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1 INTRODUCTION 
The JHU SuperSID workshop in 2002 (http://www.clsp.jhu.edu/ws2002/groups/supersid/) demonstrated the power of 
exploiting multiple levels of information conveying speaker identity in the 
speech signal. As illustrated in the iconic speaker-feature pyramid, features 
and classifiers worked from low-level spectra to high-level words. While 
the high-level features from prosodics, phones and words have indeed 
provided accuracy improvements in past speaker recognition evaluations, it 
has been well established that spectral based features and classifiers 
provide the main foundation of system accuracy where the vexing 
problems of channel variability can be directly addressed. Further, the 
incremental gains in accuracy obtained from high-level cues often come at 
significant increases in computational and processing complexity. With 
these issues in mind, MITLL’s focus for SRE-2006 was on building the 
base by emphasizing spectral based systems which offer computational 
speed, show robustness to channel variability, are immune to language and 
thus are well suited for porting to new environments and novel applications.  

High-level cues 
(learned traits) 

Low-level cues 
(physical traits) spectral 

prosodic 

phonetic 

idiolectal 

dialogic 

semantic 

 
The MIT Lincoln Laboratory submissions for the 2006 NIST Speaker Recognition Evaluation (SRE) are built using the 
systems listed in Table 1 and described in the following sections. The table also lists a rough order of processing time for 
each system. Systems are combined using an MLP based fusion system.  

Table 1: Core systems used in the MITLL SRE06 submissions 

System  Features Classifier Scoring Factor  
(faster than speech time1) 

GMM-ATNORM MFCC GMM-UBM, w/ ATNORM 
cohort selection 

9.6 (1 model) 
7.9 (55 T-norm) 

GMM-LFA MFCC GMM-UBM w/ Latent Factor 
Analysis 

2.7 (1 model) 
2.4 (100 T-norm) 

SVM-GLDS MFCC & LPCC SVM GLDS kernel w/ Nuisance 
Attribute Projection 274 (1 model) 

SVM-GSV SuperVector of GMM 
means 

SVM linear kernel w/ Nuisance 
Attribute Projection 173 (1 model) 

SVM-MLLR MLLR parameters from 
BYBLOS STT 

SVM linear kernel w/ Nuisance 
Attribute Projection 0.83  (inc. first-pass STT) 

SVM-WORD Word lattice from  
BYBLOS STT 

SVM weighted linear kernel  0.45 (inc. STT) 

BT-WORD (IBM) Words from BYBLOS 
STT 

IBM’s Binary Tree 0.45 (inc. STT) 

                                                      
1 Scoring Factor = (speech duration)/(user+sys time) computed for R&D system configuration on 2.8-3.0 GHz Linux 

processor. System timing includes feature extraction from audio file. STT processing factor is approx. 0.45. 

http://www.clsp.jhu.edu/ws2002/groups/supersid/
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NGRAM-WORD Word lattice from 
BYBLOS STT 

Ngram LMs 0.18 (inc. STT and T-norm) 

SVM-WORD_DUR Word durations from 
BYBLOS STT 

SVM with  0.43 (inc. STT and T-norm) 

 

2 Training and Development Data Utilized 
Data to train explicit core system parameters (background models, T-norm models, Z-norm data, LFA subspace 
projections, NAP projections) were obtained from: Switchboard II phases 1-5, SRE04 (Mixer), and Fisher. The only 
exception is the NAP projection used for the 1convmic condition was derived using the SRE05 cross-channel data. 
Development testing and fusion parameters were obtained using the SRE05 test sets. 

3 Spectral Based Systems 

3.1 

3.2 

Speech Activity Detection 
The spectral-based systems used a common set of speech activity detection marks from a GMM based SAD system. The 
GMM-SAD system uses two 128 mixture GMMs: one trained using speech from Switchboard files and one trained from 
non-speech segments of Switchboard, hold music and telephone sounds (rings, tone, etc.). Per-frame likelihood ratio 
scores are smoothed using a 0.5 second window and speech segments are detected with a threshold of 0, with no 
additional filtering. For some systems an additional adaptive energy-based SAD is run on the output of the GMM-SAD 
marks.  

