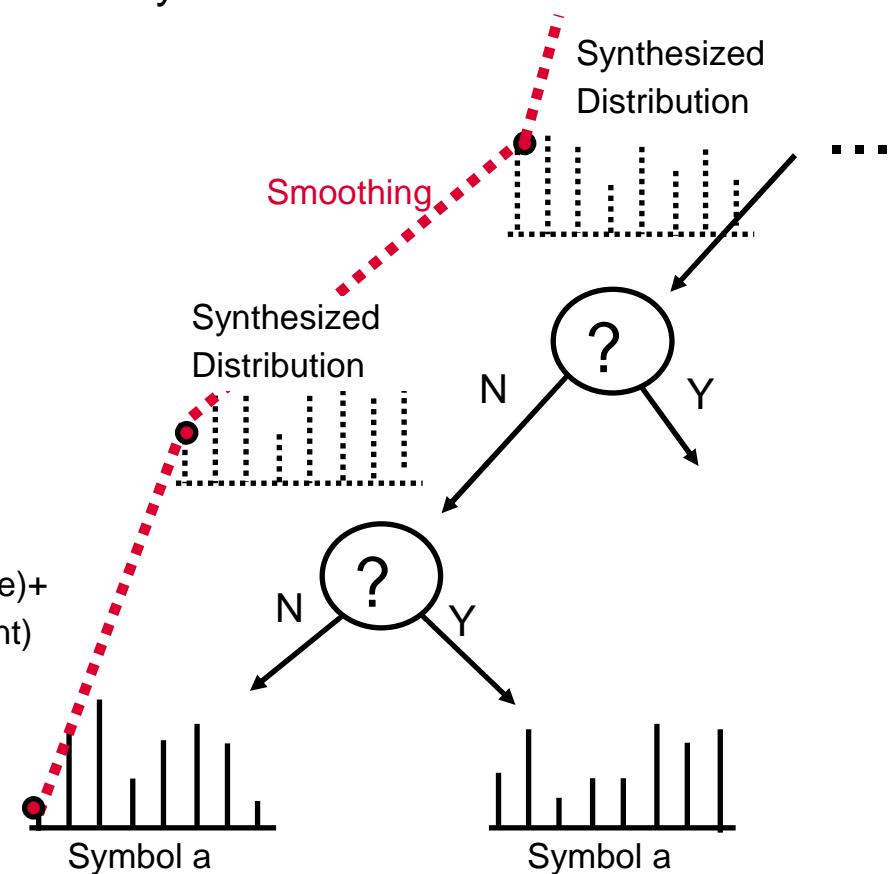
Tree-Model Adaptation

Use language training data to adapt leaves of an existing robust tree model (background, lang.-indep.)



Recursive Bottom-Up Smoothing

Interpolate with parental node distributions recursively to increase observation mass



