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1 Overview of the submission 
We are submitting scores for 1conv4w-1conv4w, 8conv4w-1conv4w, 1conv4w-1convmic, 8conv4w-1convmic conditions. There are three submissions. First two submissions use the same set of seven systems from SRI. The third submission uses systems from ICSI as well as those seven systems.
1) SRI-1: Score-level combination using regression-SVM combiner followed by a SVM classifier that uses side-information (ABIE method, see Section 4 for more details). This is the primary system.
2) SRI-2: Scores-level combination using regression-SVM combiner, without ABIE.
3) SRI-3: Scores-level combination using regression-SVM combiner followed by ABIE. This uses the seven SRI systems, five ICSI systems, and one system developed jointly by SRI and ICSI.
For each submission, non-English and English trials are combined using separate combiners trained on matched conditions. The SVM combiner and ABIE parameters are selected based on the minimum DCF value on SRE-04 data. For each of these combiners, SRE-06 scores are normalized based on the statistics of SRE-05 trials of the corresponding condition. The decision threshold (estimated on SRE-05) is subtracted from the scores. The non-English and English trials are pooled together in a single submission.
2  Commonalities

2.1 Background data and TNORM speakers
Background data for GMM systems and impostor data for SVM systems were obtained from FISHER, NIST 2002 cellular data, NIST 2003 extended data speaker recognition evaluation (SRE) and Switchboard 2 Phase 5.
FISHER data, as distributed to EARS participants, was divided into three sets: background set containing speakers with only one recording and two evaluation sets containing speakers with more than one recording. The background set contains 1128 speakers with 5 minutes of data per speaker. 
NIST 2002 cellular data SRE used data from Switchboard Cellular - part 2. Sixty male and female speakers are used with approximately 2 minutes of data per conversation side.
NIST 2003 extended data SRE used data from Switchboard-II phases 2 and 3. This data was distributed in 10 non-overlapping evaluation sets. We used speakers from sets 4, 5, 6, and 8 as background data. This contained 425 unique speakers and 4989 conversation sides. Each conversation side has approximately 2.5 minutes of data per conversation side.
Switchboard 2 phase 5 (cellular part 2) corpus was used to train background models for some of the systems. Only one conversation side per speaker was used.

Table 1 shows the background/impostor data used by each system. The difference is primarily due to memory constraints and due to overlap of a specific data with that used to train ASR system.

Table 1: Background data used in each system
	Feature, System
	Fisher
	Switchboard 2, phase 5
	NIST 2002 cellular
	NIST 2003 extended

	
	
	
	
	all
	Unique speakers

	Cepstral, GMM
	x
	
	x
	x
	

	Cepstral, SVM
	x
	
	x
	
	x

	MLLR, SVM
	x
	
	
	
	x

	Duration, GMM
	x
	
	
	
	x

	Word N-gram, SVM
	x
	x
	
	
	x

	Word+Syllable NERF, SVM
	x
	
	
	
	x


The score from each system is normalized using TNORM. TNORM statistics are obtained by using 248 speakers from one of the Fisher evaluation sets. These conversation sides were cut to contain around 2.5 mins of data to match the evaluation conditions. The same set of speakers are used to normalize scores from 1conv and 8conv training conditions.
2.2 ASR system

The long-term/higher-level features in the system use recognition alignments obtained with SRI's 3xRT conversational telephone speech (CTS) recognition system, using models developed for the NIST RT-03F evaluation. The system is trained on Switchboard 1, some Switchboard 2, and CallHome English data, as well as Broadcast News and web data for the language model (no Fisher data was used in training the ASR system).  The word-level 1-best recognition output, as well as word-, phone-, and state-level time alignments were then used in the speaker ID systems.  A brief description of the speech recognition system follows. The recognizer is unchanged from our SRE-05 system.
A speech-nonspeech HMM is used first to detect regions of speech; the speech regions thus detected form the basis of all processing, including that of the baseline speaker ID system. The system then performs one forward/backward decoding pass with a bigram LM over a 37k word and 3k multiword vocabulary, and gender-dependent within-word triphone genonic (bottom-up state-clustered) acoustic models trained with the MMIE criterion, to generate word lattices.  Front-end processing at this stage used Mel cepstral processing, vocal tract length
normalization, and model-based HLDA. The model means were adapted to each conversational side using MLLR without prior recognition, based on a phone-loop model. Following the first recognition pass, lattices are expanded and rescored with a 4-gram LM to generate adaptation hypotheses.  These are then used to adapt a second set of models based on PLP analysis, LDA and MLLT transformed features, and using cross-word triphones. The adapted models and a trigram multiword LM are used to generate N-best lists.  These are then rescored with a 4-gram LM, pronunciation models, a pause-LM, and a phone-in-word duration model.  All scores are combined and the 1-best hypothesis is obtained by decoding confusion networks built from the N-best lists.