GMM-ATNORM 
The MITLL GMM-UBM speaker detection system, fully described in [1], is similar to that used in previous evaluations. 
The main differences this year are 

• A GMM based speech detector was used as initial speech detector followed by a second stage energy based 
speech detector. 

• The UBM was trained using Switchboard II and SRE04 corpora 
Techniques to deal with cross-language conditions, such as feature domain language mapping and speaker-dependent 
language specific UBMs, were experimented with but showed no improvements on the dev data. 
 
A 19-dimensional mel-cepstral vector is extracted from the speech signal every 10ms using a 20ms window. The mel-
cepstral vector is computed using a simulated triangular filterbank on the DFT spectrum. Bandlimitng is then performed 
by only retaining the filterbank outputs from the frequency range 300Hz-3138Hz. Cepstral vectors are processed with 
RASTA filtering to mitigate linear channel bias effects. Delta cepstral are then computed over a +-2 frame span and 
appended to the cepstra vector producing a 38 dimensional feature vector. The feature vector stream is then processed 
through an adaptive, energy-based speech detector to discard low-energy vectors. The silence removed features are 
processed with feature mapping [2] and, finally, normalized by removing the global mean and dividing by the standard 
deviation. All processing steps are performed on the fly during processing (i.e., processing occurred directly from sph file 
data) and are included in reported processing times. 
 
T-norm [3] is a technique where scores from a collection of fixed non-target models are used to normalize a target model 
score for a test file. The target model score normalization is accomplished by subtracting the mean and dividing by the 
standard deviation of the non-target model scores per test file. The T-norm set, derived from the SRE04 corpora, used this 
year consisted of: 

• 8conv4w: 224 female and 170 male speakers 
• 3conv4w: 269 female and 179 male speakers 
• 1conv4w: 364 female and 243 male speakers 
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3.3 

3.4 

3.5 

Speaker-specific T-norm selection (also known as cohort selection) was used [4]. The speaker-dependent T-norm set was 
determined by the T-norm models which scored the most similar as the speaker model on a set of imposter utterance. The 
cohort models are selected by testing all cohort models and the target model with the same set of N impostor-test 
segments. The output scores are formed into M+1 vectors of dimension N (cohorts plus the target model). Euclidean 
distances are calculated from the cohorts to the target model. The closest set of P cohort models are used to T-norm during 
run time. For this system P was empirically chosen to be 55. 

GMM-LFA 
The GMM Latent factor analysis system (LFA) was based directly on the work presented in [5]. The approach models 
session variability through a low dimensional subspace projection in both training and testing. The session variability is 
modeled as an low-dimensional additive bias to the model means:  
 

mi(s) = m(s) + U x(s). 
 
where mi(s) and m(s) are “supervectors” of stacked means GMM means [6] and [5]. The mi(s) is the supervector from the 
i-th session of talker “s” whereas the m(s) is the session independent term of talker s.  The GMM-UBM supervectors were 
generated with the same system used in the Atnorm system described earlier.  
 
Training of the low-rank transformation matrix U was generated directly as described in [7] and not iteratively. The 
datasets used to train the low-rank transformation matrix were the Switchboard II phase 1-5 corpus. 
 
Z-norm followed by T-normalization was also performed on the scores. The Z-norm imposter test messages were drawn 
from the Switchboard II phase 1-5 corpus. The breakdown of cohorts, drawn from the SRE04 and Fisher corpora, were as 
follows: 

• 8conv4w: 224 female and 170 male speakers 
• 3conv4w: 269 female and 179 male speakers 
• 1conv4w: 664 female and 543 male speakers 

SVM-GLDS 
The SVM GLDS system uses the polynomial based kernel described in [8].  We used a degree 3 basis of monomials.   
 
The SVM GLDS uses two front ends.  One front end is based on 19 MFCCs plus deltas.  RASTA, mean, and variance 
normalization are applied to the features.  A second front end is based on 18 LPCCs plus deltas; the LPCCs are obtained 
from 12 LP coefficients. 
 
