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1. Introduction

ATVS-UAM submission to NIST SRE 2006 is a combination of bottuatic and higher-level systems
ranging from GMM and SVM to Phone-trigram and Prosodic systethsSVM system combination and
Pair Adjacent Violators (PAV) based Log-LR computation and caidira

2. Overview of ATVS-UAM submission
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KL-GMM: Feature Mapped UBM-MAP-GMM with KL-Tnorm

SVMC: SVM Classifier

SVM: GLDS-SVM with third order polynomial expansion (Fwoniard, Bckw:
backward)

Prosodic: Four-Level Delta-based tokenization and interpo(@&8&$pk+0.2UBM) trigram

target models with Tnorm

PhoneTrigram: Spk models interpolated (0.7UBPM+0.3Spk) from UBPM (UaivBeskground
Phone Model) trigram language model with Tnorm

LLR: Transformation from log-likelihood scores to log-likelihootios via PAV-based
monotonic transformation
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3. KL-GMM-MAP-UBM System

The basic system is a likelihood ratio detector with targmet alternative probability distributions
modelled by Gaussian mixture models (GMMSs) [1]. A Universal gamknd GMM model is used as the
alternative hypothesis model, and target models are derived using MARtexafsom UBM.

3.1 Feature extraction and signal processing:

- 20 ms. window length, 10 ms. overlapped, Hamming .

- 20 mel-spaced (0-4000 kHz) magnitude filters.

- 38 coefficients per frame (19 MFCC + delta).

- Bandlimiting from 300 to 3300 Hz.

- CMN and Rasta filter. Feature Mapping [10] is performedcf@nnel compensation, followed
by a cepstral mean and variance normalization.

- A static, energy-based VAD was used for silence removal.

3.2 UBM:
A root UBM was trained using 5 hours of channel- and gender-balapeedbsafter silence removal. We
used data from MIXER (NIST SRE 2004 and 2005), Switchboard | angttgwiard 1l. We trained the

UBM using 1024 gaussian mixtures and ML estimation via EM algorithm.

3.2 Channel models for Feature Mapping

14 channel models (7 per gender) were adapted from the UBM intorderform Feature Mapping. An
average value of 2 hours of speech was used for each channel model training.

3.3 Target model

1024 mixtures GMM, MAP adapted with one iteration (only means) tftmm1024 root UBM. Only 5
Gaussian per frame were used in likelihood computations.

3.4 Likelihood normalization

a.- Tnorm [2] (gender dependent). Used in all 10sec4w testingtiomsdi The generic Tnorm cohort
consists of the total of target models from NIST SRE 2004 Evaluation sets.

b.- KL-Tnorm (gender dependent). An adaptive cohort selectionitiligofor Tnorm [3] based on a fast
estimation of Kullback-Leibler divergence for GMMs [4] svased for all 1conv4w testing conditions.
The selected cohort consists of 60 impostor models selectedHeogeneric, gender dependent Tnorm
cohort. In all cases, Tnorm cohort and target model training speegth conditions and gender are
matched. Tnorm cohorts in each training condition and gender cohsist total of target models from
NIST SRE 2004 Evaluation sets.

4. GLDS-SVM System

The forward acoustic SVM system uses a explicit normalizeskthegree polynomial expansion [5]
followed by a decomposed Generalized Linear Discriminant Seqli@roel (GLDS) as described in
[6]. SVMTorch [13] was used to train the target models.

Reverse acoustic SVM system is used in the 1conv4w-1conv4wvitiskhe same configuration as for
the forward system, but training the target models usinge$tesegments. We get the reverse system
scores testing those models with the training utterances.
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4.1 Feature extraction and signal processing: the acousticSE&MM system uses the same feature
extraction module as the acoustic GMM system.

4.2 Background model: two gender dependent and channel independent da@sdbeen used. These
datasets consist of over 5 hours of channel-balanced speech eektfiamh the NIST SRE 2004,
Switchboard | and Switchboard Il databases.

