

The 2006 AFRL/HEC Speaker Recognition Systems

Raymond E. Slyh
Human Effectiveness Directorate
Air Force Research Laboratory

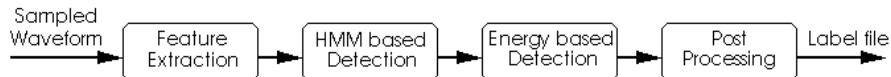
1

Team Members

- Eric Hansen, Human Effectiveness Directorate, Air Force Research Laboratory (AFRL/HEC)
- Brian Ore, General Dynamics Advanced Information Systems
- Raymond Slyh, Human Effectiveness Directorate, Air Force Research Laboratory (AFRL/HEC)

2

Components of Submitted Systems



Conditions		TESTING			KEY
		10sec4w	1conv4w	1conv2w	
TRAINING	10sec4w	FMBWF0/GMM MFCC/GMM MFCC/SVM			FMBWF0: F1–F3, BW1–BW3, log(F0)
	1conv4w	FMBWF0/GMM MFCC/GMM MFCC/SVM	FMBWF0/GMM MFCC/GMM MFCC/SVM MFCC/PS-GMM WLM	FMBWF0/GMM MFCC/GMM MFCC/SVM	MFCC: Mel-Frequency Cepstral Coeffs & Δ s
	3conv4w	FMBWF0/GMM MFCC/GMM MFCC/SVM	FMBWF0/GMM MFCC/GMM MFCC/SVM MFCC/PS-GMM WLM	FMBWF0/GMM MFCC/GMM MFCC/SVM	GMM: Gaussian Mixture Models
	8conv4w	FMBWF0/GMM MFCC/GMM MFCC/SVM	FMBWF0/GMM MFCC/GMM MFCC/SVM MFCC/PS-GMM WLM	FMBWF0/GMM MFCC/GMM MFCC/SVM	SVM: Support Vector Machines
	3conv2w		FMBWF0/GMM MFCC/GMM MFCC/SVM	FMBWF0/GMM MFCC/GMM MFCC/SVM	PS-GMM: Phoneme-Specific GMMs

3

MFCC/HMM SAD

- **Features:** 19 MFCCs (300–3138 Hz) & Δ s (No RASTA)
- **HMM-based speech activity detector (SAD):**
 - Two-state HMM built with HTK (64 mixtures/state)
 - Trained on background model (BKG) data using SONIC labels as truth
- **Energy-based detector:**
 - From MIT-LL *xtalkN*
 - Refines the output from the HMM-based detector
- **Post-Processing:** Removes speech segments < 20 msec

4

GMM-Based Systems

- Gaussian mixture models from MIT Lincoln Laboratory (MIT-LL) system with:
 - 2048 mixtures per model
 - Diagonal covariance matrices
- T-norm applied to output scores
- (Initial) speaker & T-norm models built using MAP adaptation from BKG with:
 - Relevance factor of 16
 - Only mixture means adapted

5

GMM-Based Systems: Models

- BKG:
 - 16 hours of data balanced for gender & channel from:
 - NIST 2001–2003 Evals (digital cell, electret, & carb.)
 - OGI National Cellular Corpus (for analog cellular)
 - **Gender/channel models used for feature mapping**
- T-norm:
 - Other than 10sec4w training:
 - Gender-dependent: 120 models per gender
 - Single conversation sides from NIST 2001–2003 Evals
 - 10sec4w training:
 - 240 gender-independent models
 - First 30 sec of data from original set of models

