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Goals for NIST 2006

§ Supply collaborative partners with speaker recognition 
statistics that provide complementary information

§ These statistics may be in the form of:
– Speaker recognition utterance pair scores

– Utterance side information

§ Demonstrate improvements that are attributed to the 
inclusion of such statistics
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Overview of 
Contributions
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Contributions to MIT and QUT
§ QUT

– Binary tree phonetic N-gram statistics

– GIX sequences

– SVM results

– Handset labels for the fusion component of the QUT system

§ MIT
– Word level N-gram statistics using Binary trees
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Binary
Trees



8

Conversational Biometrics and Multimedia Mining Group – IBM Research

Conversational Biometrics and Multimedia Mining Group

at+1at-1 atat-2at-3at-4

Predictors

?

? ?

Y

N

?

?

?
p(a|path)

Symbol a

p(a|path)

Symbol a

... ?
...

N

N

Y
Y

Y

Y

N

N

...

...

...
Y

......

Node Question Example:

Is at-2 in {"a","ae","aI"} ?

Root The tree returns 

p(at | f(predictors))A non-terminal node is associated with:
a predictor and a token subset 

� The model can exploit token context of arbitrary length, without
the exponential parameter number growth connected with N-
grams
� Built to minimize overall token prediction entropy
� Effective adaptation and smoothing 

Binary Tree Modeling
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Symbol a

Find a structure that minimizes overall prediction entropy
(minimizing “node impurity” [Breiman – CART] )

Recursive tree growing algorithm
At each node: Find question Q, 
s.t. H - HQ > r (r significance threshold)

p(a)

Data Split (Q)

p1(a)
p0(a)

Symbol aSymbol a

Entropy H

Entropy 
HQ=mean(H0,H1)

Practice:
Occupancy constraints: Minimum N data count in each candidate split
Cross evaluation: Entropy reduction R=H-HQ computed on a held-out set

HQ < H

Growing Good Trees - I
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Growing Good Trees - II
Minimum prediction entropy on training data = maximum likelihood of the 

training data
Overall tree entropy: Empirical estimates:

Training data likelihood:
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Growing Good Trees - III

Minimizing prediction entropy per iteration = maximizing mutual 
information between symbol distribution X and node question Q
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Growing Good Trees - IV

Find Q: Is the value of predictor Xk in {symbol subset}
For all Predictors k=1,2,... :

1) Start with empty subset
2) Insert a symbol if H reduced (loop over all symbols)
3) Delete a symbol if H reduced (loop over all symbols)
4) Rep. 2-3 until convergence
(apply occupancy constraints)

Create two children if
H-HQ>r

Repeat recursively

2) Flip-Flop Approximation Algorithm [Nadas1991]

5-10x faster training – used for large symbol vocabularies 
BTs (i.e. lexical and Gaussian index)

1) Greedy Algorithm [Bahl et al. 1989]
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Synthesized
Distribution ...

p(a)=α p(a|node)+
+(1-α)p(a|parent) 

Synthesized
Distribution

Smoothing

Recursive Bottom-Up Smoothing
Interpolate with parental node distributions
recursively to increase observation mass

Adapt leaves by interpolation

Tree-Model Adaptation
Use language training data to 
adapt leaves of an existing robust tree 
model (background, lang.-indep.)

Fixed Tree
Structure

Language
Data

“Tree Helpers”



14

Conversational Biometrics and Multimedia Mining Group – IBM Research

Conversational Biometrics and Multimedia Mining Group

BT Components

§ IBM/QUT collaboration

phonetic BTs (12 decoders) 

Gaussian Index (GIX) BTs (size: 512)

CT-normed BT score output
§ IBM/MIT-LL collaboration

ASR transcripts (size: top-512 most frequent 
words)

CT-normed BT score output
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Configuration

§ Adaptation and smoothing used in all 
components

§ The Greedy BT training algorithm used with 
phonetic sequences; the Flip-Flop algorithm 
with GIX and lexical features

§ T-Norms (1,3,and 8 conv.) and C-Norms (1-
conv. only) taken from the 2004 eval
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Support
Vector

Machines
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SVM Analysis
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SVM Analysis
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SVM Analysis
§SVM Kernel Evaluation (GLDS, Campbell)

§Where           is the supervector created 
from the GMM component means…
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Supervector Construction
§ The SVM feature space supervector is constructed from the 

concatenation of the ISV adapted and background Gaussian 
mean differences.
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Results
Overview
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IBM’s contribution to the QUT/IBM System

NIST 2006
--

1 session
Training
“English”
only trials

Plot kindly 
supplied by QUT
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IBM’s contribution to the QUT/IBM System

NIST 2006
--

1 session
Training
“English”
only trials

Plot kindly 
supplied by QUT
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IBM’s contribution to the MIT/IBM System

NIST 2006
--

8 session
Training
“English”
only trials

Plot kindly 
supplied by MIT
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Conclusions
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§ Successfully added value to the systems of 
collaborating teams.

§ Binary trees contributed to improving the overall 
system result on the NIST 2005 data

§ SVMs using the ISV Gaussian Means are promising
§ Handset type side information provided a useful 

addition

Conclusions
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Questions
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Additional
Resources
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