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1. Overview of the Submission
We are submitting scores for four conditions for two systems. The
conditions are:� 1conv4w-1conv4w� 8conv4w-1conv4w� 1conv4w-1convmic� 8conv4w-1convmic

The primary submission (ICSI1) is a combination of the fol-
lowing ICSI sub-systems:

1. Word conditional HMM system (WordHMM)

2. Lexically-Conditioned Phone Lattice N-grams System +
WCCN (LC-PhoneNgram)

3. Phone Lattice N-gram system + WCCN (PhoneNgram)

4. POS Word N-gram System (POS/Word)

5. Lexical Statistics System (LexStats)

6. Baseline cepstral GMM system (GMM) [courtesy of SRI]

The secondary submission (ICSI2) is a collaborative submis-
sion with SRI. The systems 1-5 above are combined with the fol-
lowing SRI sub-systems below:� Cepstral GMM System� Cepstral SVM System� MLLR SVM System� MLLR SVM System (*with ICSI’s WCCN applied*)� Word-Ngram SVM System� Duration GMM System� Grammar, Word, and Syllable SNERF System

For ICSI 1, the combination of sub-systems 1-6 is used to ob-
tain scores for the English trials. The combination of PhoneNgram
and GMM sub-systems is used to obtain scores for the non-English
trials. The system were combined using an SVM, trained as a clas-
sifier.

For ICSI 2, the combination of all sub-systems is used to ob-
tain scores for the English trials for the 1conv4w test condition.
For the English trials for the 1convmic test condition, ICSIsystems
1-5 and the SRI Cepstral, MLLR (no WCCN) and Word-Ngram
systems are used to obtain scores. The combination of Cepstral,
MLLR (no WCCN) and PhoneNgram systems is used to obtain

scores for the non-English trials for both the 1conv4w and 1con-
vmic test conditions. The systems were combined using an SVM,
trained as a classifier.

In the following sections, we briefly describe the systems, as
well as the WCCN normalization strategy, which was applied to
some of the systems.

2. Development Data Sets
2.1. Development

SRE05 data was used as the development set to estimate the SVM
classifier model parameters and optimal operating point (corre-
sponding to the minimum DCF), as described in Combination
Strategy below.

2.2. Background*

Background data for all sub-systems was selected from Fisher and
SRE 2003 (Switchboard II) data sets. The background set com-
prised 1128 utterances from unique speakers in Fisher (5 minutes
each), and 425 utterances from unique speakers from SRE 2003
(subsets 4, 5, 6, and 8) extended data (2.5 minutes each). Sub-
systems 2 and 3 used additional conversation sides from SRE 2003
for background training, detailed in the sub-system-specific sec-
tions.

2.3. TNORM*

249 TNORM models were constructed from 2.5 minutes of each 5-
minute Fisher conversation. These TNORM models were chosen
from unique speakers and were roughly gender-balanced. Thedata
comprised a similar number of electret and cellphone channels,
and a handful of carbon-button channels.

*For more details in the construction of the background and
TNORM sets, please refer to the system description by SRI.

3. Combination Strategy
The system combination was performed using an SVM classi-
fier, implemented with the SVMLite package [1]. The English
trials were combined separately from the non-English trials, and
used different sets of systems, as explained in the Overviewsec-
tion. For ICSI1, all 6 sub-systems were combined for the En-
glish trials, while the non-English trials only used scoresfrom
the baseline cepstral GMM system and the phone lattice n-gram
system. In order to train the SVM combiner and to estimate the
operating threshold, SRE05 data was used. Specifically, to train
the SVM model, SRE05 1conv4w-1conv4w, 8conv4w-1conv4w,



1conv4w-1convmic, and 8conv4w-1convmic train-test conditions
were used for the corresponding conditions of SRE06. For both
the 1conv4w and 1convmic test conditions, only the (non-)English
trials in SRE05 were used to estimate the SVM parameters and
operating threshold for (non-)English trials in SRE06. However,
since there were no non-English true speaker trials in 8conv4w-
1convmic condition of SRE05, English trials from SRE05 were
used to train the SVM classifier and estimate the operating thresh-
old for both English and non-English trials in SRE06.

SRE05 data for each system was also used to estimate the
mean and standard deviation of the scores for that system; these
estimates were then used to normalize both the SRE05 and SRE06
scores for each system, by subtracting the mean and dividingby
the standard deviation, before the scores were put through the com-
biner. The SVM classifier used a linear kernel. In order to ac-
count for the fact that there are significantly more impostortrials
than true speaker trials, the SVM used a weighting factor, equal
to the ratio of the number of impostor trials to the number of true
speaker trials (calculated from the SRE05 training scores only),
as a cost-factor such that the training errors on positive examples
were weighted more heavily than errors on negative examples.