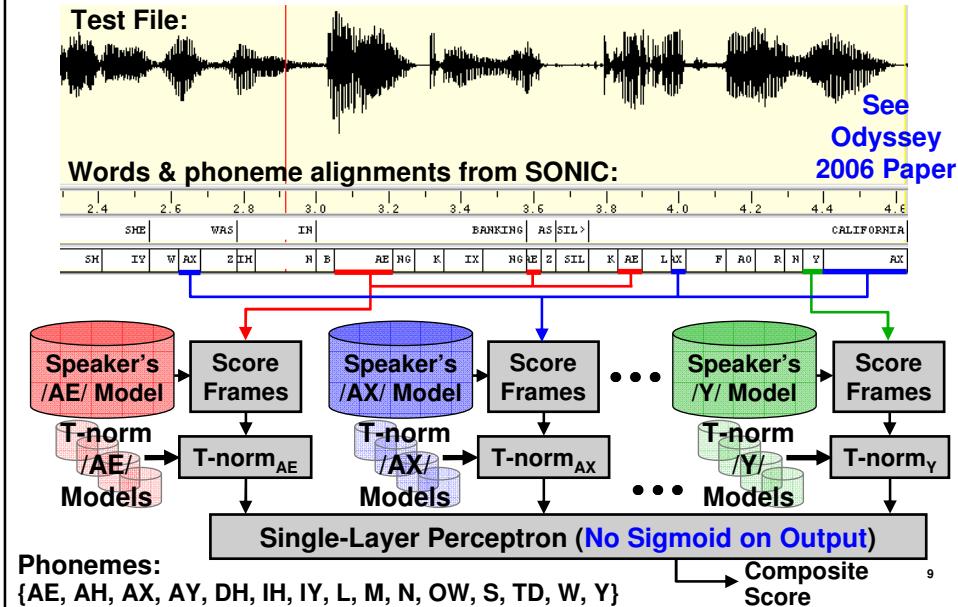
6

MFCC/GMM System: Features

- 19 MFCCs every 10 msec with:
 - Bandwidth of 300–3138 Hz
 - No 0th coefficient
- Applied RASTA filtering & calculated Δ s of features
- Kept a frame if labeled as speech by MFCC/HMM SAD
- Applied feature mapping and mean & variance norm.

7

FMBWF0/GMM System: Features


- Every 10 msec:
 - Formant center frequencies (F1–F3) & bandwidths (BW1–BW3) using Snack toolkit from KTH
 - F0 & probability of voicing using *get_f0* from ESPS
- Kept a frame if:

(speech) AND (voiced) AND (F0 < 250 Hz) AND
{(F1, F2, F3) != (500 Hz, 1500 Hz, 2500 Hz)}
- Converted F1–F3 & BW1–BW3 to radians & took log(F0)
- Applied feature mapping (with channel picked by MFCCs)

8

MFCC/PS-GMM System

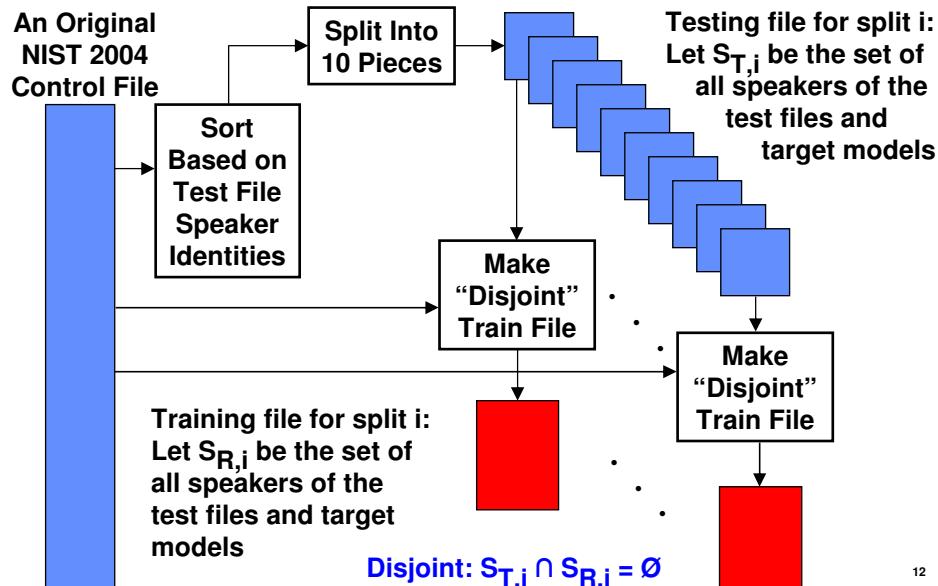
MFCC/SVM System

- Features as in MFCC/GMM system
- Support vector machine classifier:
 - Generalized linear discriminant sequence kernel
 - From MIT-LL speech tools
- T-norm applied to scores (with T-norm models built using same data as for GMM systems)

