

The 2006 France Telecom Research and Development Center (Beijing) Speaker Recognition System

June 26, 2006

Xianyu Zhao, Yuan Dong, Hao Yang, Jian Zhao

France Telecom
Research & Development

D1 - 23/04/2007

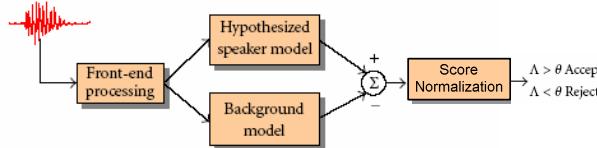
Outline

- S Overview
- S Front End
- S Speaker Modeling
- S Score Normalization
- S Speaker Segmentation and Clustering
- S Conclusion

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D2 - 23/04/2007

GMM-UBM based Text Independent Speaker Verification System



S Likelihood-ratio-based speaker verification system using GMM-UBM

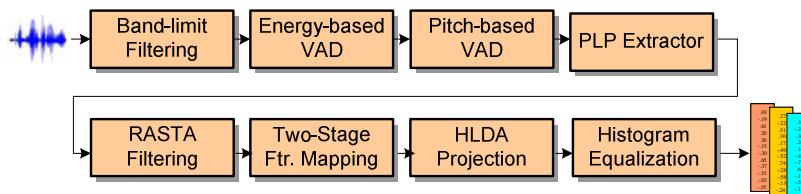
QFront End Feature extraction

QSpeaker (and alternative hypothesis) Modeling

QScore normalization

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D3 - 23/04/2007


Front-End Processing: Aim and Structure

S The aim of robust front-end processing:

QTo reduce the influences of transmission channel, microphone type and environmental noises

QTo facilitate the following speaker modeling with GMM

S The FTRD SRE'06 Front-End

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D4 - 23/04/2007

Front-End Processing: Some Details

S Two-Stage Feature Mapping

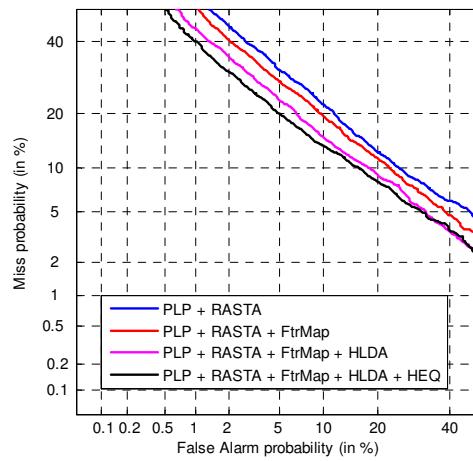
QStage-1 (Channel Mapping): Land, GSM, CDMA, Cellular, TDMA, Cordless

QStage-2 (Microphone Mapping): Speaker phone, Head phone, Handheld, Ear-bud

S HLDA Projection

QOriginal Feature: PLP_0 + Delta + Delta-Delta + Delta-Delta-Delta (52-dim)

QProjected Feature: 51-dim


S Histogram Equalization

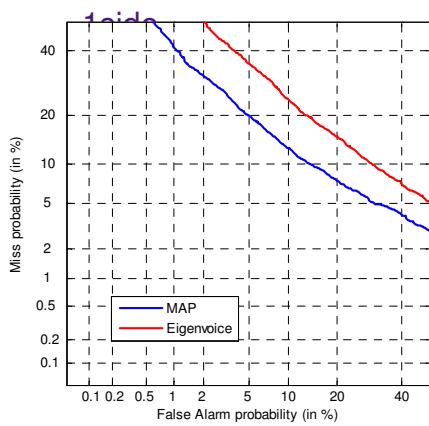
QReference Cumulative Distribution Function (CDF) was estimated using all the development data

