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I. I NTRODUCTION

A. System overview

The QUT primary system uses the output from 8 different systems, with output fusion used to determine an
overall score and decision. The 8 main systems are are:

1) Acoustic GMM-UBM system
2) Text-constrained Acoustic HMM using a Syllable Length Framework
3) Lexical/Idiolect system
4) Phonetic Ngram system (OGI multilingual corpus trained phone streams)
5) Phonetic Ngram system (Callhome trained phone streams)
6) Prosodic Gesture System
7) Channel/Session Variability SVM system *
8) Decision Tree System * (Phone Streams and GMM-Nbest Index)

* Designates modelling/scoring provided by IBM
Results for this primary system are designated QUT1 in the submission. It should be noted for the 3conv4w

and 8conv4w conditions, the text-constrained HMM system was not utilised. Due to an error in the the original
submission, the SVM system was also excluded from the QUT1 system. It was, however, included in a late
submission, designated as QUT3. A secondary set of results was also submitted. These results were obtained using
only the score from the acoustic GMM-UBM system. This secondary system is designated QUT2

B. Evaluation tasks performed

Three evaluation tasks were addressed with both the primary and secondary QUT systems. All conditions tested
only a single conversation side (1conv4w) while each varied in the length of training data - one side (1conv4w),
three sides (3conv4w) or eight sides (8conv4w).

C. Development data and procedures

During development of the QUT submission, the NIST2005 SRE evaluation data was used as the development
database and testing protocol. Data from the NIST2004 and Switchboard II protocols were utilised for background
model training, and score normalisation.

II. A COUSTICGMM-UBM SYSTEM

The acoustic subsystem was based on the GMM-UBM approach pioneered by Reynolds [1] with the addition of
a channel/session variability compensation scheme based on the approach of Kenny, et al. [2] and as described in
[3] and [4].
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A. Feature extraction

The acoustic GMM-UBM system used short-term cepstral-based feature vectors consisting of 12 MFCCs and 12
corresponding delta coefficients. Before the features were extracted, the audio was band filtered between 300Hz
and 3.2KHz, followed by an energy based speech activity detection (SAD) process. After the features had been
extracted, feature warping [5] was also applied using a 500 frame window.

B. Channel Compensation

A model-space channel compensation scheme was used in this system based on the work of Kenny, et al. [2]
and further described in a submitted paper [3]. This scheme incorporates an offset to the mean vectors of a speaker
GMM for eachsegment to represent session variability with this offset confined to a low-dimensional subspace
(the channel subspace). This subspace was trained on a combination of NIST 2004 and Switchboard II data using
a EM procedure similar to [6]; a 50-dimensional subspace was used for this evaluation. In contrast to [2], we did
not incorporate a speaker subspace.

C. Model Training

Gender dependent acoustic UBMs were trained based on all the NIST 2004 data with a selection of Switchboard
II, Phase 2 and 3 data to increase the diversity of speakers represented (approximately 1.5 million feature vectors
per gender after a 1:3 sub-sampling). 512-component GMMs were used throughout.

Individual speaker models were adapted from the UBMs using a MAP process that simultaneously optimised
both the speaker mean and a channel subspace vector for each training session. For efficiency/practicality, this
simultaneous optimisation used an approach similar to the Gauss-Seidel method for solving linear systems:

1) Initialise all the session vectors and speaker model supervector estimates to0.
2) Calculate the statistics and component occupancies of the observations in each training session based on the

current variable estimates.
3) Re-estimate the session vectorxi(s) for each training session based on these statistics and the current estimate

of the speaker supervectorm(s).
4) Re-estimate the speaker model supervectorm(s) based on these statistics and the new estimate of the session

vectorsxi(s) obtained in step 3.

In contrast to the 2005 submission, only a single iteration of this optimisation was used this year.

D. Scoring and Normalisation

Scoring was performed using a version of Top-N ELLR scoring modified to incorporate channel compensation.
Effectively, a channel subspace vector was estimated for each test segment/speaker model combination, in a similar
fashion to the training procedure, before the ELLR score was calculated. For efficiency, the channel vector estimation
used statistics calculated on the UBM so that the test segment was only processed in one additional pass to normal
ELLR scoring.

Two forms of score normalisation (T-Norm and Z-Norm) were utilised based on Auckenthaler et al. [7]. T-Norm
models were trained on NIST 2004 data, with approximately 40 female and 27 male models from each split for
each training length (giving around 120 female and 80 male T-Norm models for running the evaluation). Z-Norm
segments also came from NIST 2004 data using a distinct set of speakers to the T-Norm models. Approximately
130 segments per gender were used for the evaluation.