WLM System

- Used (English) transcripts generated by SONIC
- Pseudo sentence breaks were added
- Bigram language models with back-off
- CMU-Cambridge Language Modeling Toolkit with top 20,000 words, Witten-Bell discounting, & zero cut-offs
- Score a test file vs. claimant model as:

$$\frac{1}{K} \sum_{k=1}^K \log(\Pr_{\text{Claimant}}(k)) - \log(\Pr_{\text{Background}}(k))$$


where K is the number of matching bigrams

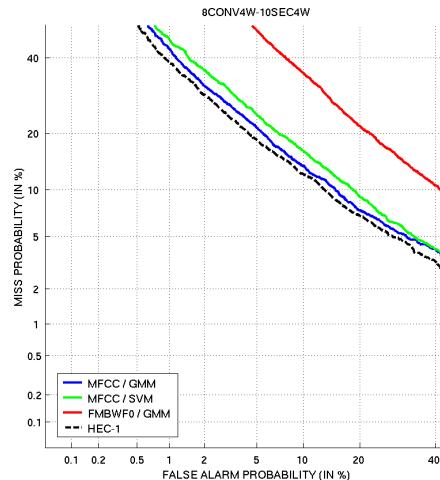
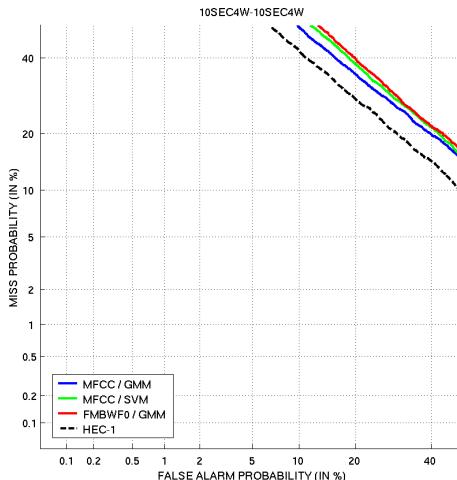
- 100 gender-independent two-conversation T-norm models from SWB II

11

Splitting NIST 2004 Control Files

12

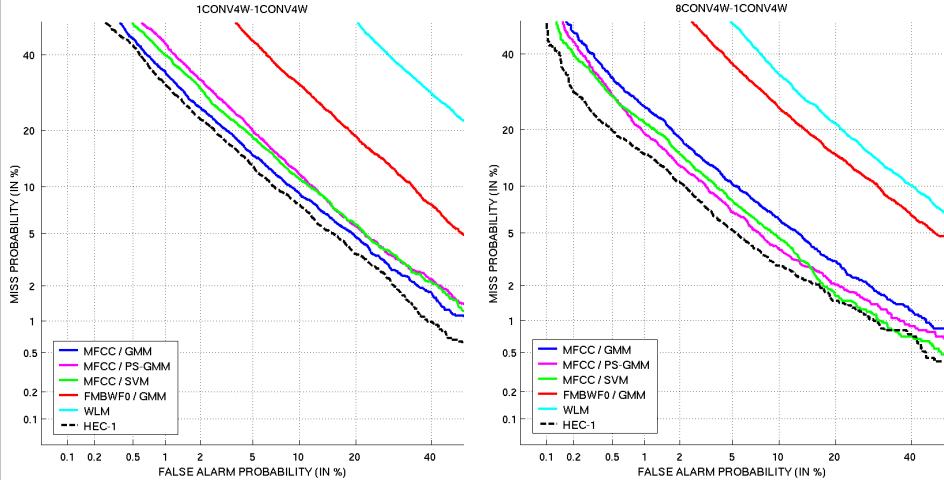
Four-Wire Fusion & Thresholds

- For each split:
 - Built a single-layer perceptron (SLP) on training file
 - Applied SLP to system scores for the test file
- Concatenated score files for the ten splits
- Determined threshold for minDCF (this was the threshold used for the 2006 Eval)
- Built new SLP over the entire control file for the condition (this was the SLP used for the 2006 Eval)
- SLPs built using LNKnet from MIT-LL