Two different versions of ASR hypothesis and alignments are produced. The first one corresponds to the output of the first decoding pass (within-word MFCC triphones, bigram LM). This system has a WER of about 29% on RT-03 Fisher data. The second one is the final output (cross-word PLP triphones, rescored with 4-gram LM and other knowledge sources). This has a WER of about 21%. The recognition system runs in about 3xRT on a 3.4 GHz Pentium Xeon processor with hyperthreading. 

3 Individual System Description
3.1 Cepstral GMM system 
The cepstral Gaussian mixture model (GMM) system uses a 300-3300 Hz bandwidth front end consisting of 19 MEL filters to compute 13 cepstral coefficients (C1-C13) with cepstral mean subtraction, and their delta, double delta, and triple-delta coefficients, producing a 52 dimensional feature vector. The feature vectors are modeled by a 2048-component GMM. The background GMM is trained using data from the FISHER collection and the NIST 2003 extended data speaker recognition evaluation. For channel normalization, the feature transformation described in [1] is applied using gender- and handset-dependent models that are adapted from the background model. The resulting features are mean and variance normalized over the utterance. Target GMMs are adapted from the background GMM using MAP adaptation of the means of the Gaussian components. Verification is performed using the 5-best Gaussian components per frame selected with respect to the background model scores. The resulting scores are T-normed.
3.2 Cepstral SVM system

The cepstral SVM system is an equally-weighted combination of four SVM systems based on the cepstral sequence kernel proposed by [2]. All of them use basic features which are similar to the cepstral GMM system. The only difference is that MFCC features are appended with only delta and double delta features. This results in a 39 dimensional feature vector. This vector undergoes feature-transformation and mean-variance normalization using the same procedure as explained before. Each normalized feature vector (39 dim) is concatenated with its second (39x39) and third (39x39x39) order polynomial coefficients. Mean and standard deviation of this vector are computed over the conversation side and we get a mean polynomial vector (MPV) and a standard deviation polynomial vector (SDPV) per conversation side. 
Two SVM systems use transformations of the MPV as follows. The covariance matrix of the MPV is computed using background data and the corresponding eigenvectors are estimated. Since the number of speakers (S) is less than the number of features (F), there are only S-1 eigenvectors with nonzero eigenvalues. The leading S-1 eigenvectors are normalized with the corresponding eigenvalues. Two SVMs are trained using 1) features obtained by projecting the MPVs on the leading S-1 normalized eigenvectors, and 2) features obtained by projecting the MPVs on the remaining F-S+1 unnormalized eigenvectors. A similar procedure is performed on the vector obtained by dividing the MPV by the SDPV to obtain two additional SVM systems. 
Each SVM system uses a linear kernel. During training, each false rejection is considered 500 times more costly than a false acceptance. This is done to compensate for the bias in the amount of target and impostor speakers. Output scores from these four systems are T-normed separately and then linearly combined with equal weights to obtain the final score. The system is described in detail in [3]. This system was used to score non-English trials. 
Another version of this system that uses three broad phonetic categories and state-level features (obtained using our ASR system) is used to score English trials. In this system, features for three-broad phone categories – vowels+diphthongs, glides+nasals and obstruents are modeled using separate SVMs. The polynomial features are estimated separately for each state so the total number of features is three times those used in the non-English system. Scores from three systems are linearly combined to generate the final output.  
3.3 MLLR SVM system 
The MLLR-SVM system uses speaker adaptation transforms used in the speech recognition system as features for speaker verification. A total of 16 affine 39x40 transforms are used to map the Gaussian mean vectors from speaker-independent to speaker-dependent speech models; 8 transforms each are estimated relative to male and female recognition models, respectively. The transforms are estimated using maximum-likelihood linear regression (MLLR) [4], and can be viewed as a text-independent encapsulation of the speaker's acoustic properties. The transform coefficients form a 24,960-dimensional feature space. Each feature dimension is rank-normalized by replacing the value with its rank in the background data, and scaling ranks to lie in the interval [0, 1]. The resulting normalized feature vectors are then modeled by support vector machines (SVMs) using a linear kernel, as described in more detail in Section 3.4. 
For non-English conversation sides, only the 2+2 transforms used in the phone-loop MLLR step were used, resulting in a 6240-dimensional feature vector.