The operating threshold for the (non-)English subsets were
subtracted from (non-)English trial scores, to produce an effective
operating threshold of zero for both sets. The sets of scoreswere
then appended for submission. The submitted scores are normal-
ized log likelihood scores, and NOT a posteriori probabilities. A
large negative value (-100) was submitted as scores for whatwere
deemed to be empty speech files.

4. Sub-System Descriptions
In the following sections, each ICSI subsystem is described. For
SRI sub-systems, please see the SRI system description for more
detail.

4.1. Word Conditional HMM System (WordHMM)

This sub-system is an implementation of that described in [2].
Please refer to the paper for more detail. The system uses back-
ground and target keyword models generated by Hidden Markov
Models (HMMs) for 19 select keywords (where a ”keyword” is a
word or common word-pair) drawn primarily from the discourse
marker, backchannel and filled pause categories. The system
employs speaker-independent keyword-specific HMMs which are
then adapted to the target training data to create target models,
and computes test scores using the usual likelihood ratio oftarget
to background. Only intervals of speech corresponding to the 19
keywords are scored.

4.1.1. Feature Extraction

The HMM feature vectors consist of 19 mel cepstra, the zeroth
cepstrum, and their first differences, for a total of 40 features per
vector. Cepstral Mean Subtraction was performed over the union
of speech-rich segments for each conversation side (segmentation
provided by SRI).

4.1.2. Background Model

Keyword UBMs were obtained by training on background data
from the SRE 2003 Extended Data set (Switchboard II, phases 2
and 3) and Fisher, as explained in the Data section.

The keyword HMMs were simple left-to-right state sequences

with self-loops and no skips. Each state model consisted of amix-
ture of eight Gaussians and the number of states for each keyword
was defined to be the smaller of the number of phones in the stan-
dard pronunciation of the word, multiplied by 3, and the median
duration in frames, divided by four. All modeling and scoring was
performed using the HMM Toolkit, HTK.

4.1.3. Training

Speaker-specific keyword models were obtained by MAP adapta-
tion of the background models by adapting only the means of the
Gaussians. In the event that there was no training data for a partic-
ular keyword, the UBM was simply copied as the speaker-specific
model. This resulted in removing the influence of the keyword,
as the contribution to the overall score was zero, due to the can-
cellation of target and background. Keyword locations within the
audio file were determined by word-level alignment information
made available from SRI’s automatic speech recognition (ASR)
system.

4.1.4. Testing

Each keyword appearing in the test segment was scored by taking
the difference between the log probabilities obtained fromscor-
ing the speaker-specific and UBM models against the test tokens.
The final score was obtained by adding these keyword scores and
normalizing by the total number of frames.

4.1.5. Score Normalization

TNORM was applied. As explained in the Data section, Fisher
TNORM models were constructed from one conversation side and
served as TNORM models both for the 8side and the 1side conver-
sation training conditions.

4.1.6. Computational Resources

All computation was performed on a fleet of Intel 2.8GHz Xeon
processors with 2-3GB of RAM and Dual Core AMD Opteron 2.2
GHz processor with 4GB of RAM. Note that the reported process-
ing times throughout this system description do not includethe
time required to generate the ASR word and/or phone output used
in the high-level systems. This information can be found in the
SRI system description.

Feature Extraction:
Telephone: total elapsed: 51204s, total cputime: 234414s
Altmic: total elapsed: 15238s, total cputime: 6511s

Telephone train/test:
1side-1side: total elapsed: 59527s, total cputime: 27929s
8side-1side: total elapsed: 42929s, total cputime: 18450s

Altmic train/test:
1side-1side: total elapsed: 48731s, total cputime: 36357s
8side-1side: total elapsed: 10488s, total cputime: 6273s

Tnorm normalization:
Tel 1side-1side: total elapsed: 1182740s, total cputime: 901345s
Tel 8side-1side: total elapsed: 764172s, total cputime: 618765s
Altmic 1side-1side: total elapsed: 1352400s, total cputime:
1130205s
Altmic 8side-1side: total elapsed: 1090330s, total cputime:
911358s



4.2. Lexically-Conditioned Phone Lattice N-grams System
(LC PhoneNgram)

This sub-system used ASR word and phone lattice output to obtain
phone lattice n-gram counts in target and test conversationsides,
conditioned on the set of 52 most frequent word unigrams in 1128
conversation sides of the Fisher corpus and 425 conversation sides
of the Switchboard II corpus. The motivation for this systemwas
that the way different speakers speak and pronounce each of the 52
words via phone usage provides discriminative informationamong
speakers.