E. Processing Time Estimates

• 1 Side Training – 25s/speaker
• 3 Sides Training – 77s/speaker
• 8 Sides Training – 208s/speaker
• 1, 3 and 8 Side Testing (combined) – 1041m total (not including Z- and T-Norm)
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III. T EXT-CONSTRAINEDACOUSTICHMM USING A SYLLABLE -LENGTH FRAMEWORK

This system uses a syllable-length framework to recognise and segment the speech. Hidden Markov models are
then used to model each of the syllabic events for a particular speaker. The framework was originally developed
for a language identification task [8], but has since been adapted for use in speaker recognition [9].

A. Syllabic Segmentation

The syllabic segmentation was achieved by recognising broad phonetic classes (BPC) using a multilingual broad
phone recogniser, and then concatenating these phones into triplets to form pseudo-syllabic events. Six broad
phonetic classes are defined, resulting in a pseudo-syllabic set size of 216. In time stamping each instance of the
syllables, overlapping windows were used. The broad phone recogniser was trained using the Callhome and OGI
multilingual corpora. Further details on the phone recogniser, broad class descriptions and the syllabic segmentation
can be found in [8].

B. Feature Extraction

After the syllabic segmentation, the boundary information was used to extract features and train individual
classifiers for each syllabic event. Feature vectors, calculated every 10ms, consisting of the first 12 MFCCs and
their corresponding delta coefficients were used (resulting in a feature vector length of 24). Before the features were
extracted, the audio was band filtered between 300Hz and 3.2KHz, followed by an energy based speech activity
detection (SAD) process. After the features had been extracted, feature warping was also applied [5].

C. Model Generation

Hidden Markov model generation and scoring was performed using HTK. A seven state left-to-right HMM
topology was used. 16 mixture components were used to model each emitting state’s distribution.

Background HMMs were trained for each syllable using the NIST2004 SRE evaluation data. A maximum of
50000 training instances were used for each syllable in the training of these background models. For each target
speaker, the 216 syllable HMM models were then adapted from the UBM using MAP adaptation (only a single
iteration of MAP was performed). In the case that no data was available for adaptation for a particular syllable,
the background model was used.

D. Scoring and Optimisation

Scoring for each syllable was performed separately, resulting in 216 sets of classifications. Each syllable classifier
produced its own set of ELLR scores. T-Norm was performed on the ELLR scores using 100 male and 100 female
models from the NIST2004 corpora. The scores from each of these classifiers were fused at the output level using
linear weights calculated using a linear logistic regression algorithm. The FoCal toolkit developed by Niko Brummer
was used to calculate these weights.

E. Processing Time Estimates

• 1 Side Training - 45s/speaker
• 1 Side Testing - 1300min

IV. L EXICAL SYSTEM

The lexical system aims to exploit the differences of a speakers’s idiolect (personal lexicon). The QUT lexical
system is based upon an n-gram analysis technique first described in [10] and makes use of the Byblos ASR
transcriptions. Both traditional bigram (conditional likelihood) and bag-of-bigram (joint likelihood) modelling was
used in this implementation.

Speaker specific models were adapted from gender dependent UBMs using the MAP adaptation process outlined
in [11]. The UBMs were trained using the ASR transcriptions for the NIST2004 SRE evaluation data.

Two score streams were output from this system, one for each modelling technique. T-Norm and Z-Norm were
applied to these scores using models and test segments from the NIST2004 corpus.
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A. Processing Time Estimates

• Feature extraction - Unknown (Dependent on Byblos ASR system)
• 1 Side Training -< 1s/speaker
• 3 Sides Training -< 1s/speaker
• 8 Sides Training -< 1s/speaker
• 1, 3, 8 Side Testing (combined) - 480min.

V. PHONETIC N-GRAM SYSTEM - OGI PHONE STREAMS

The phonetic system acts to exploit the personal variations in pronunciation and an individuals’ tendency to
vocalise a sequence of phones in similar ways. The QUT phonetic speaker recognition system is based on the
gender-dependent phonetic refraction technique described in [12].

A. Phone Recognition

The phonetic system used phone transcriptions obtained from multiple open-loop phone recognisers (OLPR)
each trained on one of 6 languages; English, German, Hindi, Japanese, Mandarin and Spanish. The multi-stream
decoding was performed using QUT’s HMM based OLPR - trained on the OGI multi-lingual database.