Backgrounds for the SVM GLDS systems were obtained from a subset of the English portion of the Fisher corpus.  The 
NAP projection [9] for telephone data was trained on the Switchboard 2 corpus.  For conversational microphone data, the 
NAP projection was trained on SRE05 microphone evaluation data and corresponding telephone data. 
 
NAP projection was applied in training to the backgrounds and speaker data.  SVM models were obtained using the 
GLDS kernel and SVM Light.  Model compaction was used to reduce the size of models. 
 
For scoring, we computed an inner product between the average expansion and the SVM model.  The scores from the two 
feature sets were combined in equal weights using linear fusion.  No additional normalization was applied. 

SVM-GSV 
The SVM GMM supervector (GSV) system uses a novel kernel based upon an approximation to the KL divergence.  This 
method is described in detail in the [10,11]. 
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4.1 

4.2 

4.3 

Feature extraction is performed using a standard MFCC front-end with 19 features plus deltas.  RASTA, CMS, and 
variance normalization are applied to the features.  A 2048 mixture GMM UBM is used to obtain the GMM supervectors.  
A relevance factor of 16 is used in the MAP adaptation. 
 
The SVM GSV background was computed from a subset of the Fisher English corpora.  A session NAP projection was 
trained using the same set as the SVM GLDS kernel.  The projection was applied to both speaker training data and 
background data.  Training was performed using pre-computed kernel inner products with the SVMTorch tool.  Models 
were compacted to reduce compute time and storage. 
 
Scoring was performed by doing a one-pass MAP adaptation on the test utterance and then scoring using an inner product.  
No additional normalization was performed. 

4 STT Based Systems 

Byblos STT 
We extracted word lattices and MLLR parameters using BBN's Byblos 1xRT recognizer trained with 2000+ hours of 
telephone speech [12]. Audio files were first segmented into chunks of 15 seconds or less using a two-class HMM 
(speech/non-speech) trained on a small selection (approx. four hours) of Switchboard II and Fisher data.  Word lattices are 
generated for each segment using Byblos (with SCTM + VTLN and HLDA adaptation). MLLR parameters are obtained 
after the un-adapted decode pass of the recognizer.  

SVM-MLLR 
We used the MLLR transforms from the BBN Byblos STT recognizer as features for an SVM-based speaker recognition 
system.  The approach we took is based on the work described in [13] with a number of minor differences: 
 

1. We use two gender-independent regression classes and a global transform for features.  The final dimensionality 
of each feature vector was 10980. 

2. We apply 0-1 normalization to the each feature vector using statistics derived from the background model. 
3. We apply Nuisance Attribute Projection as described in [9]. 

 
During testing T-norm is optionally applied. 

SVM-WORD 
The SVM word system use a kernel for comparing conversation sides based upon methods from information retrieval. 
Sequences of tokens are converted to a vector of probabilities of occurrences of terms and co-occurrences of terms (bag of 
unigram and bag of bigrams). This method was first used in the NIST SRE 2003 evaluation and is documented in [14].  
Weighting for the word system was based upon a log() penalty of the inverse background probability of an n-gram. 
 
Speech to text output was obtained from the BBN Byblos system.  Expected counts and probabilities of n-grams were 
calculated using SRI’s language modeling tool [15].  These probabilities were then stored in a sparse vector. 
 
The SVM used a weighted linear kernel [14]. This amounted to scaling individual entries in the vector of probabilities 
with a term weighting of f(1/p(ti)), where p(ti) was the probability of the term over all conversations in the background. 
 
The background set used for training the SVM was derived from Fisher English, Arabic, and Mandarin data.  SVM 
training was performed using SVM Light. 
 