4.2.1. Feature Extraction

The features for this system consisted of phone lattice uni,bi,
and tri-gram counts conditioned on each of the 52 word unigrams.
Phone lattice counts for different word unigrams in a conversation
side were concatenated to form the final conversation side feature
vector. Only phones with counts greater than 10 were kept.

4.2.2. Training

Feature vectors from speaker model conversation sides wereused
to train speaker models against the background model via the
support vector machine (SVM) algorithm. Feature vectors from
speaker model conversation sides were used as positive training
examples, while those from background conversation sides were
used as negative training examples. We used 6117 Fisher and
Switchboard II conversation sides for the background model. Of
those, 1128 were from the Fisher corpus. SVM training was done
using the SVMLite package. WCCN normalization (see 5) was
applied to the feature vectors before SVM training.

4.2.3. Scoring

Features vectors from test conversation sides were scored against
speaker models using the SVM. TNORM (trained with Fisher
speaker models) was applied to every test conversation.

4.2.4. Computational resources

Word conditioning the phone lattices – total elapsed: 3102600 s,
total cputime: 1726175 s
Generating counts – total elapsed: 11410 s, total cputime: 9918 s

4.3. Phone Lattice N-grams System (PhoneNgram)

The ICSI phone n-gram system is similar to the system described
in [3]. The phone n-gram system uses an open-loop phone rec-
ognizer to generate phone lattices, which are then used to com-
pute expected counts of phone n-grams. These expected counts
are converted into relative frequencies, which are then used as fea-
ture vectors for training SVM-based speaker models.

4.3.1. Phone Recognition

The phone n-gram system uses the DECIPHER speech recog-
nizer [3] developed by SRI International to generate phone lat-
tices for every conversation side. Our particular realization of
DECIPHER uses gender-dependent, monophone acoustic models,
where each monophone is modeled by a 3-state hidden Markov
model (HMM). The acoustic model was trained on the Switch-
board I corpus using MFCC features. Phone decoding was per-

formed in open-loop mode (i.e. we used a unigram phone language
model with uniform probabilities) with a vocabulary of 46 phone
units.

4.3.2. SVM Features and Training

The phone ngram system extracts one feature vector for everycon-
versation side, where the features represent relative frequencies of
the 8500 most frequent phone bigrams and trigrams. We use a lin-
ear kernel to train an SVM-based model for every target speaker
(see [4]). The SVMs are trained using a one-versus-all approach,
where the conversation sides from the target speaker’s training data
are used as positive training examples, and the conversation sides
in a set of background data are used as negative training examples.
For our system, we used a background dataset composed of 1128
conversation sides taken from the Fisher corpus and 425 conver-
sation sides taken from the Switchboard II corpus, as explained in
the Data section. WCCN normalization (see 5) was applied to the
feature vectors before SVM training and scoring, which weredone
using the SVMLite package.

4.3.3. Scoring

To score a given test-target pair, we simply applied the feature vec-
tor of the test conversation to the SVM output function of thetarget
model. We then used TNORM to normalize the scores for every
test conversation.

4.3.4. Computational Resources

Each of the four submitted conditions ran in roughly two hours on
25 CPUs. Generating the TNORMed scores took about an extra
hour per experiment.

4.4. POS Word N-gram System (POS/Word)

Eric Brill’s Supervised Part of Speech Tagger
(www.cs.jhu.edu/˜brill) was used to supply POS tags on the
word hypotheses. The relative frequencies of the joint POS/word
tags were calculated and used in an SVM system. See [3] for a
similar word-only system, except that the tokens of the POS Word
Ngram system represent POS and word information jointly, such
as: “but/CC i/NN see/VB “. Relative frequencies for a total of
125,700 uni-, bi-, and tri-grams were calculated and an SVM with
a linear kernel was trained using SVMLite.

Computational resources: the system for all the four submitted
conditions ran in roughly two hours on 12 CPUs.

4.5. Lexical Statistics (LexStats)

The Lexical Statistics system attempts to capture high-level sen-
tence and conversation information by utilizing features such as:
number of conversation turns, number of words (per conversation
and per turn), number of characters (per conversation and per turn),
and speaking rate. Eight such features were calculated for each
conversation side and used in an SVM which was trained with
SVMLite and utilized a linear kernel.

Computational resources: the system for all the four submitted
conditions ran in roughly 10 minutes on 12 CPUs.