4.3 Target model: SVMTorch [13] was used to train a linaévl $h the new expanded space. Scores are
generated as a dot product in that space.

4.4 Score normalization: gender and training condition dependent Tnorcolaits were used. These
cohorts were built using the target models from NIST SRE 2004.

5. Prosodic System

In order to capture prosodic differences among speakers iredllieation of intonation, rhythm, and
stress, the FO and energy contours are converted into a sequeraernsd by means of a slope
quantification process [7]. After that, the obtained sequendedkeris are modeled with n-grams to build
speaker models that will be used, along with a UBM, to clais#f distinctive token patterns using a LR
test.

5.1. Four-Level Delta-based token computation

The token computation process converts the input speech signal sefquance of tokens comprising
prosodic information. This process is applied to all the spattehances (defined as the period of time
when one speaker is speaking and there is no silent gap for more than 0.5 secbimd)evwinput speech
file. Once the FO and energy contours have been computed, each utisraagemented at inflection
points of the temporal trajectories or at the start or enabiofng. In order to do that, first the inflection
points for each trajectory at the zero-crossings of thvatere (using a +-2 frame span) are detected.
Second, each utterance is segmented using the inflection pomtddth time contours and the start and
end of voicing. Finally, each segment is converted into a sekefi$ that describes the joint-dynamics of
both temporal trajectories. This conversion is carried out usfogrdevel quantization of the slopes of
the FO and energy contours (fast-rising, slow-rising, fast¥glslow-falling). Since errors in the FO and
energy estimation are likely to generate small segmelhtsegments smaller than 30 ms are removed
from the sequence of joint-state classes. The same wkesigned to all the unvoiced regions of each
utterance since no FO information is available for quantizationvéw ahe modeling of classes across
utterances, the token <s> is introduced between utterancestaikexshows all possible tokens used to
describe the speech utterances.

DESCRIPTION

TOKEN o) E
1 Fast-rising Fast-rising
2 Fast-rising Slow-rising
3 Slow-rising Fast-rising
4 Slow-rising Slow-rising
5 Fast-falling Fast-falling
6 Fast-falling Slow-falling
7 Slow-falling Fast-falling
8 Slow-falling Slow-falling
9 Fast-rising Fast-falling
10 Fast-rising Slow-falling
11 Slowe-rising Fast-falling
12 Slowe-rising Slow-falling
13 Fast-falling Fast-rising
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14 Fast-falling Slow-rising
15 Slow-falling Fast-rising
16 Slow-falling Slowe-rising
17 uv

<S>

5.2. Modeling

HTK 3.2.1 n-gram modeling tools are used to train gender-dependent @BWshe target-speaker
models. Male and female training data from NIST 2005, NIST 2004, TSWBOARD | and
SWITCHBOARD Il Extended-data task is used to train the male and ferBs | tespectively. Trigram
models are used for that purpose. The target-speaker modeieeated by linear interpolation of the
corresponding UBM (gender-dependent) and the speaker training Hetat@rpolation coefficients are
set to 0.8 for the speaker data and 0.2 for the UBM. By incluti@ggeneral knowledge” provided by
the UBM into the target-speaker models, the amount of datachéada good estimation of the trigram
models is reduced.

5.3. Scoring

The speaker detection score is computed using a conventionaldblyedd ratio test between the target-
speaker model and the corresponding UBM averaged over alimm-types. Tnorm [2] technique is
applied for score normalization. Cohorts consist of 60 models from NIST288Edatabase.

6. Phone Trigram System

6.1 Feature extraction and signal processing:

Two schemes have been used for feature extraction:

« The Advanced Distributed Speech Recognition Standard Front-End defittexistandard ETSI
ES 202 050 [8]. This standard includes mechanisms for prateatiainst additive noise (a
double Wiener filter) and against channel distortion (blind kzatan). The standard includes a
Voice Activity Detection algorithm to discard non-speech frathes have not been used in our
system. Apart from the noise and channel robustness mechahisifient-end is based on the
typical 13 Mel-Frequency Cepstral Coefficients (MFCC) withadand double delta coefficients.
The CO coefficient is combined with the log-energy per frame.

e Sphinx [12] feature extraction system. This system is basd@® &hFCC coefficients along with
delta and double delta coefficients and CO. The built-in automatic agaitrol was also used.
CMN technique was applied for channel compensation. Audio wisefll and frecuencies
outside of the range 130Hz-3700Hz were discarded.