BT Components

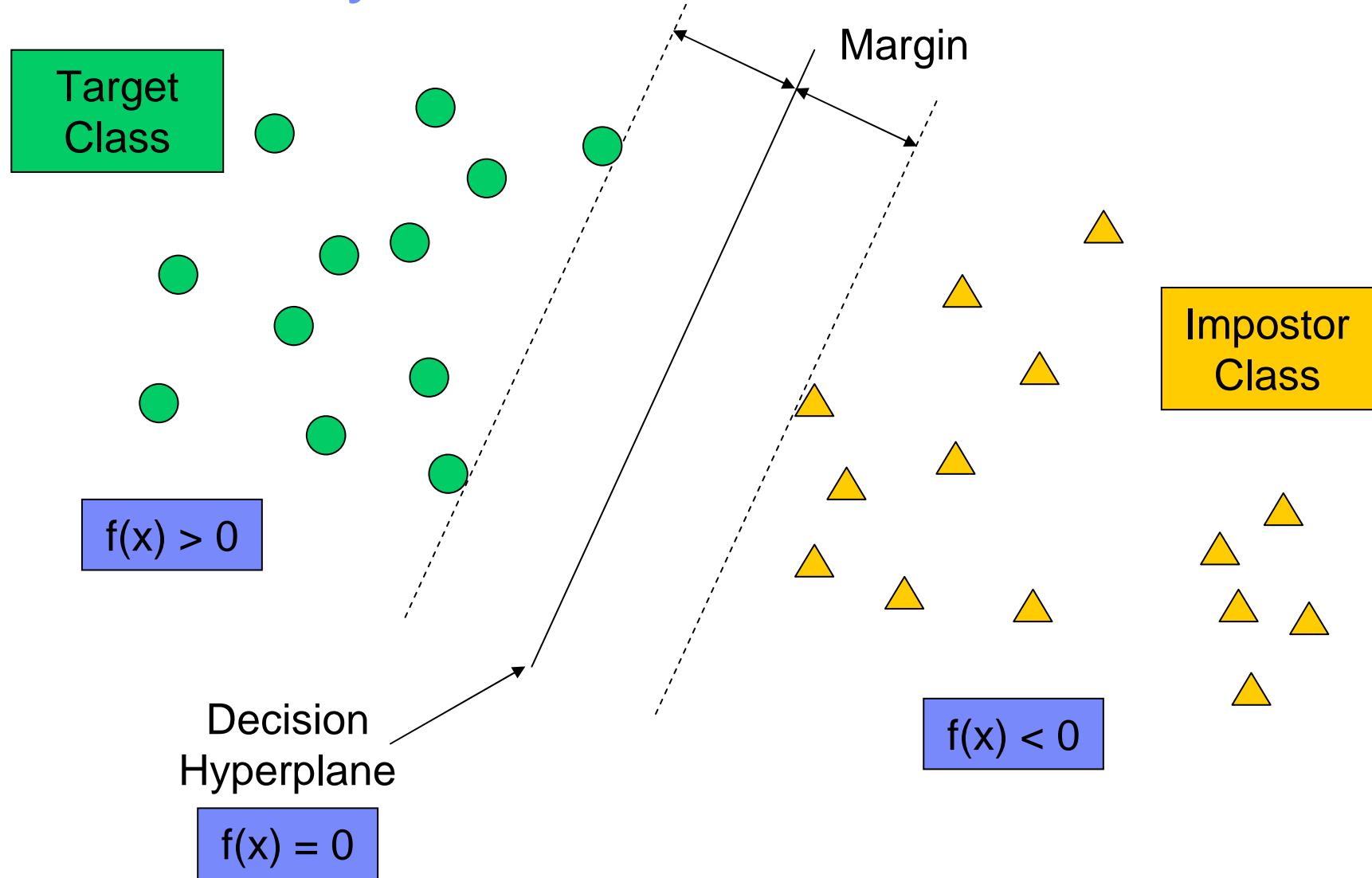
- § IBM/QUT collaboration
 - phonetic BTs (12 decoders)
 - Gaussian Index (GIX) BTs (size: 512)
 - CT-normed BT score output
- § IBM/MIT-LL collaboration
 - ASR transcripts (size: top-512 most frequent words)
 - CT-normed BT score output