For more details on MLLR SVM modeling see [5, 6].

3.4 Duration-conditioned word N-gram SVM system

The N-gram based SVM system consists of a linear-kernel SVM [7] to separate true and imposter speakers. A training or test conversation side is assumed to provide a single point in the hyperspace. The coordinates of this point are determined by the raw relative frequencies of word N-grams in the session represented by this point. Before computing the word N-grams, the most frequent 5000 words are binned into “quick” and “slow” classes based on the average duration of that word. That is, each frequent word is represented in two separate lexical forms. This is meant to capture the pronunciation style of the speakers. For purposes of space efficiency, the values were scaled by 1000 and represented in training only to the first two significant decimal places.  The number and nature of N-grams were determined empirically by experimentation.  During training, each true speaker was assigned to the class "+1", while each imposter was assigned to the class "-1".  The score assigned to any particular test trial was then calculated as the Euclidean distance from the separating hyperplane to the point that represented this trial, with negative values indicating imposters.  We used the SVMLight toolkit [7] by Thorsten Joachims to learn SVMs and classify instances.

The variable parameters in this system are as follows.

  1. The various orders of N-grams that constitute the coordinates (dimensions) of our input space.

  2. The specific identity of the N-grams within each order

  3.  Determining the threshold of frequency for the binning a word
  4. Choice of Kernel function

  5. Bias against misclassification of positive examples

Based on empirical results of experimentation on the Fisher and SWBD data all orders of N-grams from 1 to 3 were chosen as potential candidates for input space dimensions.  Further, every such N-gram that occurred at least 3 times in the background set was included in the N-gram vocabulary of the system. (The background set for this system was a selection of 1971 conversation sides from Fisher, SRE 2003, and SWB2 phrase 5 such that no speaker occurred more than once.) In this way, we determined and used a vocabulary of 125,579 N-grams. The relative frequencies of each N-gram in the conversation side form the feature values. As with the MLLR system, the features are rank-normalized to the range [0,1]. We also used a linear kernel and imposed a bias of 500 against misclassification of positive examples.  The scores from the SVM system were finally normalized using TNORM.

3.5 Duration GMM system 

This system models a speaker's idiosyncratic temporal patterns in the pronunciation of individual words and phones, inspired by previous work on similar features for conversational speech recognition [8]. Two different models are created: (1) word models that contain the sequence of phone durations in the word; and (2) state models that contain the sequence of ASR HMM state durations in the phones. 

State features are obtained using the non-crossword alignments from the recognizer, while the word features are obtained using the crossword alignments. This choice is based on experimental results showing that non-crossword alignments give better performance for the state models and that word models benefit from the lower WER given by the crossword alignments.

Speaker models obtained through adaptation of a background model are used to score test conversations. This score is normalized by a score obtained using the background model on the same test sample. The score is further normalized using TNORM. Refer to [9] for a detailed description.
3.6 Grammar and syllable NERF SVM system (G+SNERFs)
A separate prosodic system models a range of soft-binned prosodic features (pitch, energy, and duration) and feature sequences.  This system is a significantly improved version of the WNERF+SNERF system used in last year’s evaluation [10, 11], with some important differences. One difference is that we extended the set of wordlist features, including addition of constraints from automatic part-of-speech (POS) tagging.  A second is the method used to transform continuous syllable-based features into a conversation-level feature vector. 

The system is a feature-level SVM combination of two types of NERF (non-uniform extraction region feature) sets: (1) all-syllable features and (2) grammar-constrained wordlist features. In the first set, SNERF (syllable NERFs) features are extracted from all syllables, regardless of word identity. The second set of features, GNERFS (grammar-constrained NERFs), uses the same prosodic features at the syllable level but constrains extraction location on specific “wordlists”.  Each wordlist contains a list of constraints. Each constraint consists of a specific word, a specific POS tag, or a word+POS tag pair. The POS sequence is derived from the word sequence by a simple HMM-based tagger, trained on Penn Treebank-3 data, and implemented using SRILM tools. Tags were then post-processed to distinguish among useful classes confounded by the tagger.  Sixteen wordlists were used. 
In both systems, the prosodic features are soft-binned according to their distribution on a held-out set. For this, a set of GMM models is created for each feature, one for the feature by itself, another for the bigram (the feature at time t concatenated with the delta between the feature at time t and the feature at time t+1), and two more for the trigram and the fourgram created in a similar way. In addition, a separate model is trained when a pause is found in a certain position of the sequence. The Gaussian component weights for these GMMs are then adapted to the data for each conversation-side. The conversation level feature vector is composed by the resulting Gaussian weights. These features are finally rank-normalized.  We provide these resulting features from both set of features 1 and 2 to an SVM similar to that used for word N-grams. We used a linear kernel to perform regression on class labels (1 and -1) with a bias of 60 against misclassification of positive examples. The scores obtained from the SVM are normalized using TNORM.