B. Modelling and Scoring

Background models were trained by gathering bi-gram and bag of 3gram statistics from the OLPR transcriptions
of the NIST2004 SRE evaluation data. In order to combat model sparsity issues, MAP adaptation was used to adapt
speaker models from these well trained background models [11].

ELLR scores were calculated for each modelling technique, for each stream. These scores were then normalised
using Z-Norm and T-Norm segments from the NIST2004 corpus. For each modelling type (bi-gram or bag-of-
3gram) the scores from the various streams were fused using linear weights calculated through a logistic regression
algorithm.

C. Processing Time Estimates

• Feature extraction - 2s/language/file
• 1 Side Training -< 1s/speaker
• 3 Sides Training -< 1s/speaker
• 8 Sides Training -< 1s/speaker
• 1, 3, 8 Side Testing (combined) - 400min.

VI. PHONETIC N-GRAM SYSTEM - CALLHOME PHONE STREAMS

This system used identical modelling/scoring as the OGI phone stream system above, but was performed on
additional set of OLPR streams provided by phone recognisers trained on the Callhome and Switchboard corpora.
Six open-loop phone recognisers were used. English, German, Japanese, Mandarin, Spanish and a Multilingual
phone set. Due to the increased training data available from the Callhome corpus, the HMMs for decoding were
able to be trained using a significantly higher number of mixture components. This did, however, also result in
longer decoding time.

A. Processing Time Estimates

• Feature extraction - 20s/language/file
• 1 Side Training -< 1s/speaker
• 3 Sides Training -< 1s/speaker
• 8 Sides Training -< 1s/speaker
• 1, 3, 8 Side Testing (combined) - 400min.
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VII. PROSODICGESTURESYSTEM

Based on the work of Adami et al [13], this system converts f0 and energy contours into descriptive tokens
representing piecewise linear segments for subsequent modelling and scoring using n-gram techniques.

A. Tokenisation

To obtain the piecewise linear tokens, the following steps were followed. Firstly, the f0 and short-time energy
values were computed every 10ms. The f0 values were obtained using the getf0 utility [14], which implements
a pitch tracking algorithm based on the use of the cross correlation function and dynamic programming. The
time derivatives for both the f0 and energy trajectories were then calculated by fitting a straight line to 5 frames
(100ms). The speech was then segmented using the zero-crossings of this rate of change values and broad phone
boundaries extracted from a broad phone recogniser. Segments were then labelled according to the slope of the two
trajectories, the current phonetic category, and the length of the segment. Unvoiced segments with duration shorter
than 12 frames were labelled as ”Short”, and all others labelled ”Long”. For voiced segments, durations shorter
than 6 frames were labelled as ”Short”, and all others labelled ”Long”.

B. Modelling and Scoring

N-gram models, were used to produce speaker dependent models. Background models were trained by gathering
bi-gram and bag of 3gram statistics from the prosodic token sequences of the NIST2004 SRE evaluation data. In
order to combat model sparsity issues, MAP adaptation was used to adapt speaker models from these well trained
background models [11].

ELLR scores were calculated for each modelling technique, for each stream. These scores were then normalised
using C-Norm and T-Norm segments from the NIST2004 corpus. C-Norm labels were obtained using the IBM
channel recogniser [15].

C. Processing Time Estimates

• Feature extraction - 7s/file
• 1 Side Training -< 1s/speaker
• 3 Sides Training -< 1s/speaker
• 8 Sides Training -< 1s/speaker
• 1, 3, 8 Side Testing (combined) - 400min.

VIII. S UPPORTVECTORMACHINE (SVM) SYSTEM - IBM

The SVM component system is based on the use of the GLDS kernel [16]. Here, the GLDS kernel feature space
is created from Gaussian Mixture Models (GMMs) determined through maximum-a-posteriori (MAP) adaptation [1]
of a Universal Background Model (UBM) to the features of a speaker’s utterance. The mixture component means
are adapted while the weights and variances remain constant. The MAP adaptation of the mixture component
means is performed according to an inter-session variation (ISV) model constraint [4], [17]. The feature space
of the SVM is based on the supervector formed from the concatenation of the adapted mixture component mean
vectors. More specifically, the SVM feature space is established by taking the difference between the supervector
of the concatenated Gaussian means of Universal Background Model (UBM) from the supervector formed from
the means of the adapted GMM. Each dimension of the SVM feature space is further normalized by the standard
deviation of a set of development set impostor models (derived from NIST 2004 data).

The process for training a speaker model consists of creating a target speaker supervector from a training utterance
and a set of impostor supervectors from a group of out-of-set speaker utterances. An optimal separating hyperplane
is then calculated. The speaker model is represented by a normal vector to the hyperplane and an offset.