Configuration

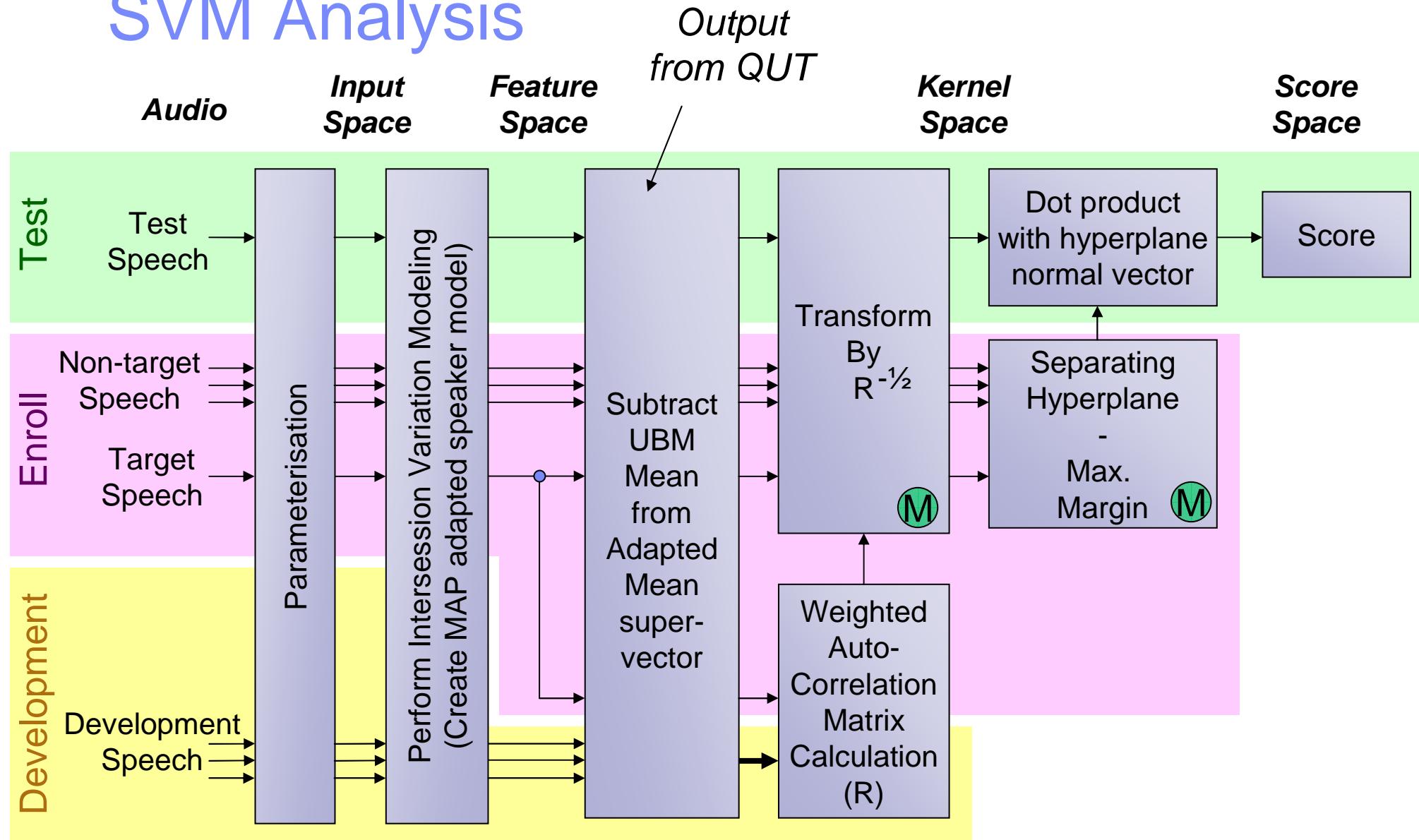
- § Adaptation and smoothing used in all components
- § The Greedy BT training algorithm used with phonetic sequences; the Flip-Flop algorithm with GIX and lexical features
- § T-Norms (1,3, and 8 conv.) and C-Norms (1-conv. only) taken from the 2004 eval

Support Vector Machines

SVM Analysis



SVM Analysis



SVM Analysis

§ SVM Kernel Evaluation (GLDS, Campbell)