5. Within-Class Covariance Normalization
(WCCN)

We applied within-class covariance normalization (WCCN) [5,
6, 7] to the following three systems: SVM-based Lattice Phone
N-grams, SVM-based Word-Conditioned Lattice Phone N-grams,
and SRI MLLR-SVM system (used in the joint system submis-
sions, ICSI2).

The WCCN approach implements a generalized linear kernel
of the form,k(x1;x2) = xT1W�1x2, wherex1 andx2 are two
input feature vectors, andW is theexpected within-class covari-
ance matrix over all classes (i.e. speakers) in the training set. We
defineW as follows: W , MXi=1 p(i) �Ci;Ci , E (xi � �xi)(xi � �xi)T 8i 2 f1; : : : ;Mg:
Here,xi represents a random draw from class (i.e. speaker)i, M
represents the total number of classes, and�xi represents the mean
of xi. The terms,Ci andp(i), represent the covariance matrix and
the prior probability of classi. (Note that we use the term, “class,”
to refer to a given speaker.)

GivenW, whereW is full-rank, we can perform WCCN on
the input feature vectors by using the following feature transfor-
mation,�: �(x) ,ATx: (1)

Here,A is defined as the Cholesky factorization ofW�1:AAT ,W�1:
The WCCN feature transformation emphasizes “directions” in

feature space that are informative (i.e. directions where the within-
class variance is small compared with the overall variance), while
attenuating directions that are noisy. Under various conditions, it
can be shown that WCCN minimizes a particular upper bound on
classification error when used for SVM training [5, 6].

5.1. Smoothing

We used the following smoothing model to compute estimates ofW: Ŵs , (1� �) � Ŵ+ � � I; � 2 [0; 1℄: (2)

Here,Ŵs represents a smoothed version of the empirical expected
within-class covariance matrix,̂W, andI represents anN � N
identity matrix whereN is the dimensionality of the feature space.
The � parameter represents a tunable smoothing weight whose
value is between 0 and 1.

5.2. Experimental Procedure

We followed the procedure described in [7] for applying WCCN
to large feature sets. The procedure is summarized as follows:

1. Perform per-feature within-classvariance normalization on
all of the input features (i.e. scale each features to have an
average within-class variance of one on the training data).

2. Use kernel principal component analysis (KPCA) with a
linear kernel to reduce the dimensionality of the input fea-
ture space. For linear kernels, the KPCA transformation
can be expressed in terms of a projection matrix,U:�PCA(x) ,UTx;

We use�PCA to represent the KPCA transformation of
feature vectorx. Further details on how to computeU are
provided in [7]. For a general overview of KPCA, see (for
instance) [8, 9].

3. Compute the so-calledPCA-complement for every input
feature vector. We use�PCA(x) to represent the PCA-
complement of feature vectorx. Given theU projection
matrix from step 2,�PCA(x) is computed as follows:�PCA(x) , (I�UUT )x:

4. Perform WCCN on the PCA feature set (i.e. the feature
vectors produced by the�PCA transformation) using the
smoothing model shown in equation (2). The smoothing
parameter� is tuned on a set of held-out cross-validation
data.

5. For every input feature vector,x, concatenate a scaled ver-
sion of the WCC-normalized PCA features with a scaled
version of the PCA-complement features to arrive at the fi-
nal feature representation,�:�(x) , � (1� �) �AT�PCA(x)� � �PCA(x) � ; � 2 [0; 1℄:
Here,AT represents the transformation matrix derived in
step 4 from equation (1) to perform WCCN on the PCA fea-
tures. Thus,AT�PCA(x) represents the WCC-normalized
PCA component of feature vectorx. We use the parameter� to control the relative weight applied to the two feature
sets (i.e. the PCA set and the PCA-complement set). This
parameter is tuned on a held-out cross-validation set.

6. Use the final feature representation� to train and test SVM-
based speaker models.

5.3. Training Sets

We used�3600 conversation sides from the SRE2003 task to train
the KPCA transformation described in step 2 of the experimental
procedure. Approximately 7200 conversation sides from SRE2003
were used to train̂W and to train the per-feature within-class vari-
ances for step 1. The� and� weights were tuned sequentially (i.e.
first�, then� given�) on the SRE2005 dataset. For every feature
set where WCCN was applied, the optimal values for� and� were
found to be approximately 0.92 and 0.4, respectively.

5.4. Computational Resources

We used 25 computers in parallel to train the full WCCN feature
transformation (i.e.� from the experimental procedure) for each
of the following systems: phone n-grams, word-conditionedphone
n-grams, and SRI International’s MLLR-SVM system. The train-
ing time took approximately 10, 22, and 20 hours, respectively.
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