In testing, the test utterance is used to adapt a UBM and is normalized to form a single variance normalized
SVM feature space vector in the normal manner. A dot product between this vector and the normal to the training
model hyperplane with the offset is used to provide the speaker score. This score was further normalized using
Z-Norm and T-Norm [7] (constructed from NIST 2004 audio). In addition to these techniques, symmetric scoring
was also performed (see [15]). In this forward scoring scenario, the trials are first scored in the normal manner. In
the reversed scoring scenario, the test utterances and training utterances are switched such that models are created
from the test utterances while these models are scored using the training utterances.
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IX. B INARY-DECISION TREE SYSTEM- IBM

Phonetic, lexical, and other decoders can be used as speech ”tokenizers” to transform the raw signal into a
sequence of discrete units. These, in turn, are analyzed using models with a binary-decision tree (BT) structure
to exploit information encoded by the inherent time dependencies. In general, a BT model consists of a set of
non-terminal and a set of terminal nodes. Each non-terminal node is associated with a binary test and have two
child nodes; each terminal node (leaf) contains a token distribution and has no child nodes. In order to calculate
the probability of a token at time t, given a certain history of tokensat−1, ..., at−k (referred to as predictors), the
tree structure is traversed top-down via non-terminal nodes with the path being determined by outcomes of binary
tests (questions) until a terminal node is reached and the probability of the tokenat can be determined from the
leaf distribution. An example of a binary question may be ”Is predictorat−3 in set {[a], [oe], [e]} ? ”. Since the
path through the tree is determined by the predictors, i.e. token context, the token history is modeled in a flexible
way allowing for a varying degree of complexity in clustering the space of all token histories. The crux of the
BT modeling task is building an appropriate speaker tree, namely determining the node questions as well as leaf
distributions. In this system a minimum-prediction entropy criterion (corresponding to an ML criterion) was used.

In this system submission, 12 phonetic decoders (as described above) and one GMM tokenizer were used to
generate sequences of tokens with an inventory defined as the phone repertory of each corresponding recognizer,
and as a set of indices{0, .., 511} for the GMM-index (GIX) tokenizer respectively.

A. BT Training

The tree structures in this evaluation were trained using a fast flip-flop algorithm to minimize the prediction
entropy in terminal nodes as described in [18].

First, on data from background speakers (NIST 2004 SRE), a common BT model was created resulting in a BT
with about 3k terminal nodes using up to 3 predictors (i.e. exploiting a context of 4 tokens at a time). Subsequently,
individual target speaker models were created using an adaptive BT training algorithm from the common BT model
as described in [19]. Three variants of the GIX system were trained from index sequences by leaving out 0, 1, and
2 frames (subsampling).

B. BT Scoring and normalization

The probability of a tokenat in a sequence generated by the ASR tokenizer and given a speaker hypothesis
Sj , is retrieved from the corresponding BT model in a way described above (traversing the tree). In addition, a
recursive parental-node smoothing is applied to the probability as described in [19]. The resulting BT score is
S(a) =

∑
t pBT (at|Pred(at))/T , wherea = a1, ..., aT is the token sequence

A C-norm [1] - a variant of the H-norm– followed by the T-Norm standardization is applied to the scores. The
C-norm is based on an automatic gender-dependent 5-channel detector (identical to [15]). The score normalization
is applied as follows:Sc(a) = (S(a)−mcj)/hcj , with mcj andhcj denoting the mean and standard deviation of
scores from channelc given speaker modelj Sct(a) = (Sc(a)−mt)/ht, with mt, ht denoting the mean and std.
deviation of scores of the test on the T-norm speakers (after C-norm)

The final 12 phonetic and 3 GIX out scores were fed into the fusion back-end.

C. Processing Time Estimates

Excludes ASR transcription and file IO loading models into memory:
• Processor class: Xeon CPU 2.8GHz Dual, 2GB RAM, Linux Fedora Core 1
• 1 Target enrollment< 10ms
• 1 Trial: 2ms (phonetic BTs), 5ms (GIX BTs)

X. OVERALL FUSION

In order to obtain an overall score for each test segment, the scores from the various subsystems were fused.
Fusion was performed on the output scores using linear weights calculated through use of a logistic regression
algorithm. This was performed using the FoCal toolkit provided by Niko Brummer. As well as the subsystem
scores, meta data was also used as input into the fusion process. Inputs representing the channel type (detected by
the IBM channel recogniser) and the model gender made up this meta data.
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