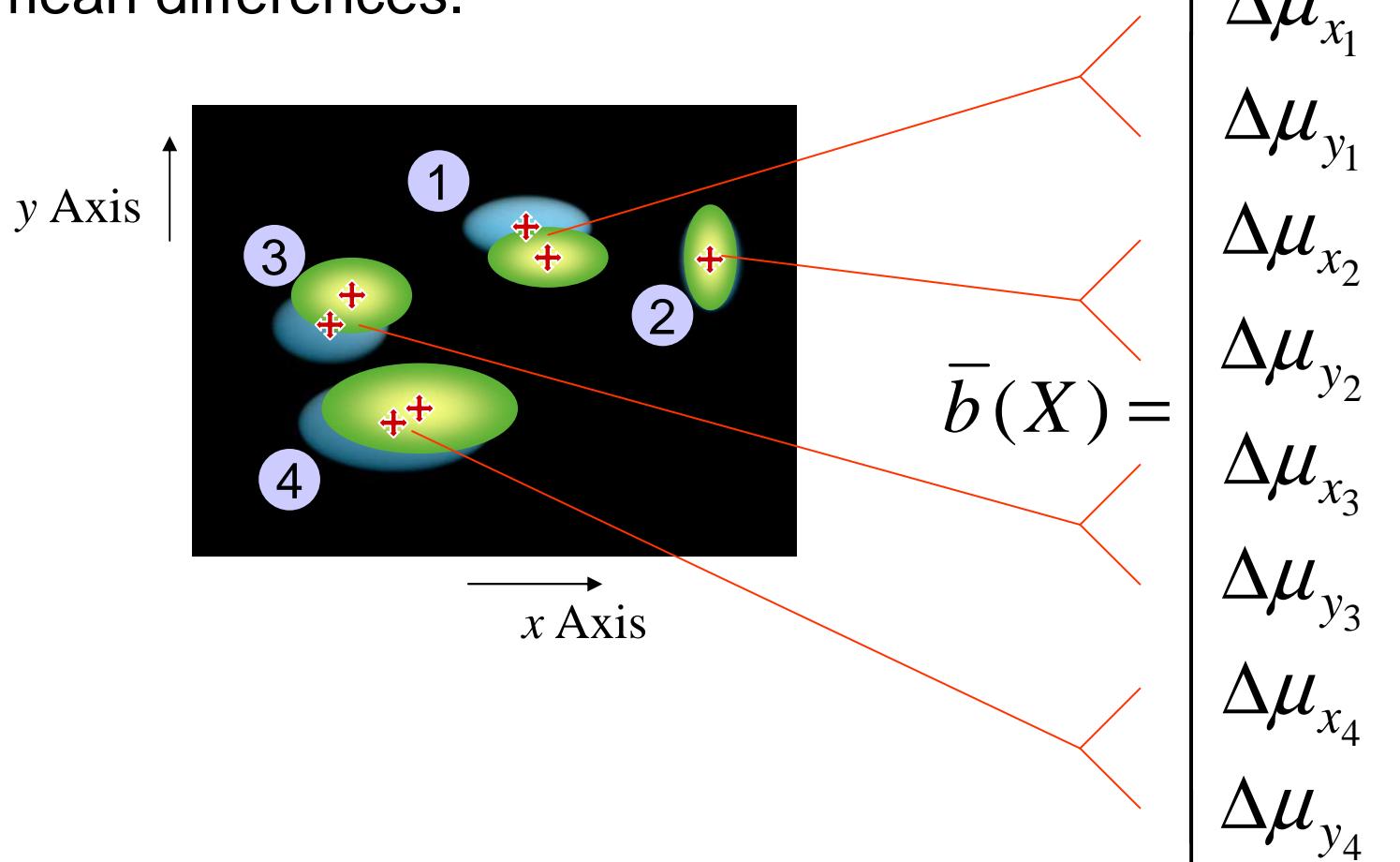
$$f(X) = \sum_{i=1}^N w_i c_i K(X, X_i) + d$$

$$K(X, X_i) = \bar{b}(X)' \mathbf{R}^{-1} \bar{b}(X_i)$$

§ Where $\bar{b}(X)$ is the supervector created from the GMM component means...

