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1 INTRODUCTION

Speaker Seeker °

Thnlogy

The JHU SuperSID workshop in 2002 (http://www.clsp.jhu.edu/ws2002/groups/supersid/) demonstrated the power of

exploiting multiple levels of information conveying speaker identity in the
speech signal. As illustrated in the iconic speaker-feature pyramid, features
and classifiers worked from low-level spectra to high-level words. While
the high-level features from prosodics, phones and words have indeed
provided accuracy improvements in past speaker recognition evaluations, it
has been well established that spectral based features and classifiers
provide the main foundation of system accuracy where the vexing
problems of channel variability can be directly addressed. Further, the
incremental gains in accuracy obtained from high-level cues often come at
significant increases in computational and processing complexity. With
these issues in mind, MITLL’s focus for SRE-2006 was on building the
base by emphasizing spectral based systems which offer computational
speed, show robustness to channel variability, are immune to language and

thus are well suited for porting to new environments and novel applications.

High-level cues

dialoaic
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phonetic
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The MIT Lincoln Laboratory submissions for the 2006 NIST Speaker Recognition Evaluation (SRE) are built using the
systems listed in Table 1 and described in the following sections. The table also lists a rough order of processing time for

each system. Systems are combined using an MLP based fusion system.

Table 1: Core systems used in the MITLL SREO06 submissions

Features Classifier

Scoring Factor

(faster than speech time™)

GMM-ATNORM MFCC GMM-UBM,  w/ 9.6 (1 model)
cohort selection 7.9 (55 T-norm)
GMM-LFA MFCC GMM-UBM w/ Latent Factor 2.7 (1 model)
Analysis 2.4 (100 T-norm)
SVM-GLDS MFCC & LPCC SVM GLDS kernel w/ Nuisance
X Lo 274 (1 model)
Attribute Projection
SVM-GSV SuperVector of GMM | SVM linear kernel w/ Nuisance

173 (1 model)

means Attribute Projection
SVM-MLLR MLLR parameters from | SVM linear kernel w/ Nuisance . .

BYBLOS STT Attribute Projection 0.83 (inc. first-pass STT)
SVM-WORD Word lattice from | SVM weighted linear kernel .

BYBLOS STT 0.45 (inc. STT)

BT-WORD (IBM)

Words from BYBLOS
STT

IBM’s Binary Tree

0.45 (inc. STT)

! Scoring Factor = (speech duration)/(user+sys time) computed for R&D system configuration on 2.8-3.0 GHz Linux
processor. System timing includes feature extraction from audio file. STT processing factor is approx. 0.45.
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NGRAM-WORD Word lattice from | Ngram LMs .
BYBLOS STT 0.18 (inc. STT and T-norm)
SVM-WORD_DUR | Word  durations  from | SVM with ]
BYBLOS STT 0.43 (inc. STT and T-norm)

2 Training and Development Data Utilized

Data to train explicit core system parameters (background models, T-norm models, Z-norm data, LFA subspace
projections, NAP projections) were obtained from: Switchboard Il phases 1-5, SRE04 (Mixer), and Fisher. The only
exception is the NAP projection used for the lconvmic condition was derived using the SREQ5 cross-channel data.
Development testing and fusion parameters were obtained using the SREOS5 test sets.

3 Spectral Based Systems

3.1  Speech Activity Detection

The spectral-based systems used a common set of speech activity detection marks from a GMM based SAD system. The
GMM-SAD system uses two 128 mixture GMMSs: one trained using speech from Switchboard files and one trained from
non-speech segments of Switchboard, hold music and telephone sounds (rings, tone, etc.). Per-frame likelihood ratio
scores are smoothed using a 0.5 second window and speech segments are detected with a threshold of 0, with no
additional filtering. For some systems an additional adaptive energy-based SAD is run on the output of the GMM-SAD
marks.

3.2 GMM-ATNORM

The MITLL GMM-UBM speaker detection system, fully described in [1], is similar to that used in previous evaluations.
The main differences this year are
e A GMM based speech detector was used as initial speech detector followed by a second stage energy based
speech detector.
e The UBM was trained using Switchboard Il and SRE04 corpora
Techniques to deal with cross-language conditions, such as feature domain language mapping and speaker-dependent
language specific UBMs, were experimented with but showed no improvements on the dev data.