For the SVM word system, probabilities were derived using expected counts and then weighted appropriately.  Scoring 
was performed using a linear kernel with the target speaker model. 
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4.4 

4.5 

4.6 

BT-WORD (IBM) 
The BT model consists of a set of non-terminal and a set of terminal nodes. Each non-terminal node is associated with a 
binary test and has two child nodes; each terminal node (leaf) contains a token distribution and has no child nodes. In 
order to calculate the probability of a token at time t, given a certain history of tokens a_{t-1},...,a_{t-k} (referred to as 
predictors), the tree structure is traversed top-down via non-terminal nodes with the path being determined by outcomes of 
binary tests (questions) until a terminal node is reached and the probability of the token a_t can be determined from the 
leaf distribution. An example of a binary question may be "Is predictor a_{t-3} in set {[a],[oe],[e]} ? ". Since the path 
through the tree is determined by the predictors, i.e. token context, the token history is modeled in a flexible way allowing 
for a varying degree of complexity in clustering the space of all token histories. The crux of the BT modeling task is 
building an appropriate speaker tree, namely determining the node questions as well as leaf distributions. In this system a 
minimum-prediction entropy criterion (corresponding to an ML criterion) was used 
 
In this evaluation, the STT transcripts of the speaker speech were used to generate sequences of tokens with an inventory 
defined as the 512 top frequent words plus an additional "other" class representing the remaining STT vocabulary.  
 
The tree structures in this evaluation were trained using a fast flip-flop algorithm to minimize the prediction entropy in 
terminal nodes as described in [16]. 
 
First, on data from background speakers (**BKG** data set), a common BT model was created resulting in a BT with 
about 15k terminal nodes using up to 2 predictors (i.e. exploiting a context of 3 words at a time). Subsequently, individual 
target speaker models were created using an adaptive BT training algorithm from the common BT model as described in 
[17].  
 
The probability of a token a_t in a sequence generated by the ASR tokenizer and given a speaker hypothesis S_j, is 
retrieved from the corresponding BT model in a way described above (traversing the tree). In addition, a recursive 
parental-node smoothing is applied to the probability as described in [17]. The resulting BT score is  
S(a) = \sum_t p_{BT}(a_t| Pred(a_t))/T , where a=a_1,...,a_T is the token sequence. 
 
A C-norm [18] (a variant of the H-norm) followed by the T-Norm standardization is applied to the scores. The C-norm is 
based on an automatic gender-dependent 5-channel detector (identical to [19]). The score normalization is applied as 
follows: 

• S_c(a) = (S(a) - m_{cj})/h_{cj} , with m_{cj} and h_{cj} denoting the mean and standard deviation of scores 
from channel c given speaker model j 

• S_{ct}(a)=(S_c(a)-m_t)/h_t, with m_t, h_t denoting the mean and std. deviation of scores of the test on the T-
norm speakers (after C-norm) 

NGRAM-WORD 
The word n-gram system attempts to recognize the speaker using n-gram frequency information.  Word are extracted from 
an utterance by using the BBN Byblos 1xRT STT system to generate lattices. From these lattices expected counts of n-
grams are computed by estimating n-gram posteriors (using a standard forward-backward approach in SRI's lattice-tool). 
 
During scoring, these expected counts are used to compute p_model(w_i, w_{i-1}), p_message(w_i, w_{i-1}) and 
p_bkg(w_i, w_{i-1}).  These probabilities are then used to compute the cross perplexity between the test message and the 
target and background models.  The final score is the ratio of the target model score and the background score.  ZT-norm 
was applied to these scores using models and non-target messages trained from SRE-04.S 

SVM-WORD_DUR 
The word duration system we implemented for speaker recognition models the expected duration of phones in words.  
Each utterance is represented as a feature vector of ~56,000 phone durations in word contexts (those seen in our 
background training set, a ~3,000 utterance subset of the Fisher Corpus) is constructed.  
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During training, vectors from a target speaker are used in conjunction with vectors for a background model to train an 
SVM.  We apply a relative expected duration kernel, normalizing by the expected phone duration of each phone (in word 
context) from our background model. 
 
Each message model pair is scored as a weighted inner product between model support vectors and the test message.  T-
norm is then optionally applied to the resulting scores using models trained from SRE-04. 