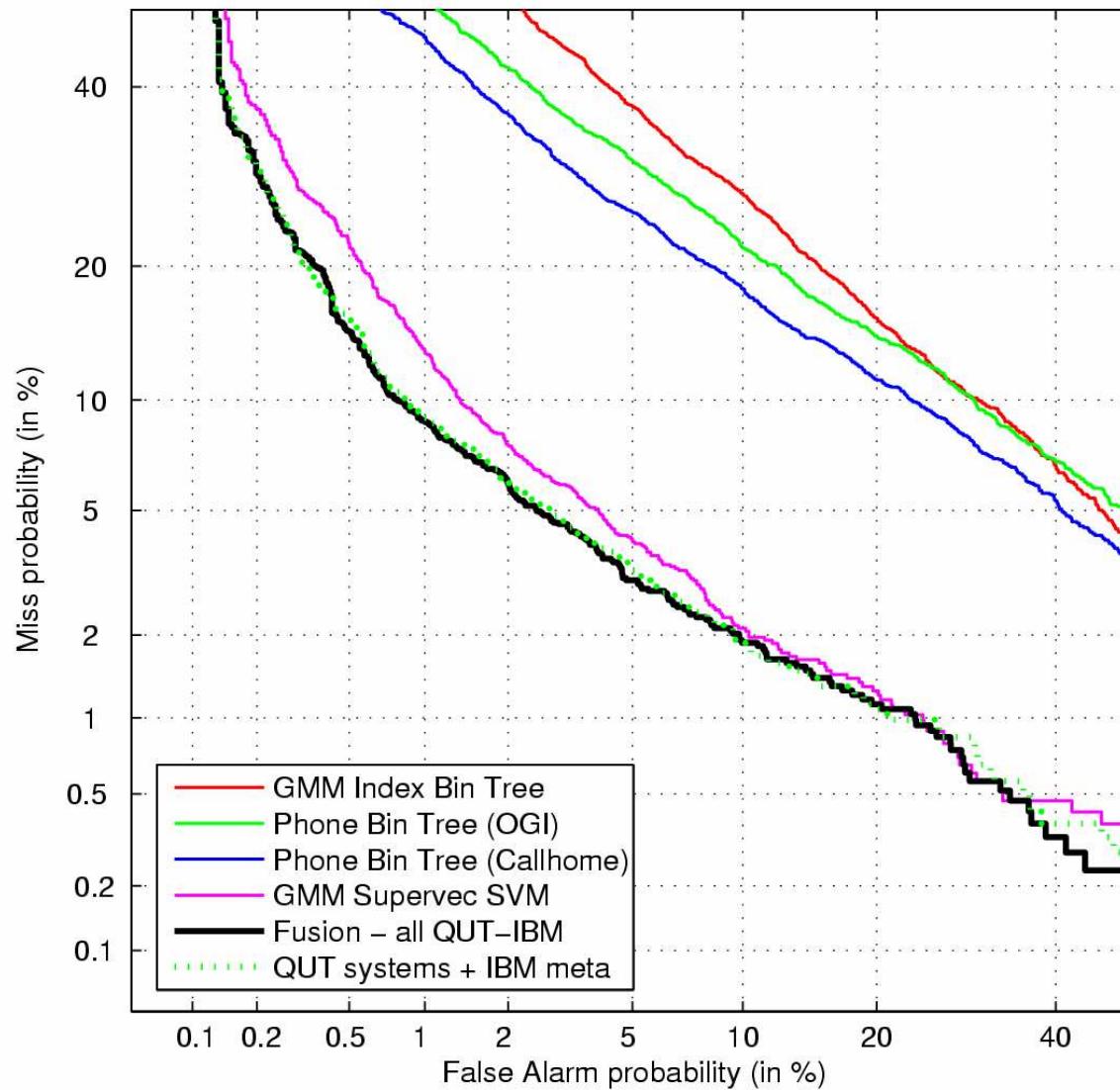
Supervector Construction

- § The SVM feature space supervector is constructed from the concatenation of the ISV adapted and background Gaussian mean differences.



