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1. Overview of the Submission

We are submitting scores for four conditions for two systeftse
conditions are:

1conv4w-1conv4w
8conv4w-1conv4w
1conv4w-1convmic

8conv4w-1convmic

The primary submission (ICSl) is a combination of the fol-
lowing ICSI sub-systems:

1.
2.

o o~ W

Word conditional HMM system (WordHMM)

Lexically-Conditioned Phone Lattice N-grams System +
WCCN (LC-PhoneNgram)

. Phone Lattice N-gram system + WCCN (PhoneNgram)

. POS Word N-gram System (POS/Word)

. Lexical Statistics System (LexStats)

. Baseline cepstral GMM system (GMM) [courtesy of SRI]

The secondary submission (IC8) is a collaborative submis-
sion with SRI. The systems 1-5 above are combined with the fol
lowing SRI sub-systems below:

For ICSL1, the combination of sub-systems 1-6 is used to ob-

Cepstral GMM System

Cepstral SVM System

MLLR SVM System

MLLR SVM System (*with ICSI's WCCN applied*)
Word-Ngram SVM System

Duration GMM System

Grammar, Word, and Syllable SNERF System

tain scores for the English trials. The combination of PiNgram
and GMM sub-systems is used to obtain scores for the nonideng|
trials. The system were combined using an SVM, trained aasa cl

sifier.

For ICSL2, the combination of all sub-systems is used to ob-

tain scores for the English trials for the 1conv4w test ctodi
For the English trials for the 1convmic test condition, |Ggstems
1-5 and the SRI Cepstral, MLLR (no WCCN) and Word-Ngram system. In order to train the SVM combiner and to estimate the
systems are used to obtain scores. The combination of @gpstr operating threshold, SREO5 data was used. Specificallyato t

MLLR (no WCCN) and PhoneNgram systems is used to obtain the SVM model, SRE05 1conv4w-1conv4w, 8conv4w-1conv4w,

scores for the non-English trials for both the 1conv4w anohic
vmic test conditions. The systems were combined using an SVM
trained as a classifier.

In the following sections, we briefly describe the systenss, a
well as the WCCN normalization strategy, which was applied t
some of the systems.

2. Development Data Sets
2.1. Development

SREOQ5 data was used as the development set to estimate the SVM
classifier model parameters and optimal operating pointréeo
sponding to the minimum DCF), as described in Combination
Strategy below.

2.2. Background*

Background data for all sub-systems was selected from Fistte
SRE 2003 (Switchboard Il) data sets. The background set com-
prised 1128 utterances from unique speakers in Fisher (Gtesn
each), and 425 utterances from unique speakers from SRE 2003
(subsets 4, 5, 6, and 8) extended data (2.5 minutes each}. Sub
systems 2 and 3 used additional conversation sides from SBE 2

for background training, detailed in the sub-system-djmesec-
tions.

2.3. TNORM*

249 TNORM models were constructed from 2.5 minutes of each 5-
minute Fisher conversation. These TNORM models were chosen
from unique speakers and were roughly gender-balanceddathe
comprised a similar number of electret and cellphone cHanne
and a handful of carbon-button channels.

*For more details in the construction of the background and
TNORM sets, please refer to the system description by SRI.

3. Combination Strategy

The system combination was performed using an SVM classi-
fier, implemented with the SVMLite package [1]. The English
trials were combined separately from the non-Englishsriahd
used different sets of systems, as explained in the Oversesw
tion. For ICSL1, all 6 sub-systems were combined for the En-
glish trials, while the non-English trials only used scofesn

the baseline cepstral GMM system and the phone lattice m-gra



1lconv4w-1convmic, and 8conv4w-1convmic train-test cbods
were used for the corresponding conditions of SRE06. Fdr bot
the 1conv4w and 1convmic test conditions, only the (norg)gh

with self-loops and no skips. Each state model consistechuka
ture of eight Gaussians and the number of states for eachokdyw
was defined to be the smaller of the number of phones in the stan

trials in SREO5 were used to estimate the SVM parameters anddard pronunciation of the word, multiplied by 3, and the raedi

operating threshold for (non-)English trials in SREQ6. Hdwer,
since there were no non-English true speaker trials in 8bwnv
1convmic condition of SREO05, English trials from SREO05 were
used to train the SVM classifier and estimate the operatirgsth
old for both English and non-English trials in SRE06.