A 19-dimensional mel-cepstral vector is extracted from the speech signal every 10ms using a 20ms window. The mel-
cepstral vector is computed using a simulated triangular filterbank on the DFT spectrum. Bandlimitng is then performed
by only retaining the filterbank outputs from the frequency range 300Hz-3138Hz. Cepstral vectors are processed with
RASTA filtering to mitigate linear channel bias effects. Delta cepstral are then computed over a +-2 frame span and
appended to the cepstra vector producing a 38 dimensional feature vector. The feature vector stream is then processed
through an adaptive, energy-based speech detector to discard low-energy vectors. The silence removed features are
processed with feature mapping [2] and, finally, normalized by removing the global mean and dividing by the standard
deviation. All processing steps are performed on the fly during processing (i.e., processing occurred directly from sph file
data) and are included in reported processing times.

T-norm [3] is a technique where scores from a collection of fixed non-target models are used to normalize a target model
score for a test file. The target model score normalization is accomplished by subtracting the mean and dividing by the
standard deviation of the non-target model scores per test file. The T-norm set, derived from the SRE04 corpora, used this
year consisted of:

e 8conv4w: 224 female and 170 male speakers

e 3conv4w: 269 female and 179 male speakers

e lconv4w: 364 female and 243 male speakers
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Speaker-specific T-norm selection (also known as cohort selection) was used [4]. The speaker-dependent T-norm set was
determined by the T-norm models which scored the most similar as the speaker model on a set of imposter utterance. The
cohort models are selected by testing all cohort models and the target model with the same set of N impostor-test
segments. The output scores are formed into M+1 vectors of dimension N (cohorts plus the target model). Euclidean
distances are calculated from the cohorts to the target model. The closest set of P cohort models are used to T-norm during
run time. For this system P was empirically chosen to be 55.

3.3 GMM-LFA
The GMM Latent factor analysis system (LFA) was based directly on the work presented in [5]. The approach models

session variability through a low dimensional subspace projection in both training and testing. The session variability is
modeled as an low-dimensional additive bias to the model means:

m;i(s) = m(s) + U x(s).

where m;(s) and m(s) are “supervectors” of stacked means GMM means [6] and [5]. The mi(s) is the supervector from the
i-th session of talker “s” whereas the m(s) is the session independent term of talker s. The GMM-UBM supervectors were
generated with the same system used in the Atnorm system described earlier.

Training of the low-rank transformation matrix U was generated directly as described in [7] and not iteratively. The
datasets used to train the low-rank transformation matrix were the Switchboard Il phase 1-5 corpus.

Z-norm followed by T-normalization was also performed on the scores. The Z-norm imposter test messages were drawn
from the Switchboard 1l phase 1-5 corpus. The breakdown of cohorts, drawn from the SRE04 and Fisher corpora, were as
follows:

o 8conv4dw: 224 female and 170 male speakers
o 3conv4w: 269 female and 179 male speakers
e lconv4w: 664 female and 543 male speakers

3.4 SVM-GLDS
The SVM GLDS system uses the polynomial based kernel described in [8]. We used a degree 3 basis of monomials.

The SVM GLDS uses two front ends. One front end is based on 19 MFCCs plus deltas. RASTA, mean, and variance
normalization are applied to the features. A second front end is based on 18 LPCCs plus deltas; the LPCCs are obtained
from 12 LP coefficients.

Backgrounds for the SVM GLDS systems were obtained from a subset of the English portion of the Fisher corpus. The
NAP projection [9] for telephone data was trained on the Switchboard 2 corpus. For conversational microphone data, the
NAP projection was trained on SREO5 microphone evaluation data and corresponding telephone data.

NAP projection was applied in training to the backgrounds and speaker data. SVM models were obtained using the
GLDS kernel and SVM Light. Model compaction was used to reduce the size of models.

For scoring, we computed an inner product between the average expansion and the SVM model. The scores from the two
feature sets were combined in equal weights using linear fusion. No additional normalization was applied.

3.5 SVM-GSV

The SVM GMM supervector (GSV) system uses a novel kernel based upon an approximation to the KL divergence. This
method is described in detail in the [10,11].
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Feature extraction is performed using a standard MFCC front-end with 19 features plus deltas. RASTA, CMS, and
variance normalization are applied to the features. A 2048 mixture GMM UBM is used to obtain the GMM supervectors.
A relevance factor of 16 is used in the MAP adaptation.

The SVM GSV background was computed from a subset of the Fisher English corpora. A session NAP projection was
trained using the same set as the SVM GLDS kernel. The projection was applied to both speaker training data and
background data. Training was performed using pre-computed kernel inner products with the SVMTorch tool. Models
were compacted to reduce compute time and storage.

Scoring was performed by doing a one-pass MAP adaptation on the test utterance and then scoring using an inner product.
No additional normalization was performed.