5 Multi-Speaker Speech Processing 
For multi-speaker speech processing we applied automatic segmentation and clustering to purify the train and test data 
which was then processed by the core detection systems.  
 
Speaker segmentation and clustering was performed using the following steps. First, a speech activity detector parses the 
speech into speech and silence segments. Within the speech segments, a speaker change detector finds putative change 
points. The segments from the change detector are then sent into an agglomerative clustering system using a full-
covariance Gaussian model per-cluster and a BIC-based stopping criterion. The output from the cluster is used to train 
GMMs and the file is iteratively re-segmented.  More details of the diarization system can be found in [20,21,22]. 
 
In 3conv2w training, the output clusters from the three training conversations are further processed by an agglomerative 
clustering system. This final clustering uses a cross-likelihood ratio distance between all clusters and the condition that 
only one cluster can come from each training speech file. The final set with the smallest inter-cluster distance is selected 
for training. 
 
In 1conv2w testing, the conversation was automatically clustered, the individual clusters were processed via the 1sp 
systems and the maximum score for each message cluster was selected. 

6 System Fusion 
The scores from the systems were fused with a perceptron classifier using LNKnet [23]. The perceptron architecture 
chosen has N input nodes, no hidden layers, and two output nodes. Input values to the perceptron were normalized to zero 
mean and unit standard deviation using parameters derived from the training data. The perceptron weights were trained 
using the entire development data with a mean squared error criteria.  The classifier corresponding to the number of 
training conversations is then used to fuse scores from systems. The fusion classifier is trained to minimum the DCF by 
using prior probability for the target class in training and testing set to 0.09 corresponding to the costs and priors 
(C_miss*P_tgt/(Cmiss*P_tgt + C_fa*(1-P_tgt))). The score for the test file was then remapped to the application prior of 
0.01. The minDCF threshold from cross-validation experiments on the development data were used to make hard decision 
for the submissions.  
 
Development experiment using external metadata as inputs to the fuser as proposed in [24] found little gain so were not 
used for the submission systems.  

7 Submission Systems 
The core systems used in the submission combinations for the MITLL submissions are given in the following table. The 
fuser was trained using only the SRE05 common condition trials for MITLL_1 and MITLL_3. All SRE05 trails were used 
for training the fuser in MITLL_2. The systems included in MITLL_1 were selected as the set giving the minimum DCF 
based on development experiments. Generally MITLL_2 is a contrast using all systems available for a condition. And 
MITLL_3 is a combination of only spectral-based systems. 
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Table 2: Systems comprising the MITLL SRE06 submissions 

Condition Submission GMM-
ATNORM 

GMM-
LFA 

SVM-
GLDS

SVM-
GSV 

SVM-
MLLR

SVM-
WORD

BT-
WORD 

NGRAM-
WORD 

SVM-
WORD_DUR

MITLL_1 X X X X X X X   
MITLL_2 X X X X X X X   

1c
/1

c 

MITLL_3 X X X X      
MITLL_1  X X X      
MITLL_2 X X X X      

3c
/1

c 

MITLL_3 X X X X      
MITLL_1  X X X X X X X   
MITLL_2 X X X X X X X X X 

8c
/1

c 

MITLL_3 X X X X      
MITLL_1  X X X       
MITLL_2          

3c
2w

/
1c

2w
 

MITLL_3 X X X X      
MITLL_1   X X      
MITLL_2          

1c
/1

c-
m

ic
 

MITLL_3  X X X      
MITLL_1  X X X      
MITLL_2   X       

8c
/8

c-
m

ic
 

MITLL_3          

8 Development Data Results 
In the following charts we show EER and minimum DCF on the SRE05 data using the MITLL 2005 primary system and 
the 2006 submission systems. Results are from the common trials for all conditions except the microphone tests. Overall 
the 2006 systems showed significant gains, with generally 50% or greater reductions in EER and/or DCF. Again we have 
found that the spectral based systems are the main performance driver and can produce very low error rates with low 
processing and complexity.   
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