SREOQ5 data for each system was also used to estimate th

mean and standard deviation of the scores for that systesseth

estimates were then used to normalize both the SRE05 and&SREO

scores for each system, by subtracting the mean and dividing
the standard deviation, before the scores were put thrdnegtom-
biner. The SVM classifier used a linear kernel. In order to ac-
count for the fact that there are significantly more impostiats
than true speaker trials, the SVM used a weighting factanakq
to the ratio of the number of impostor trials to the numbermroét
speaker trials (calculated from the SREOQ5 training scorég) 0

as a cost-factor such that the training errors on positieemgtes
were weighted more heavily than errors on negative examples

€

duration in frames, divided by four. All modeling and scarimas
performed using the HMM Toolkit, HTK.

4.1.3. Training

Speaker-specific keyword models were obtained by MAP aeapta
tion of the background models by adapting only the meanseof th
Gaussians. In the event that there was no training data fartep
ular keyword, the UBM was simply copied as the speaker-fipeci
model. This resulted in removing the influence of the keyword
as the contribution to the overall score was zero, due to @&he ¢
cellation of target and background. Keyword locations imittme
audio file were determined by word-level alignment inforioat
made available from SRI's automatic speech recognitionRAS
system.

4.1.4. Testing

The operating threshold for the (non-)English subsets were Each keyword appearing in the test segment was scored mgtaki

subtracted from (non-)English trial scores, to produceftectve
operating threshold of zero for both sets. The sets of scwees
then appended for submission. The submitted scores areahorm
ized log likelihood scores, and NOT a posteriori probale#it A
large negative value (-100) was submitted as scores for wéia
deemed to be empty speech files.

4. Sub-System Descriptions

In the following sections, each ICSI subsystem is descritreat
SRI sub-systems, please see the SRI system descriptionofer m
detail.

4.1. Word Conditional HMM System (WordHM M)

the difference between the log probabilities obtained fisoar-

ing the speaker-specific and UBM models against the teshfoke
The final score was obtained by adding these keyword scorkes an
normalizing by the total number of frames.

4.1.5. Score Normalization

TNORM was applied. As explained in the Data section, Fisher
TNORM models were constructed from one conversation side an

served as TNORM models both for the 8side and the 1side conver
sation training conditions.

4.1.6. Computational Resources

All computation was performed on a fleet of Intel 2.8GHz Xeon

This sub-system is an implementation of that described Jn [2 processors with 2-3GB of RAM and Dual Core AMD Opteron 2.2
Please refer to the paper for more detail. The system usés bac GHz processor with 4GB of RAM. Note that the reported process
ground and target keyword models generated by Hidden Markov ing times throughout this system description do not incltie
Models (HMMs) for 19 select keywords (where a "keyword” is a time required to generate the ASR word and/or phone outpd us
word or common word-pair) drawn primarily from the discaurs  in the high-level systems. This information can be foundhe t
marker, backchannel and filled pause categories. The systenSRI system description.

employs speaker-independent keyword-specific HMMs whieh a Feature Extraction:

then adapted to the target training data to create targeelsiod Telephone: total elapsed: 51204s, total cputime: 234414s

and computes test scores using the usual likelihood ratiargét Altmic: total elapsed: 15238s, total cputime: 6511s

to background. Only intervals of speech corresponding ¢olth
keywords are scored. Telephone train/test:

1side-1side: total elapsed: 59527s, total cputime: 27929s

4.1.1. Feature Extraction 8side-1side: total elapsed: 42929s, total cputime: 18450s

The HMM feature vectors consist of 19 mel cepstra, the zeroth
cepstrum, and their first differences, for a total of 40 feadiper
vector. Cepstral Mean Subtraction was performed over ti@nun
of speech-rich segments for each conversation side (segtioen
provided by SRI).

Altmic train/test:
1side-1side: total elapsed: 48731s, total cputime: 36357s
8side-1side: total elapsed: 10488s, total cputime: 6273s

Tnorm normalization:
Tel 1side-1side: total elapsed: 1182740s, total cputirié395s
4.1.2. Background Model Tel 8side-1side: total elapsed: 764172s, total cputim876%s
Keyword UBMs were obtained by training on background data Altmic 1side-1side: total elapsed: 1352400s, total cpatim
from the SRE 2003 Extended Data set (Switchboard I, phases 21130205s
and 3) and Fisher, as explained in the Data section. Altmic 8side-1side:
The keyword HMMs were simple left-to-right state sequences 911358s

total elapsed: 1090330s, total cpeatim



4.2. Lexically-Conditioned Phone Lattice N-grams System
(LC PhoneNgram)

This sub-system used ASR word and phone lattice output torobt
phone lattice n-gram counts in target and test conversaties,
conditioned on the set of 52 most frequent word unigrams 2811
conversation sides of the Fisher corpus and 425 convenssities
of the Switchboard Il corpus. The motivation for this systemas
that the way different speakers speak and pronounce ealoh 62t
words via phone usage provides discriminative informadimmong
speakers.