Front-End Processing: Performance

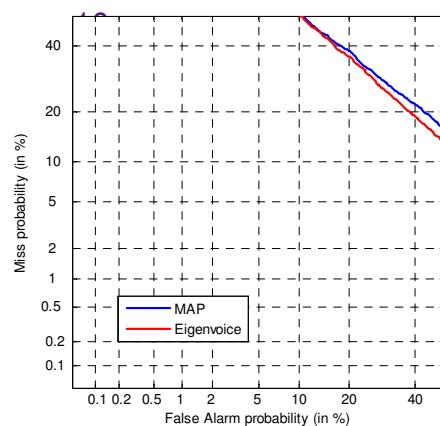
S NIST SRE04 1side-1side

Speaker Modeling

- § The UBM model is a gender independent GMM with 2048 mixture components trained using about 40 hours of data from the Switchboard and SRE'2004 evaluation database.
- § Speaker models are obtained by adapting from the UBM with their individual training data through
 - Q Bayesian learning approach (Maximum a Posteriori adaptation): good asymptotic behavior
 - Q Speaker clustering based approach (Eigenvoice adaptation): rapid adaptation


France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D7 - 23/04/2007


Speaker Modeling: Performance

NIST SRE04 1side-

NIST SRE04 10sec-

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D8 - 23/04/2007

Score Normalization

- S** Each verification score is normalized by subtracting the mean and then dividing by the standard deviation of imposter score distribution.
- S** Estimation of imposter score distribution:
 - Q**TNorm: Each utterance is compared against to a set of imposter models to estimate the imposter score distribution.
 - Q**ATNorm: Similar to TNorm, but the set of imposter models is dependent on the hypothesized speaker of a test segment.

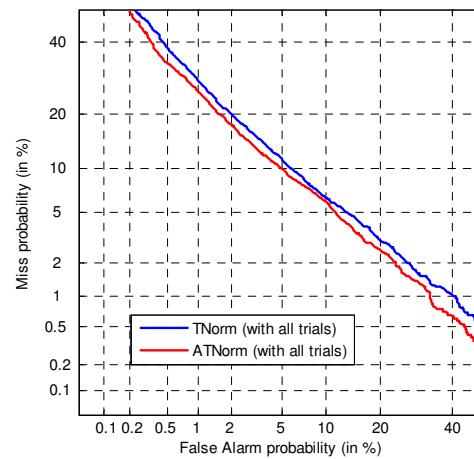
Score Normalization: some details

- S** Multi-language imposter pool

	English	Mandarin	Arabic	Russian	Spanish	Total
Male	268	31	32	14	9	354
Female	349	24	27	31	37	468
Total	617	55	59	45	46	822

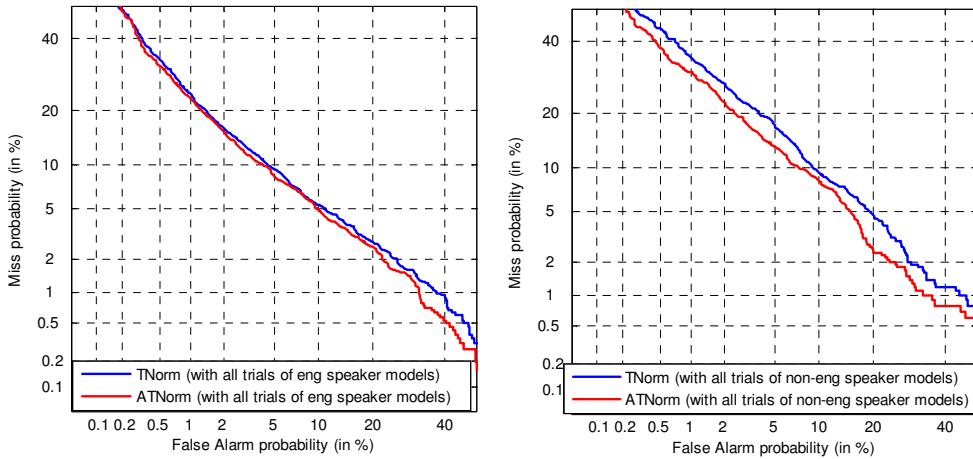
- S** TNorm: for male segment speaker, all 354 male imposters are used; for female segment speaker, all 468 female imposters are used.