13

10sec4w Testing



Score combination provided considerable benefit for 10sec4w training but less benefit for larger amounts of training data

14

1conv4w Testing

MFCC/PS-GMM system outperformed MFCC/GMM system for 8conv4w training even though it used only 15 out of 50 English phonemes

15

Unsupervised Adaptation

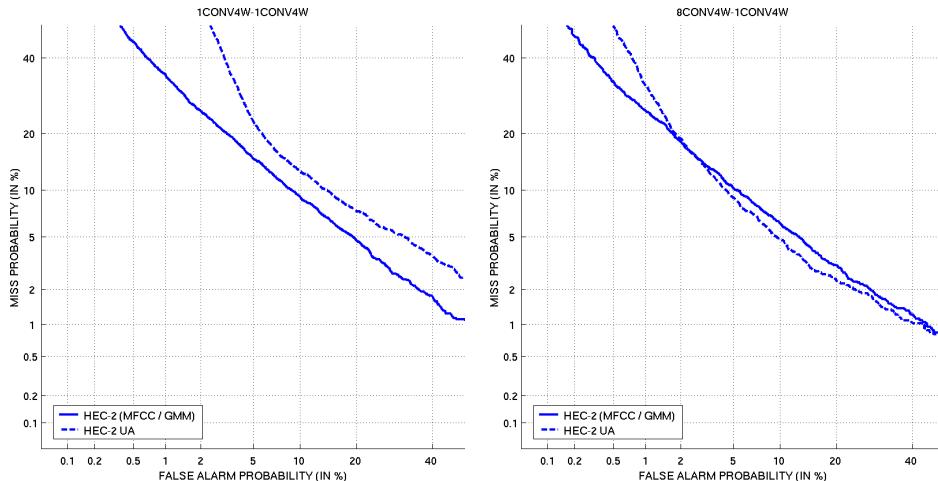
- **HEC-2 System: MFCC/GMM system with & without unsupervised adaptation (UA) of mixture means, $\bar{\mu}_m$:**

$$\bar{\mu}_m^{\text{NEW}} = \alpha_m E_m(X) + (1 - \alpha_m) \bar{\mu}_m$$

$E_m(X)$: Mean of vectors prob. assigned to mixture m
- **Initial speaker models built using MAP adaptation from BKG with:**

$$\alpha_m = \frac{n_m(X)}{n_m(X) + r}$$

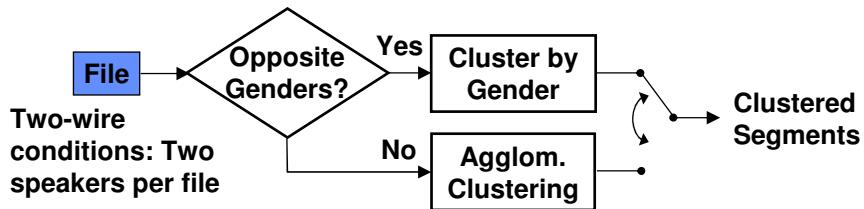
$n_m(X)$: Probabilistic “count” of vectors in mixture m
 r : Relevance factor = 16
- **Updated speaker model built using MAP adaptation from current speaker model with:**


$$\alpha_m = \begin{cases} 0.1, & \beta < 0.1 \\ 0.5, & 0.5 < \beta \\ \beta, & \text{otherwise} \end{cases} \quad \beta = \frac{T_T}{T_T + T_M}$$

T_T : # speech frames in test file
 T_M : # speech frames used for current model
- **See Odyssey 2006 paper for more details**

16

Unsupervised Adaptation



- Model updating threshold: minDCF threshold from NIST 2004 Eval data
- UA degraded performance: Need a different updating threshold?