4.2.1. Feature Extraction

The features for this system consisted of phone lattice bini,
and tri-gram counts conditioned on each of the 52 word unigra
Phone lattice counts for different word unigrams in a cosagon
side were concatenated to form the final conversation saterfe
vector. Only phones with counts greater than 10 were kept.

4.2.2. Training

Feature vectors from speaker model conversation sideswgexk

formed in open-loop mode (i.e. we used a unigram phone lgggua
model with uniform probabilities) with a vocabulary of 46qte
units.

4.3.2. SVYM Features and Training

The phone ngram system extracts one feature vector for every
versation side, where the features represent relativeiéreges of
the 8500 most frequent phone bigrams and trigrams. We use a li
ear kernel to train an SVM-based model for every target spreak
(see [4]). The SVMs are trained using a one-versus-all a@mr,o
where the conversation sides from the target speakensripdlata
are used as positive training examples, and the convenssities

in a set of background data are used as negative traininggdeam
For our system, we used a background dataset composed of 1128
conversation sides taken from the Fisher corpus and 42%conv
sation sides taken from the Switchboard Il corpus, as exgthin
the Data section. WCCN normalization (see 5) was applietigo t
feature vectors before SVM training and scoring, which veknee
using the SVMLite package.

4.3.3. Scoring

to train speaker models against the background model via theTo score a given test-target pair, we simply applied tharfeatec-

support vector machine (SVM) algorithm. Feature vectoosnfr
speaker model conversation sides were used as positiventgai
examples, while those from background conversation sidee w

tor of the test conversation to the SVM output function ofttrget
model. We then used TNORM to normalize the scores for every
test conversation.

used as negative training examples. We used 6117 Fisher and

Switchboard Il conversation sides for the background mo@sl
those, 1128 were from the Fisher corpus. SVM training wagdon
using the SVMLite package. WCCN normalization (see 5) was
applied to the feature vectors before SVM training.

4.2.3. Scoring

Features vectors from test conversation sides were scgeedsa
speaker models using the SVM. TNORM (trained with Fisher
speaker models) was applied to every test conversation.

4.2.4. Computational resources

Word conditioning the phone lattices — total elapsed: 3002€,
total cputime: 1726175 s

Generating counts — total elapsed: 11410 s, total cputi9&s 8
4.3. Phone L attice N-grams System (PhoneNgram)

The ICSI phone n-gram system is similar to the system de=strib

in [3]. The phone n-gram system uses an open-loop phone rec-

ognizer to generate phone lattices, which are then usedns co

4.3.4. Computational Resources

Each of the four submitted conditions ran in roughly two fsoom
25 CPUs. Generating the TNORMed scores took about an extra
hour per experiment.

4.4. POSWord N-gram System (POS/Word)

Eric  Brill's  Supervised Part of Speech Tagger
(www.cs.jhu.edu/brill) was used to supply POS tags on the
word hypotheses. The relative frequencies of the joint RO&!

tags were calculated and used in an SVM system. See [3] for a
similar word-only system, except that the tokens of the PQsdW
Ngram system represent POS and word information jointlghsu
as: “but/CC i/NN see/VB “. Relative frequencies for a totél o
125,700 uni-, bi-, and tri-grams were calculated and an SVt w

a linear kernel was trained using SVMLite.

Computational resources: the system for all the four sutbuhit
conditions ran in roughly two hours on 12 CPUs.

pute expected counts of phone n-grams. These expectedscount

are converted into relative frequencies, which are thed asdea-
ture vectors for training SVM-based speaker models.

4.3.1. Phone Recognition

The phone n-gram system uses the DECIPHER speech recog

nizer [3] developed by SRI International to generate phate |
tices for every conversation side. Our particular realiraof
DECIPHER uses gender-dependent, monophone acoustic snode

where each monophone is modeled by a 3-state hidden Markov

model (HMM). The acoustic model was trained on the Switch-

45, Lexical Statistics (LexStats)

The Lexical Statistics system attempts to capture higatieen-
tence and conversation information by utilizing featureshsas:
number of conversation turns, number of words (per contiersa
and per turn), number of characters (per conversation artdmg),
and speaking rate. Eight such features were calculatedafdh e

Iconversation side and used in an SVM which was trained with

SVMLite and utilized a linear kernel.

Computational resources: the system for all the four sutbuhit

board | corpus using MFCC features. Phone decoding was per-conditions ran in roughly 10 minutes on 12 CPUs.