3.7 ICSI systems

We use five systems from ICSI for the SRI-3 submission. The systems are

· Word conditional HMM system (WordHMM)

· Lexically-conditioned phone lattice N-gram system with within-class covariance normalization (LC-PhoneNgram)

· Phone lattice N-gram system with within-class covariance normalization (PhoneNgram)

· Part-of-speech word N-gram system (POS/Word)

· Lexical statistics system (LexStats)

In addition, the following system was jointly developed by SRI and ICSI and included in the SRI-3 combination:

· MLLR transform SVM with within-class covariance normalization

Scores from all trials were generated using the PhoneNgram system. The remaining systems generated output for English-only trials. Please refer to the ICSI system description for the details of these systems.
4 System Combination

There are seven individual systems as shown in Table 2. Stylistic systems used the output of the ASR system to generate the respective features. Since ASR was trained on English data, these systems only generated scores for English only trials. Acoustic systems did not use ASR output and produced scores for all the trials. The combination of scores is performed separately for English-only and remaining trials. The former uses all 7 systems and latter uses only the first three systems. 
Table 1:  Individual Systems
	Type
	Feature
	Statistical Model

	Acoustic
	MFCC
	GMM

	Acoustic
	MFCC, polynomial
	SVM

	Acoustic
	MLLR transforms
	SVM

	Stylistic
	State durations
	GMM

	Stylistic
	Word durations
	GMM

	Stylistic
	Word N-grams
	SVM

	Stylistic
	G+SNERFs
	SVM


Initially, the input scores are z-normalized using statistics obtained on SRE-05 data. A regression-SVM trained on SRE-04 data is used as a combiner. For the SRI-2 submission, the regression-SVM output is used as is; for SRI-1 and SRI-3, we apply an additional “automated bias identification and elimination” (ABIE) method [12] due to Yosef Solewicz (Bar-Ilan University), as described below. 
A separate combiner is trained for English and non-english trials. The combined scores for each condition are z-normalized based on SRE-05 statistics. The decision threshold is chosen based on SRE-05 data and substracted from the normalized scores. Finally the normalized and thresholded scores are pooled together into a single submission.
4.1 Automated bias identification and elimination [12]
The goal of ABIE is to adjust scores near the decision threshold post-hoc, based on auxiliary input features that characterize properties of the input data, and in particular, mismatch between training and test data.  An SVM classifier is trained to classify samples as either false positive (+1) or false negative (-1), based on input feature such as the cepstrum mean and variance, pitch, and rate-of-speech, as well as differences between training and test data for these features. At test time, the original score is modified by adding k*T, where k is an optimized parameter and T the output of the auxiliary SVM classifier. This score modification only takes place if the original score lies within a certain window around the decision threshold, the extent of which is also optimized on training data.

4.2 Decision threshold estimation

The combiner output scores are normalized by subtracting a decision threshold estimated on SRE-05 data. A bagging approach is used here: multiple samples of SRE-05 trials are generated (with replacement), a DCF-minimizing threshold is found for each trial set, and the thresholds thus found are averaged for the final threshold setting.

5 Submission Details 
We have three submissions.

5.1 SRI-1

This has scores obtained from SVM, regression combiner that are processed using ABIE. SVM weights and the parameters for ABIE are optimized on minimum DCF value of SRE-04. The acoustic systems are used for all trials and the stylistic systems are used only for the English-only trials. As mentioned before, score from each combiner for SRE-06 is normalized by the corresponding output from SRE-05. The decision threshold was obtained on SRE-05 as described above. This was subtracted from the corresponding SRE-06 trials. The thresholded scores from non-English and English trials are pooled into a single submission.
5.2 SRI-2

This has scores obtained from a SVM regression combiner. The approach is similar to SRI-1, except for the ABIE processing which is not performed. This will serve as the baseline for comparison with SRI-1 submission.

5.3 SRI-3

This used seven systems from SRI, five from ICSI, and one developed jointly by SRI and ICSI. This makes thirteen systems, with four systems generating output for all trials (three acoustic systems from SRI and Phone N-gram system from ICSI) and all thirteen systems generating output for English-only trials. These systems are combined in the same fashion as SRI-1. 
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