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Goals for NIST 2006

5 Supply collaborative partners with speaker recognition
statistics that provide complementary information
S These statistics may be in the form of:

— Speaker recognition utterance pair scores
— Utterance side information

5 Demonstrate improvements that are attributed to the
Inclusion of such statistics
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Overview of
Contributions
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Contributions to MIT and QUT
S QUT

— Binary tree phonetic N-gram statistics
— GIX sequences
— SVM results

— Handset labels for the fusion component of the QUT system
g MIT
— Word level N-gram statistics using Binary trees

Conversational Biometrics and: Multimedia Mining Group




Conversational Biometrics and Multimedia Mining Group — IBM Research

Binary
Trees
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Binary Tree Modeling

Predictors
EEEEEEERN l*

ree at-4 at-3 at-2 at-1 at at+1

2 ) Root The tree returns

A non-terminal node is associated with: N % p(at | f(predictors))

a predictor and a token subset

Node Question Example: N Y N Y

Is at-2 in {"a","ae","al"} ? e @
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\ p(alpath) ‘ ‘ / N\
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Symbol a
The model can exploit token context of arbitrary length, without
v : , )
p(alpath) I ‘ | | ‘ | | tghr(:1 r(reéponentlal parameter number growth connected with N
Symbol a . Built to minimize overall token prediction entropy

Effective adaptation and smoothing
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Growing Good Trees - |

Find a structure that minimizes overall prediction entropy
(minimizing “node impurity” [Breiman — CART] )

Recursive tree growing algorithm
At each node: Find question Q,
s.t. H - HQ > r (r significance threshold)

p(a) | ‘ | ‘ Entropy H
I
Symbol a
Data Split (Q) HQ <H
Entropy
pi(a)
Po(@) | || ‘ HO=mean(HO,H1)
1 I | I 1 ] |
Symbol a Symbol a

Practice:
Occupancy constraints: Minimum N data count in each candidate split
Cross evaluation: Entropy reduction R=H-HQ computed on a held-out set
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Growing Good Trees - |

Minimum prediction entropy on training data = maximum likelihood of the
training data

H = ZP{ - H, .ﬁ)f(S-i) _ # (si] o)
I ||
. v
Hi=—3" Pi(s:)log, Pils:) P = =

;2.4
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Growing Good Trees - |l

Minimizing prediction entropy per iteration = maximizing mutual
Information between symbol distribution X and node question Q

R=H-H, =
=-p(c)H(S|c) - p(c,)H(S|c,) + H(S)
= > > p(c)p(s|c)log p(s|c)/log p(s)

c{1,2} sOOA
p(s,c)
= c)|
2, PlsONg 5o

=1(S,Q); Q:A— {01}
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Growing Good Trees - |V

1) Greedy Algorithm [Bahl et al. 1989]
Find Q: Is the value of predictor X, in {symbol subset}

For all Predictors k=1,2,... :
1) Start with empty subset
2) Insert a symbol if H reduced (loop over all symbols)
3) Delete a symbol if H reduced (loop over all symbols)
4) Rep. 2-3 until convergence
(apply occupancy constraints)

Create two children if
H-HQ>r
Repeat recursively

2) Flip-Flop Approximation Algorithm [Nadas1991]

5-10x faster training — used for large symbol vocabularies
BTs (i.e. lexical and Gaussian index)
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“Tree Helpers”

Tree-Model Adaptation
Use language training data to

adapt leaves of an existing robust tree
model (background, lang.-indep.)

Language Fixed Tree

Data \ Structure

Al
dlat, dlab”

Adapt leaves by interpolation
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Recursive Bottom-Up Smoothing
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Interpolate with parental node distributions
recursively to increase observation mass
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BT Components

S IBM/QUT collaboration
phonetic BTs (12 decoders)

Gaussian Index (GIX) BTs (size: 512)

CT-normed BT score output
S IBM/MIT-LL collaboration

ASR transcripts (size: top-512 most frequent
words)

CT-normed BT score output
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Configuration

S Adaptation and smoothing used in all
components

S The Greedy BT training algorithm used with
phonetic sequences; the Flip-Flop algorithm
with GIX and lexical features

S T-Norms (1,3,and 8 conv.) and C-Norms (1-
conv. only) taken from the 2004 eval
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Support
Vector
Machines
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SVM Analysis

Impostor
Class

Decision /

Hyperplane
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SVM Analysis
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SVM Analysis
5 SVM Kernel Evaluation (GLDS, Campbell)

N
F(X) =) wic;K(X,X;)+d

K(X,X;) =bX) R 'b(X;)

§Where b(X) is the supervector created
from the GMM component means...
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Supervector Construction

5§ The SVM feature space supervector is constructed from the
concatenation of the ISV adapted and background Gaussian
mean differences. A,Ux

1

Conversational Biometrics and:Multimedia Mining Group




Conversational Biometrics and Multimedia Mining Group — IBM Research

Results
Overview
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IBM’s contribution to the QUT/IBM System
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IBM’s contribution to the QUT/IBM System
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IBM’s contribution to the MIT/IBM System
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Conclusions
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Conclusions

S Successfully added value to the systems of
collaborating teams.

S Binary trees contributed to improving the overall
system result on the NIST 2005 data

5§ SVMs using the ISV Gaussian Means are promising

5 Handset type side information provided a useful
addition
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Questions
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Additional
Resources
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