5. Within-Class Covariance Nor malization
(WCCN)

We applied within-class covariance normalization (WCCH) [
6, 7] to the following three systems: SVM-based Lattice Rhon
N-grams, SVM-based Word-Conditioned Lattice Phone N-gram
and SRI MLLR-SVM system (used in the joint system submis-
sions, ICSI2).

The WCCN approach implements a generalized linear kernel
of the form, k(x1,x2) = xTW~x,, wherex; andx, are two
input feature vectors, anW is the expected within-class covari-
ance matrix over all classes (i.e. speakers) in the training set. We
defineW as follows:

M
w £ ZP(Z) -G,
i=1

C; é]E(X,;*)_(,;)(Xi 7)_(1;)T Vie{l,...,M}.

Here,x; represents a random draw from class (i.e. speakét)
represents the total number of classes, ®nepresents the mean
of x;. The termsC; andp(i), represent the covariance matrix and
the prior probability of class. (Note that we use the term, “class,”
to refer to a given speaker.)

Given W, whereW is full-rank, we can perform WCCN on
the input feature vectors by using the following featurasfar-
mation, ®:

B(x) 2 ATx. 1)
Here, A is defined as the Cholesky factorization\df—*:
AAT AW

The WCCN feature transformation emphasizes “directions” i
feature space that are informative (i.e. directions whezentithin-
class variance is small compared with the overall varianghile
attenuating directions that are noisy. Under various dand, it
can be shown that WCCN minimizes a particular upper bound on
classification error when used for SVM training [5, 6].

5.1. Smoothing
We used the following smoothing model to compute estimates o

W: A )
W,2(1-0a) WHa-1I, acl1]. ")

Here,W, represents a smoothed version of the empirical expected
within-class covariance matridV, andI represents aiv x N
identity matrix whereV is the dimensionality of the feature space.

We use®pc 4 to represent the KPCA transformation of
feature vectox. Further details on how to computé are
provided in [7]. For a general overview of KPCA, see (for
instance) [8, 9].

. Compute the so-calleBCA-complement for every input
feature vector. We usés51(x) to represent the PCA-
complement of feature vector. Given theU projection
matrix from step 2@ (x) is computed as follows:

Ppea(x) 2 (1I-UU )x

. Perform WCCN on the PCA feature set (i.e. the feature
vectors produced by th@ pc 4 transformation) using the
smoothing model shown in equation (2). The smoothing
parameterx is tuned on a set of held-out cross-validation
data.

. For every input feature vectat, concatenate a scaled ver-
sion of the WCC-normalized PCA features with a scaled
version of the PCA-complement features to arrive at the fi-
nal feature representatios;

(1—0) - AT®pca(x)
o - Ppex(x)

B(x) 2 . oel01].

Here, AT represents the transformation matrix derived in
step 4 from equation (1) to perform WCCN on the PCA fea-
tures. ThusA” ® pca (x) represents the WCC-normalized
PCA component of feature vecter We use the parameter

o to control the relative weight applied to the two feature
sets (i.e. the PCA set and the PCA-complement set). This
parameter is tuned on a held-out cross-validation set.

6. Use the final feature representatibio train and test SVM-

based speaker models.

5.3. Training Sets

We used~3600 conversation sides from the SRE2003 task to train
the KPCA transformation described in step 2 of the expertaien
procedure. Approximately 7200 conversation sides from ZRB8
were used to traiiW and to train the per-feature within-class vari-
ances for step 1. The ando weights were tuned sequentially (i.e.
first a, theno givena) on the SRE2005 dataset. For every feature
set where WCCN was applied, the optimal valuesifando were

The a parameter represents a tunable smoothing weight whosefg nd to be approximately 0.92 and 0.4, respectively.

value is between 0 and 1.

5.2. Experimental Procedure

We followed the procedure described in [7] for applying WCCN
to large feature sets. The procedure is summarized as fllow

1. Perform per-feature within-clasariance normalization on
all of the input features (i.e. scale each features to have an
average within-class variance of one on the training data).

. Use kernel principal component analysis (KPCA) with a
linear kernel to reduce the dimensionality of the input fea-
ture space. For linear kernels, the KPCA transformation
can be expressed in terms of a projection maltx,

Ppca(x) S UTX,

5.4. Computational Resources

We used 25 computers in parallel to train the full WCCN featur
transformation (i.e® from the experimental procedure) for each
of the following systems: phone n-grams, word-conditiopkedne
n-grams, and SRI International’'s MLLR-SVM system. Thertrai
ing time took approximately 10, 22, and 20 hours, respéegtive
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