17

Two-Wire Segmentation/Clustering

- 1conv2w testing:
 - If gender-based clustering used for a file: Test correct-gender cluster against target model
 - If agglomerative clustering used for a file: Cluster into three sets, test each set against the target model, & pick the highest score
- 3conv2w training:
 - 1) Segment & cluster each of the three files individually
 - 2) Cluster across the three files
 - 3) Build model

18

Opposite-Gender Files & Clustering

- **Opposite-Gender File Determination:**
 - MFCC/HMM SAD determines speech/non-speech segments
 - Score files against male, female, & BKG GMMs
 - If target speaker is male, label a file opposite-gender if:
 $\text{Score}_{\text{BKG}} - \text{Score}_{\text{Male}} > \text{Gender-dependent threshold}$
 - Similar procedure if target is female
- **Gender-Based Clustering:**
 - MFCCs, 300–3138 Hz, RASTA, Δ s, but no feature mapping
 - Score each segment individually against male & female GMMs
 - Take top 90% of the segments of proper gender for target model
- [See Odyssey 2006 paper for more details](#)

19

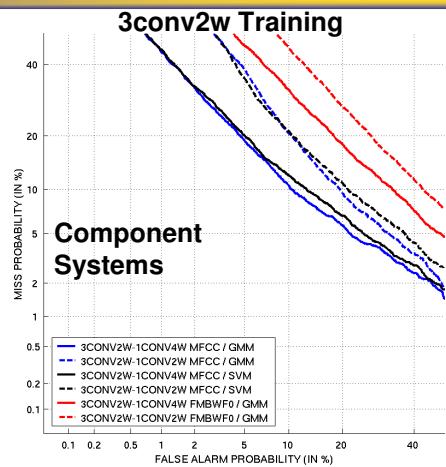
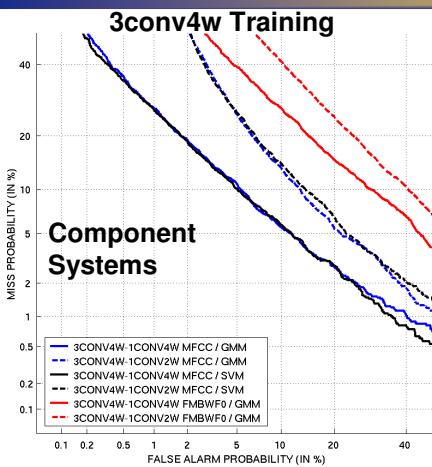
Agglomerative Clustering Within File

- MFCC/HMM SAD determined speech/non-speech segments
- 64-mixture GMM trained with all speech vectors from the file using MFCCs band limited to 200–2860 Hz and Δ s, but without RASTA filtering, feature mapping, or mean & variance normalization
- Weights then adapted for each speech segment
- In each clustering stage:
 - Let X and Y be two segments, and let $Z = X \cup Y$
 - $\forall X, Y$ calculate:
$$\Lambda(X, Y) = \frac{L(Z|\theta_Z)}{L(X|\theta_X)L(Y|\theta_Y)}$$

$L(X|\theta_X)$: Likelihood of data for segment X given model for X
 - Merge the X and Y segments with the highest $\Lambda(X, Y)$
- Repeat the process until three sets of segments are left (presumably, one for each speaker and a “garbage” set)

20

3conv2w: Clustering Across Files

- Features: 19 MFCCs with a bandwidth of 300–3138 Hz, RASTA, Δ s, feature mapping, and mean & variance normalization
- If any files were segmented by gender:
 - Correct-gender segments used to build an initial speaker model
 - Segments from other files tested against the initial speaker model
- If no files were segmented by gender:
 - Models were built for each of the three segment sets in each file by using MAP adaptation of mixture means from BKG
 - Segments were scored against the models (from other files) & highest scoring segment/model pair was clustered
 - Segments from third file tested against the clustered model

21

Segmentation Results

- Comparisons within a plot show effect of two-wire testing, while comparisons across the plots show the effect of two-wire training
- Substantial performance difference between 3conv4w & 3conv2w training and between 1conv4w & 1conv2w testing

22

Acknowledgements

- **MIT Lincoln Laboratory:**
 - MFCC/GMM, MFCC/SVM, and feature mapping code
 - LNKnet
- **Bryan Pellom, Univ. of Colorado at Boulder: SONIC speech recognizer & acoustic models**
- **Cambridge Univ.:**
 - Statistical Language Modeling Toolkit (with CMU)
 - HTK
- **KTH: Snack toolkit**