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Submitted systems

« BUTO1 - primary (6 systems)
— GMM with and without T-norm
— SVM GMM with and without T-norm
— SVM MLLR with and without T-norm

e BUTOZ2 - (3 systems)
— GMM with T-norm
— SVM GMM with T-norm
— SVM MLLR with T-norm

e BUTO3 - (1 system)
— Only GMM without T-norm
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GMM System

MAP adapted UBM with 2048 Gaussian components
— Single UBM trained on NIST 2004 test data

12 MFCC + CO (20ms window, 10ms shift)
Cepstral mean normalization (over whole conversation)

Short time Gaussianization

— Rank of current frame coefficient in 3sec window transformed by
inverse Gaussian cumulative distribution function.

RASTA filtering

Delta + double delta + triple delta coefficients
— Together 52 coefficients, 12 frames context

HLDA (dimensionality reduction from 52 to 39)
Feature Mapping (7 channels, 2 gender)

Eigen-channel adaptation
— 30 eigen-channels derived on 310 speakers from NIST 2004

T-norm: 230 speakers from NIST 2002
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HLDA

Heteroscedastic Linear Discriminant Analysis provides a
linear transformation that de-correlates classes.

fil
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HLDA

HLDA allows for dimensionality reduction while preserving
the discriminabllity between classes (HLDA without dim.
Reduction is also called MLLT)
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Feature Mapping

2004 data used for training

Supervised adapted channel models
— 3 channels per gender (cell,cord,stnd) derived from 2004 data

Unsupervised adapted channel models [Mason2005]

— Initial clustering given by recognition FM output from TNO SRE
2005 (4 channels (elec, cord, gsm, cdma) - per gender)

— Iteration on NIST 2004 data

— In each iteration:
 One model is adapted for each cluster of conversations
« Conversations are re-clustered by new models

— Converges in about 20 iterations

All 14 models from both supervised and unsupervised
adaptation used for feature mapping

Feature mapping Is not important when applied
together with eigen-channel adaptation!
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Eigen-channel adaptation I.

 We used the simplest version of eigen-channel
adaptation [Brummer2004]

— adaptation is applied only in test (speaker model is obtained
using normal UBM MAP adaptation from enrolment data)

— as the score, we use LLR computed using channel (MAP or
ML) adapted speaker model and UBM model (or T-norm model)

Likelihood of data: & log p(X | S)
t

o speaker model is defined by supervector s =
concatenated mean vectors of UBM adapted to
enrolment data normalized by standard deviations
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Eigen-channel adaptation II.

e We want to find the

) _ _ ' speaker 1
direction(s) of highest ° v’

A hili o speaker 2
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Eigen-channel adaptation Il

The direction is obtained
by PCA of average within-
class covariance matrix,
where classes are
supervectors !
corresponding to the
same speaker.

eigen-channel

vector
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Eigen-channel adaptation V.

e During the test, we adapt
speaker model and UBM
by moving supervector In
the direction of eigen-
channel(s) => Maximizing

a 10g p(x | s+Vx)
t
* pP(X) - modeis distribution
of speaker variability
along the eigen-channel
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SVM systems

* Linear kernels

 Rank normalization

e LIbSVM C++ library [Chang2001]
* Pre-computed Gram matrices

* Nuisance attribute projection (NAP)
[Campbell2006]
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Nuisance attribute
projection
Removes the
unwanted
variability from
features by
projecting them to
useful space.
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SVM - GMM

Feature extraction and UBM adaptation is the
same as for GMM system

Only 512 Gaussian components
Supervector 512*39=19968

NAP with 30 eigen-vectors derived on 310
speakers from NIST 2004

Impostors: 230 speakers from NIST 2002 and
2606 speakers from Fisher

T-norm: 230 speakers from NIST 2002 and 800
speakers from Fisher
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SVM CMLLR/MLLR [Stolcke2005/6]}

« LVCSR system is adapted to speaker (VTLN factor and
(C)MLLR transformations are estimated) using ASR
transcriptions provided by NIST

 AMI 2005(6) LVCSR system incorporates [Hain2005]:

— 50k word dictionary (pronunciations of OOVs were
generated by grapheme to phoneme conversion based
on rules trained from data)