Score Normalization: some details


- ATNorm: for each male target speaker, 55 nearest impostors are selected from the male imposter pool; for each female target speaker, 55 nearest female impostors are selected from the pool.
- The following cross-model log likelihood ratio distance is used to define the neighborhood of two models

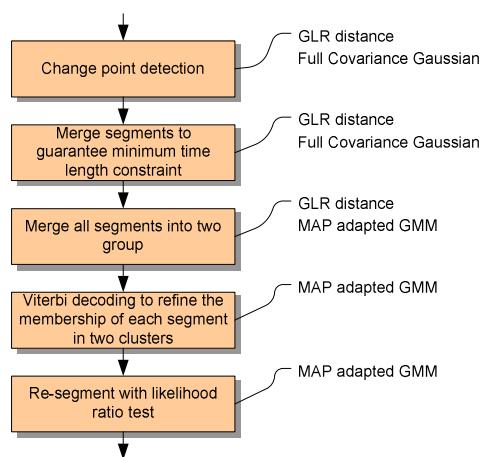
$$d(\lambda_i, \lambda_j) = -\frac{1}{N_i} \log \left(\frac{p(x_i | \lambda_j)}{p(x_i | \lambda_{UBM})} \right) - \frac{1}{N_j} \log \left(\frac{p(x_j | \lambda_i)}{p(x_j | \lambda_{UBM})} \right)$$

Score Normalization: Performance


- NIST SRE06 1conv4w-1conv4w test

Score Normalization: Performance

S NIST SRE06 1conv4w-1conv4w test

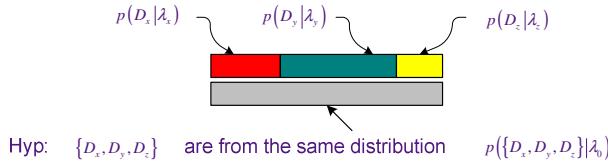

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D13 - 23/04/2007

Speaker Segmentation

- S MFCC + energy, no channel compensation
- S GLR distance is used for change point detection and agglomerative clustering
- S Two-Stage agglomerative clustering: as more data are in cluster, more complicated models are used

France Telecom
Research & Development



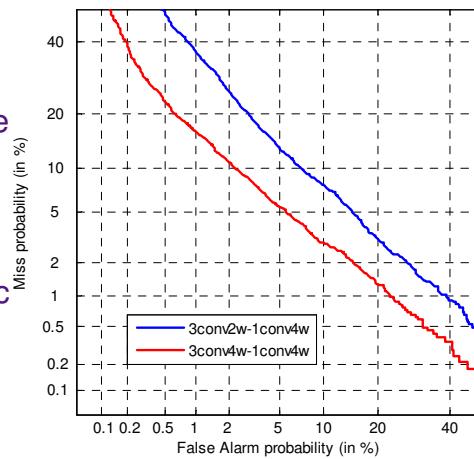
La communication de ce document est soumise à autorisation de la R&D de France Télécom
D14 - 23/04/2007

Speaker Clustering

- MFCC + Delta + RASTA: reduce channel mismatch across different conversations
- A form of GLR distance is employed to cluster multiple segments across several conversations

$$GLR(D_x, D_y, D_z) = \log \left(\frac{p(D_x | \lambda_x) \cdot p(D_y | \lambda_y) \cdot p(D_z | \lambda_z)}{p(\{D_x, D_y, D_z\} | \lambda_0)} \right)$$

- Gender of target speaker is taken into account to make decision


France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D16 - 23/04/2007

Summed Channel SRE Performance

NIST SRE06

- There is still large gap between 2-wire and 4-wire training; our speaker segmentation/clustering process need improvements

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D16 - 23/04/2007

Conclusion

- It is the first time that FTRD (Beijing) participates NIST SRE and we present a simple GMM-UBM likelihood ratio based system.
- Some improvements have been made on front-end, model adaptation and score normalization processes.
- To catch up with the state-of-art, there are still a lot of things to do, e.g. prosodic/idiomatic features, session variability modeling, cooperation with ASR, etc.

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D17 - 23/04/2007

Thanks

- To NIST for providing the wonderful evaluation platform!
- To all pioneers in speaker recognition/verification research area from who/whose publications we have learned a lot!

France Telecom
Research & Development

La communication de ce document est soumise à autorisation de la R&D de France Télécom
D18 - 23/04/2007