4 STT Based Systems

4.1 Byblos STT

We extracted word lattices and MLLR parameters using BBN's Byblos 1xRT recognizer trained with 2000+ hours of
telephone speech [12]. Audio files were first segmented into chunks of 15 seconds or less using a two-class HMM
(speech/non-speech) trained on a small selection (approx. four hours) of Switchboard Il and Fisher data. Word lattices are
generated for each segment using Byblos (with SCTM + VTLN and HLDA adaptation). MLLR parameters are obtained
after the un-adapted decode pass of the recognizer.

42 SVM-MLLR

We used the MLLR transforms from the BBN Byblos STT recognizer as features for an SVM-based speaker recognition
system. The approach we took is based on the work described in [13] with a number of minor differences:

1. We use two gender-independent regression classes and a global transform for features. The final dimensionality
of each feature vector was 10980.

2. We apply 0-1 normalization to the each feature vector using statistics derived from the background model.

3. We apply Nuisance Attribute Projection as described in [9].

During testing T-norm is optionally applied.

43 SVM-WORD

The SVM word system use a kernel for comparing conversation sides based upon methods from information retrieval.
Sequences of tokens are converted to a vector of probabilities of occurrences of terms and co-occurrences of terms (bag of
unigram and bag of bigrams). This method was first used in the NIST SRE 2003 evaluation and is documented in [14].
Weighting for the word system was based upon a log() penalty of the inverse background probability of an n-gram.

Speech to text output was obtained from the BBN Byblos system. Expected counts and probabilities of n-grams were
calculated using SRI’s language modeling tool [15]. These probabilities were then stored in a sparse vector.

The SVM used a weighted linear kernel [14]. This amounted to scaling individual entries in the vector of probabilities
with a term weighting of f(1/p(t;)), where p(t;) was the probability of the term over all conversations in the background.

The background set used for training the SVM was derived from Fisher English, Arabic, and Mandarin data. SVM
training was performed using SVM Light.

For the SVM word system, probabilities were derived using expected counts and then weighted appropriately. Scoring
was performed using a linear kernel with the target speaker model.
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The BT model consists of a set of non-terminal and a set of terminal nodes. Each non-terminal node is associated with a
binary test and has two child nodes; each terminal node (leaf) contains a token distribution and has no child nodes. In
order to calculate the probability of a token at time t, given a certain history of tokens a_{t-1},...,a_{t-k} (referred to as
predictors), the tree structure is traversed top-down via non-terminal nodes with the path being determined by outcomes of
binary tests (questions) until a terminal node is reached and the probability of the token a_t can be determined from the
leaf distribution. An example of a binary question may be "Is predictor a_{t-3} in set {[a],[oe],[e]} ? ". Since the path
through the tree is determined by the predictors, i.e. token context, the token history is modeled in a flexible way allowing
for a varying degree of complexity in clustering the space of all token histories. The crux of the BT modeling task is
building an appropriate speaker tree, namely determining the node questions as well as leaf distributions. In this system a
minimum-prediction entropy criterion (corresponding to an ML criterion) was used

In this evaluation, the STT transcripts of the speaker speech were used to generate sequences of tokens with an inventory
defined as the 512 top frequent words plus an additional "other" class representing the remaining STT vocabulary.

The tree structures in this evaluation were trained using a fast flip-flop algorithm to minimize the prediction entropy in
terminal nodes as described in [16].

First, on data from background speakers (**BKG** data set), a common BT model was created resulting in a BT with
about 15k terminal nodes using up to 2 predictors (i.e. exploiting a context of 3 words at a time). Subsequently, individual
target speaker models were created using an adaptive BT training algorithm from the common BT model as described in
[17].

The probability of a token a_t in a sequence generated by the ASR tokenizer and given a speaker hypothesis S j, is
retrieved from the corresponding BT model in a way described above (traversing the tree). In addition, a recursive
parental-node smoothing is applied to the probability as described in [17]. The resulting BT score is
S(a) =\sum_t p_{BT}(a_t| Pred(a_t))/T , where a=a_1,...,a_T is the token sequence.

A C-norm [18] (a variant of the H-norm) followed by the T-Norm standardization is applied to the scores. The C-norm is
based on an automatic gender-dependent 5-channel detector (identical to [19]). The score normalization is applied as
follows:
o S c(@) = (S(a) - m_{cjh/h_{cj} , with m_{cj} and h_{cj} denoting the mean and standard deviation of scores
from channel c given speaker model j
e S {ct}(a)=(S_c(a)-m_t)/h_t, with m_t, h_t denoting the mean and std. deviation of scores of the test on the T-
norm speakers (after C-norm)

45 NGRAM-WORD

The word n-gram system attempts to recognize the speaker using n-gram frequency information. Word are extracted from
an utterance by using the BBN Byblos 1xRT STT system to generate lattices. From these lattices expected counts of n-
grams are computed by estimating n-gram posteriors (using a standard forward-backward approach in SRI's lattice-tool).