— PLP, HLDA

— CD-HMM with 7500 tied-states each modeled by 18
Gaussians

— Discriminatively trained using MPE

— Adapted to speaker: VTLN, SAT based on CMLLR,
MLLR

Speech@FIT BUT NIST SRE2006
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SVM - CMLLR/MLLR

Cascade of CMLLR and MLLR

— CMLLR: 2 classes — silence and speech

— MLLR: 3 classes — silence and 2 speech classes
derived from data

Silence class discarded for SRE
Supervector =1 CMLLR + 2 MLLR =

= 3*3*132+3*39=1638
NAP with 20 eigen-vectors derived on NIST 2004
Impostors: 310 speakers from NIST 2004
T-norm: 310 speakers from NIST 2004
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Miss probability (in %)
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Miss probability (in %)
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GMM System Analysis in numbers
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system 2005 all trials 2006 all trials 2006 Engslish only
EER[%] DCF |EER[%] DCF |EER [%] DCF
Baseline GMM — MFCC + CO, zero mean 26,6 0,089 24,1 0,089 23,8 0,088
normalization, deltas, 2048 Gaussian
+ RASTA channel compensation 14,3 0,055 12,9 0,063 11,8 0,059
+ short-time Gaussianization (3 sec window) 12,4 0,052 10,9 0,054 10,0 0,051
+ acceleration coefficients 11,2 0,047 10,1 0,053 9,1 0,049
+ tripple deltas (bad for 2006) 10,6 0,047 10,3 0,053 9,3 0,048
+ HLDA 52->39 dimensions 9,7 0,042 9,5 0,047 8,2 0,041
+ Feature Mapping (7channel 2gender) 7,3 0,033 7,8 0,040 6,2 0,032
+ eigen-channel adaptation (30 dimensions) 4,6 0,020 5,4 0,028 4,0 0,020
NIST SRE2006 22
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EER[%]
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Things to improve GMM
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Importance of RASTA and STG

I I I I I I I I I

with STG and RASTA|
no STG :
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=> RASTA does not help in the final system
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Is HLDA worthy to im
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=> Dimensionality reduction is probably

advantageous for correct estimation of eigen-
channels
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Miss probability (in %)

Eigen-channel adaptation vs. Feature mapping

2005 all trials
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=> Feature mapping is not important when applied together

with eigen-channel adaptation
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How many eigen-channels to use?

10 T T T
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=> Channel adaptation is not very sensitive to the

number of eig
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Miss probability (in %)

SVM-GMM system analysis
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Miss probability (in %)

SVM-MLLR system analysis

2005 all trials 2006 English only trials
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Fusion

* Linear logistic regression used to fuse:
—all 6 systems with and without t-norm - BUTO1
— 3 T-normed systems - BUT02

e Niko’s FoCal toolkit was used for this
purpose [BrummerFoCal]
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Miss probability (in %)
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Miss probability (in %)
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Summary of results

system 2005 all trials 2006 all trials | 2006 English only
EER [%]| DCF |EER[%]| DCF |EER[%]| DCF
GMM 4,62 10,0196| 5,40 |0,0283| 4,02 0,0203
GMM with t-norm | 4,98 |0,0203| 5,35 |0,0280| 4,03 0,0182
SVM-GMM 542 10,0176| 6,04 |0,0314| 4,40 0,0314
SVM-MLLR 7,05 (10,0222 7,58 |0,0327| 5,42 0,0327
Fusion 3,71 10,0131| 4,15 ]0,0229| 3,04 0,0143
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Conclusions

 We considered NIST 2006 evals as a
good occasion to build BUT’s “baseline”...

 Looks like we have a good one :-)
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Thanks

e Thanks a lot: NIKO, DAVID and ALBERT for

great cooperation, many advices, support and
enormous help.

e
Ll

« Everything we have in our system was already
published by others. Thanks all the authors.
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System Analysis 2006 all trials (detl)

Miss probability (in %)
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Importance of RASTA and STG -2006 —all trials
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Feature mapping — 2006 all trials
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Projection of GMM super-vectors into
first eigen-channel dimensions
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Projection of GMM super-vectors into
first eigen-channel dimensions — |lI.
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=> No clusters visible after feature-mapping !
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