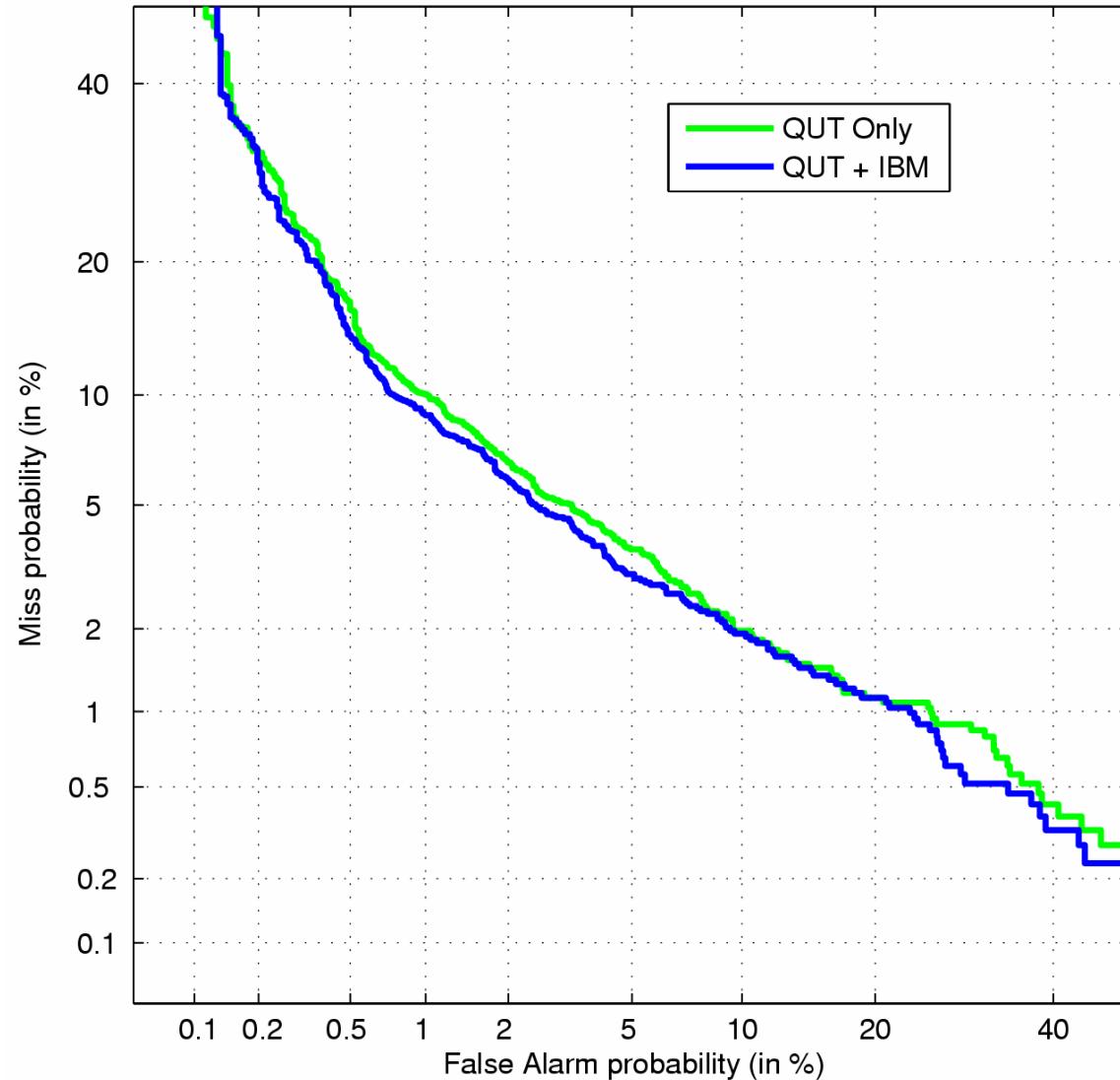
Results Overview

IBM's contribution to the QUT/IBM System



NIST 2006
--
1 session
Training
“English”
only trials

IBM's contribution to the QUT/IBM System



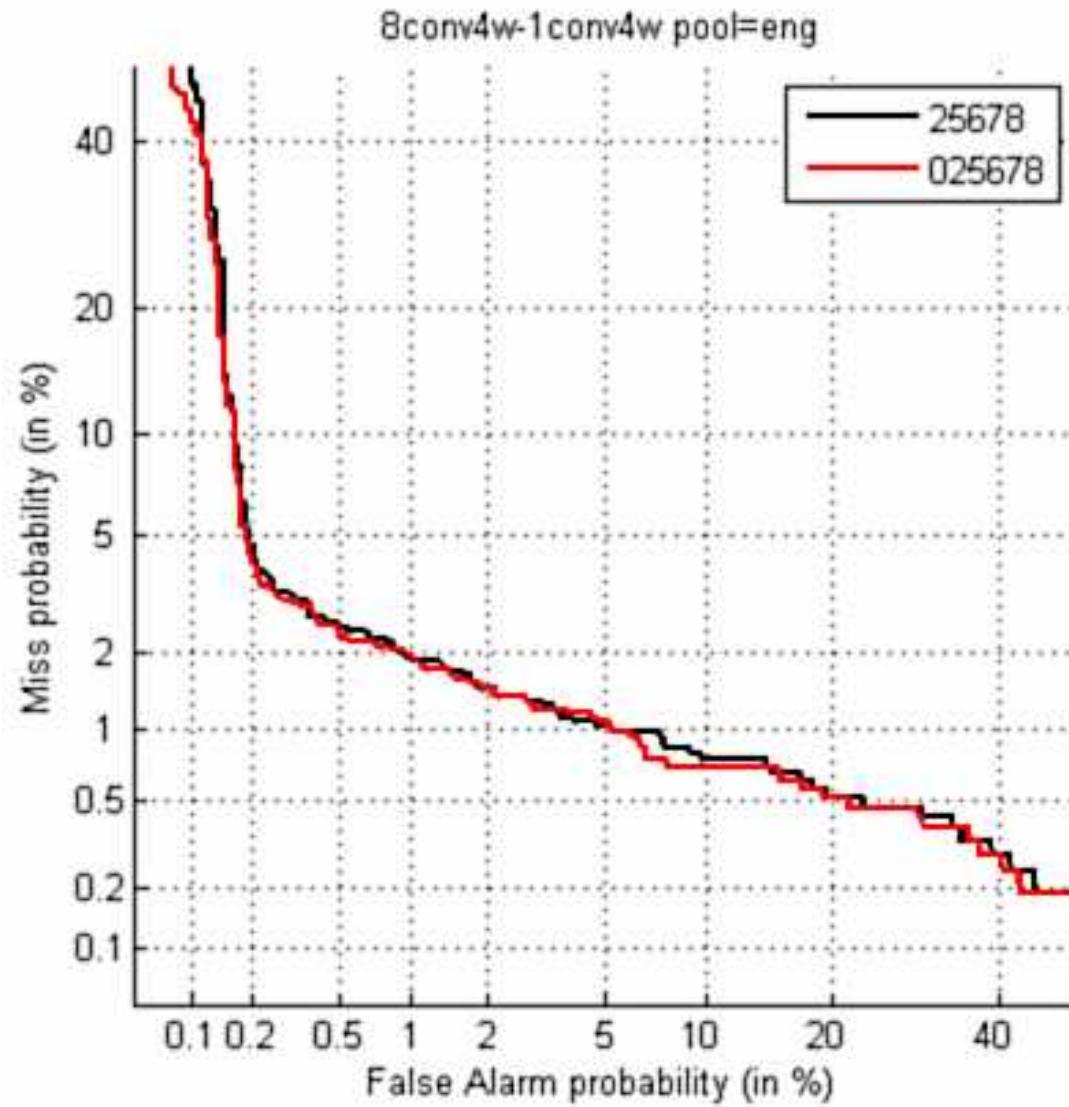
NIST 2006

--

1 session
Training
“English”
only trials

Plot kindly
supplied by QUT

IBM's contribution to the MIT/IBM System



NIST 2006

--

8 session
Training
“English”
only trials

Plot kindly
supplied by MIT

Conclusions

Conclusions

- § Successfully added value to the systems of collaborating teams.
- § Binary trees contributed to improving the overall system result on the NIST 2005 data
- § SVMs using the ISV Gaussian Means are promising
- § Handset type side information provided a useful addition

Acknowledgements

§ IBM wishes to gratefully acknowledge the collaborative efforts of the MIT Lincoln Laboratory and the Queensland University of Technology

Questions

Additional Resources

BT References

- § Bahl, L.R et al., “A tree-based statistical language model for natural language speech recognition,” IEEE Trans. On Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, July 1989 ([BTs in ASR](#))
- § Nadas, A. et al., “An iterative flip-flop approximation of the most informative split in the construction of decision trees,” ICASSP 1991 ([FF tree growing](#))
- § Navratil, J. et al., “Phonetic speaker recognition using maximum-likelihood binary-decision tree models,” ICASSP-03 ([BTs in Speaker Recognition; smoothing and adaptation](#))
- § Navratil, J., “Spoken language recognition - A step towards multilinguality in speech processing,” IEEE Trans. on Speech and Audio Processing, Vol. 9, No. 6, September, 2001, pp. 678-85 ([BTs in Language ID](#))
- § Navratil, J., “Recent advances in photoacoustic language recognition using binary-decision trees,” Interspeech 2006, to appear. ([Flip-Flop algorithm evaluation](#))
- § Buhrstein, D., et al. “Minimum impurity partitions,” The Annals of Statistics, Vol. 20, No. 3, 1992, pp. 1637-1646 ([general results for BT optimization](#))
- § Pelecanos, J. et al. “IBM SRE05 system,” presentation at the NIST SRE05 Workshop, May, 2005, Montreal, Canada.