During scoring, these expected counts are used to compute p_model(w_i, w_{i-1}), p_message(w_i, w_{i-1}) and
p_bkg(w_i, w_{i-1}). These probabilities are then used to compute the cross perplexity between the test message and the
target and background models. The final score is the ratio of the target model score and the background score. ZT-norm
was applied to these scores using models and non-target messages trained from SRE-04.S

46 SVM-WORD_DUR

The word duration system we implemented for speaker recognition models the expected duration of phones in words.
Each utterance is represented as a feature vector of ~56,000 phone durations in word contexts (those seen in our
background training set, a ~3,000 utterance subset of the Fisher Corpus) is constructed.
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During training, vectors from a target speaker are used in conjunction with vectors for a background model to train an
SVM. We apply a relative expected duration kernel, normalizing by the expected phone duration of each phone (in word
context) from our background model.

Each message model pair is scored as a weighted inner product between model support vectors and the test message. T-
norm is then optionally applied to the resulting scores using models trained from SRE-04.

5 Multi-Speaker Speech Processing

For multi-speaker speech processing we applied automatic segmentation and clustering to purify the train and test data
which was then processed by the core detection systems.

Speaker segmentation and clustering was performed using the following steps. First, a speech activity detector parses the
speech into speech and silence segments. Within the speech segments, a speaker change detector finds putative change
points. The segments from the change detector are then sent into an agglomerative clustering system using a full-
covariance Gaussian model per-cluster and a BIC-based stopping criterion. The output from the cluster is used to train
GMMs and the file is iteratively re-segmented. More details of the diarization system can be found in [20,21,22].

In 3conv2w training, the output clusters from the three training conversations are further processed by an agglomerative
clustering system. This final clustering uses a cross-likelihood ratio distance between all clusters and the condition that
only one cluster can come from each training speech file. The final set with the smallest inter-cluster distance is selected
for training.

In 1conv2w testing, the conversation was automatically clustered, the individual clusters were processed via the 1sp
systems and the maximum score for each message cluster was selected.

6 System Fusion

The scores from the systems were fused with a perceptron classifier using LNKnet [23]. The perceptron architecture
chosen has N input nodes, no hidden layers, and two output nodes. Input values to the perceptron were normalized to zero
mean and unit standard deviation using parameters derived from the training data. The perceptron weights were trained
using the entire development data with a mean squared error criteria. The classifier corresponding to the number of
training conversations is then used to fuse scores from systems. The fusion classifier is trained to minimum the DCF by
using prior probability for the target class in training and testing set to 0.09 corresponding to the costs and priors
(C_miss*P_tgt/(Cmiss*P_tgt + C_fa*(1-P_tgt))). The score for the test file was then remapped to the application prior of
0.01. The minDCF threshold from cross-validation experiments on the development data were used to make hard decision
for the submissions.

Development experiment using external metadata as inputs to the fuser as proposed in [24] found little gain so were not
used for the submission systems.

7 Submission Systems

The core systems used in the submission combinations for the MITLL submissions are given in the following table. The
fuser was trained using only the SRE05 common condition trials for MITLL_1 and MITLL_3. All SREO05 trails were used
for training the fuser in MITLL_2. The systems included in MITLL_1 were selected as the set giving the minimum DCF
based on development experiments. Generally MITLL_2 is a contrast using all systems available for a condition. And
MITLL_3 is a combination of only spectral-based systems.
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Condition Submission GMM- GMM- SVM- SVM- SVM- SVM- | BT- NGRAM- SVM-
ATNORM LFA GLDS | GSV' MLLR WORD | WORD WORD WORD_DUR
MITLL_1 X

MITLL 2 X

1c/lc

MITLL_3 X

MITLL 1

MITLL_2 X

3c/lc

MITLL 3 X

MITLL 1

XX
X
X
XX
X

MITLL_2 X

8c/lc

MITLL_3 X

XXX XX XXX [X X
XXX XX XXX [X X
XXX XXX XXX X

MITLL 1

MITLL 2

3c2w/
1lc2w

MITLL_3 X

X

MITLL 1

MITLL 2

1c/lc-
ic

MITLL 3

x| X
XX [X]|X

MITLL 1

XX |[X] XX

MITLL 2

8c/8c-

mic

MITLL 3

8 Development Data Results

In the following charts we show EER and minimum DCF on the SRE05 data using the MITLL 2005 primary system and
the 2006 submission systems. Results are from the common trials for all conditions except the microphone tests. Overall
the 2006 systems showed significant gains, with generally 50% or greater reductions in EER and/or DCF. Again we have
found that the spectral based systems are the main performance driver and can produce very low error rates with low
processing and complexity.
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