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1. Systems Overview 
The primary system for SRE06 is the linear fusion of two independent GMM systems: a 

Phonetic GMM (PGMM) and a classical GMM. The results of the primary system, designed as 
LPT_1, were supplied for all the test conditions. A second and a third set of full results were 
supplied, related to the PGMM and GMM systems alone, designed as LPT_2 and LPT_3 
respectively. 

Phonetic GMM system 
The system used for SRE06 shares the same architecture and scoring strategy of the system 

used in SRE05 but it includes a new feature-level compensation technique [1] based on the 
intersession variability compensation approach described in [2]-[4]. 

The system decodes the speaker utterance, both in enrolment and in verification, producing 
phonetic labeled segments. The decoder is a hybrid HMM-ANN model trained to recognize 11 
language independent phone classes. Each phone class is modeled by a three state left-to-right 
automaton with self-loops. The ANN is a Multilayer Perceptron that estimates the posterior 
probability of each phone class state, given an acoustic feature vector. The ANN has been trained 
using 20 hours of speech of 10 different languages using corpora not specifically collected for 
speaker recognition evaluations. 

The UBM [1] and the voiceprints consist of a set of phonetic GMMs: each phone class state 
has associated its GMM. The maximum number of (diagonal covariance) Gaussians per mixture per 
state is 64, for a total of approximately 2000 Gaussians. A gender – and nearly language – 
independent UBM has been trained on the same data that were used for training the ANN model. 

In enrolment, the labels and the boundaries of the phonetic segments are used for MAP 
adaptation of the parameters of the phone class-dependent GMMs. In recognition, the phonetically 
labeled audio segments are scored against their corresponding GMMs. Thus, the likelihood of a 
given observation vector is computed selecting the GMM corresponding to the phone class decoded 
at that time frame. The PGMM classifier is currently the core technology of the Loquendo Free 
Speech Identification (LFSI) system. 

The system uses 19 Mel Frequency Cepstral Coefficients (MFCC). Feature warping to a 
Gaussian distribution is then performed, for each static parameter stream, on a 3 sec sliding window 
excluding silence frames [6]. 36 parameters per frame are obtained discarding the C0 cepstral 
parameter, and computing the usual delta parameters on a symmetric 5 frame window. 

Concerning the new feature-level compensation technique, an intersession variability vector, 
defined in a constrained low-dimensional subspace, is computed using the PSA technique [7]. The 
low rank matrix, defining the constrained intersession variability subspace, has been trained on 
SRE04 and SRE05 data. The intersession variability vector is then projected to the feature space 
and subtracted from the original observation vectors. More details about the feature domain 
compensation are given in [1]. The same compensation technique is applied in both enrollment and 
verification. The dimension of the subspace used in the evaluation was 40. 
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GMM system 
The GMM can be considered a special case of the Phonetic GMM system where the number 

of classes is just one. The procedures for the adaptation of the speaker models and for scoring the 
test utterances are the same. The GMM system is characterized by a reduced set of mixtures (512), 
and features (the first 13 cepstral parameters and their deltas, excluding C0). The gender 
independent UBM has been trained using data from the NIST 2000, the OGI National Cellular, and 
HTIMIT databases.  

Moreover, feature mapping [7] is performed before applying the same feature-level 
intersession compensation described for the PGMM system. Gender and channel dependent models 
have been used for feature mapping, with the channels labeled as Carbon, Electret, GSM, Analog, 
and Digital (a total of 10 models). 

Fast selection of Gaussian is achieved by means of a “road-map” based approach [9]. 
In the 10sec4w-10sec4w test, an eigenvoice adaptation approach [10] has been used for 

training the voiceprints. 

2. Multi-speaker conversations trials 
For the multi-speaker conversations trials we use unsupervised speech segmentation to detect 

speaker clusters, followed by voiceprint creation and scoring. Our procedure for speaker clustering 
is described in [9]. For the two wire tests, speaker pre-segmentation is performed, and each putative 
speaker cluster is scored against the speaker models in the index list. For each model, we select the 
speaker cluster that gives the best score.  

3. Score normalization 
Similar to the 2005 evaluation, the evaluation has been carried out with score normalization. 

First the raw score are speaker-normalized by means of Z-norm. The Z-norm parameters for each 
speaker model have been evaluated using a subset of speaker samples included in the NIST SRE04 
database. Separate statistics have been collected for the female and male speakers, using 2 audio 
samples of 80 speakers for each gender.  

Test dependent normalization is performed using T-norm [12]. A fixed set of impostor models 
have been selected among the voiceprints enrolled with data belonging to the SRE04 evaluation. 
The T-norm parameters for each test sample were estimated using the Z-normalized scores of the 
impostor voiceprints. We refer to the Z-Norm followed by T-Norm as ZT-Norm. Separate sets of 
impostor voiceprints have been enrolled according to the speaker gender and according to the 
training condition of the voiceprints used in each test trial: specifically 160 female and 160 male 
impostor voiceprints for each test condition. 

The fusion of the PGMM and of the GMM systems is obtained by linear combination – with 
the same weights - of the normalized scores produced by the two systems. 

4. Unsupervised adaptation 
This year we submitted the results for the unsupervised adaptation 1conv4w-1conv4w test. 

The systems used for this test are the same LPT_1, LPT_2 and LPT_3 used for the other tests. We 
performed the tests using the primary, un-adapted and ZT-normalized score for selecting – with a 
rather conservative threshold set to 4.0 – the samples to be used for voiceprint adaptation. This 
threshold produced, on the SRE05 development data, a negligible number of false alarms and about 
1/3 of false misses. The selected utterances are then used to update the adapted voiceprints used to 
produce the final ZT-normed scores.  

5. Decision thresholds 
The decision thresholds have been set according to past experience acquired performing the 

SRE05 evaluation. The decision thresholds have been estimated on subsets of the SRE 2004 and 
SRE 2005 data used as evaluation sets. 
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6. Execution time 
PGMM runs on a dual Xeon 3.4GHz, SUSE Linux Server with the following average 

execution times: 
 

- 10sec4w training: 0.6 sec/voiceprint 
- 1conv4w training: 9.5 sec/voiceprint 
- 3conv4w training: 26 sec/voiceprint 
- 8conv4w training: 77 sec/voiceprint 
- test/znorm/tnorm 1conv4w: 9 sec/audio (up to 400 voiceprint/audio) 
- segmentation 1conv2w: 8sec/audio 

 
GMM runs on a AMD Athlon 1.8GHz, Windows XP PC with the following average execution 
times: 
 

- 10sec4w training: 1 sec/voiceprint 
- 1conv4w training: 4.5 sec/voiceprint 
- 3conv4w training: 14 sec/voiceprint 
- 8conv4w training: 36.5 sec/voiceprint 
- test/znorm/tnorm 1conv4w: 4 sec/audio (up to 400 voiceprint/audio) 
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