6.2 Acoustic Modelling

Our system makes use of three independet sets of gender aegt-tmiependent phone models (for
English, Spanish and Basque) based on Hidden Markov Models (HMMsHNIM: topology is three-
state left-to-right with no skips. The outpudfs of each state are modelled as GMMs. The number of
Gaussians per state were adjusted on the NIST SRE’'05 datzotasis to miminize speaker recognition
EER.

The set of English phone HMMs was trained on the TIMIT carj8isce this corpus is microphone

speech sampled at 16 kHz, we filtered it to simulate tleptiene channel and then downsampled it to 8
kHz. One gaussian/state was used to model output pdfs.
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The set of Spanish phone HMM was trained on the Albayzin corfessdame subsampling process as
described above was applied for this case. Five gaussians/statesagite model output pdfs.

Both systems use the ETSI ES 202 050 parameteriser.

Basque SpeechDAT was used in order to train the Basque phone HMM set, modellingafstith 20
gaussians per state. The parameterisation was performed using tive [Bphmeteriser.

All sets were trained using HTK v3.2.1.

6.3 Acoustic-Phonetic Decoding

Acoustic-phonetic decoding (phone recognition) was performed witly egeogniser on Switchboard I,
Switchboard II, NIST SRE’04, NIST SRE’'05, NIST SRE’'06 train arst fdes using HTK v3.2.1, the

trained models and a null grammar. The only information used fromcthgstic-phonetic decoding was
the phone streams. The output phone streams were filtered to avoidaepefiinter-word silences.

6.4 Training

The Universal Background Phone ModelBPM) is a trigram language model trained with data from
Switchboard |, Switchboard II, NIST SRE'04 and NIST SRE’'05. Smootbingnlikely trigrams was
performed with absolute discounting. No cut-off factor was apphedifferent UBPM was used for each
phonetic decoder.

Speaker Phone ModelSRM)) are created by linear interpolation of the 8 sides trginiaterial for each
target speaker from NIST SRE’06 training data. The interpoldactor (weight of the UBPM) for this
adaptation was adjusted on NIST SRE’'05 extended data task arffdumdsto be optimal for an UBPM
weight of 0.7.

6.5 Scoring

Scoring of a test file against a target spedkeonsists of producing the phone streafn,from its
acoustic-phonetic decoding and computing the log-likelihood ratio:

N. | P(X |UBPM)

This log-likelihood ratio is normalized by the number of phorlds) (in X to yield the final score. Both
ngram training and scoring was performed using HTK Language Modelling Tools.

6.5 Score normalization

For score normalization Tnorm [2] was applied using as cah@ender dependent set of 60 models
extracted from NIST SRE’'04.

7. Fusion Strategies

Linear SVMs are trained to separate the genuine and impdistabution of scores obtained with the
ATVS-UAM individual systems on data from NIST 2004 evaluatiohe Tused scores for NIST 2005
evaluation are obtained as signed distances to these separatirgamgse[9].
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8. Log-LR calibration and decision

The Pair Adjacent Violators (PAV) algorithm has been usedofptikelihood ratio (llr) calibration (see
[11]). The score to likelihood ratio mapping has been trained Wifg SRE 2005 development data.
The resulting non-parametric mapping function has been lineadypoiated in order to guarantee
monotonicity.

The final decision has been taken assuming log-likelihood ratios gumibracost ratio (or ‘effective
prior’) of 9.9 versus 1, as defined by NIST. Thus, the threshold is ekdbkid 10g(9.9) = 2.29.

For trials involving all training or test data detected awpty, the final score was set to Log-LR=0
(LR=1).
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