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1. Introduction 
 
ATVS-UAM submission to NIST SRE 2006 is a combination of both acoustic and higher-level systems 
ranging from GMM and SVM to Phone-trigram and Prosodic systems with SVM system combination and 
Pair Adjacent Violators (PAV) based Log-LR computation and calibration. 
 

2. Overview of ATVS-UAM submission 
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KL-GMM:  Feature Mapped UBM-MAP-GMM with KL-Tnorm 
SVMC:  SVM Classifier 
SVM:  GLDS-SVM with third order polynomial expansion (Fw: forward, Bckw: 

backward) 
Prosodic: Four-Level Delta-based tokenization and interpolated (0.8Spk+0.2UBM) trigram 

target models with Tnorm 
PhoneTrigram: Spk models interpolated (0.7UBPM+0.3Spk) from UBPM (Universal Background 

Phone Model) trigram language model with Tnorm   
LLR: Transformation from log-likelihood scores to log-likelihood ratios via PAV-based 

monotonic transformation 
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3. KL-GMM-MAP-UBM System 
 
The basic system is a likelihood ratio detector with target and alternative probability distributions 
modelled by Gaussian mixture models (GMMs) [1]. A Universal background GMM model is used as the 
alternative hypothesis model, and target models are derived using MAP adaptation from UBM. 
 
3.1 Feature extraction and signal processing: 
 

- 20 ms. window length, 10 ms. overlapped, Hamming . 
     - 20 mel-spaced (0-4000 kHz) magnitude filters. 
     - 38 coefficients per frame (19 MFCC + delta). 
     - Bandlimiting from 300 to 3300 Hz. 

- CMN and Rasta filter. Feature Mapping [10] is performed for channel compensation, followed 
by a cepstral mean and variance normalization. 
     - A static, energy-based VAD was used for silence removal. 
 
3.2 UBM: 
 
A root UBM was trained using 5 hours of channel- and gender-balanced speech after silence removal. We 
used data from MIXER (NIST SRE 2004 and 2005), Switchboard I and Switchboard II. We trained the 
UBM using 1024 gaussian mixtures and ML estimation via EM algorithm. 
 
3.2 Channel models for Feature Mapping: 
 
14 channel models (7 per gender) were adapted from the UBM in order to perform Feature Mapping. An 
average value of 2 hours of speech was used for each channel model training. 
 
3.3 Target model: 
 
1024 mixtures GMM, MAP adapted with one iteration (only means) from the 1024 root UBM. Only 5 
Gaussian per frame were used in likelihood computations. 
 
3.4 Likelihood normalization: 
 
a.- Tnorm [2] (gender dependent). Used in all 10sec4w testing conditions. The generic Tnorm cohort 
consists of the total of target models from NIST SRE 2004 Evaluation sets. 
 
b.- KL-Tnorm (gender dependent). An adaptive cohort selection algorithm for Tnorm [3] based on a fast 
estimation of Kullback-Leibler divergence for GMMs [4] was used for all 1conv4w testing conditions. 
The selected cohort consists of 60 impostor models selected from the generic, gender dependent Tnorm 
cohort. In all cases, Tnorm cohort and target model training speech length conditions and gender are 
matched. Tnorm cohorts in each training condition and gender consist of the total of target models from 
NIST SRE 2004 Evaluation sets. 
 

4. GLDS-SVM System 
 
The forward acoustic SVM system uses a explicit normalized three degree polynomial expansion [5]  
followed  by  a decomposed Generalized Linear Discriminant Sequence Kernel  (GLDS) as described in 
[6]. SVMTorch [13] was used to train the target models. 
Reverse acoustic SVM system is used in the 1conv4w-1conv4w task with the same configuration as for 
the forward system, but training the target models using the test segments. We get the reverse system 
scores testing those models with the training utterances. 
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4.1 Feature extraction and signal processing: the acoustic GLDS-SVM system uses the same feature 
extraction module as the acoustic GMM system. 
4.2 Background model: two gender dependent and channel independent datasets have been used. These 
datasets consist of over 5 hours of channel-balanced speech extracted from the NIST SRE 2004, 
Switchboard I and Switchboard II databases. 
4.3 Target model: SVMTorch [13] was used to train a linear SVM in the new expanded space. Scores are 
generated as a dot product in that space.  
4.4 Score normalization: gender and training condition dependent Tnorm [2] cohorts were used. These 
cohorts were built using the target models from NIST SRE 2004. 
 

5. Prosodic System 
 
In order to capture prosodic differences among speakers in the realization of intonation, rhythm, and 
stress, the F0 and energy contours are converted into a sequence of tokens by means of a slope 
quantification process [7]. After that, the obtained sequences of tokens are modeled with n-grams to build 
speaker models that will be used, along with a UBM, to classify the distinctive token patterns using a LR 
test. 
 
5.1. Four-Level Delta-based token computation 
 
The token computation process converts the input speech signal into a sequence of tokens comprising 
prosodic information. This process is applied to all the speech utterances (defined as the period of time 
when one speaker is speaking and there is no silent gap for more than 0.5 seconds) within the input speech 
file. Once the F0 and energy contours have been computed, each utterance is segmented at inflection 
points of the temporal trajectories or at the start or end of voicing. In order to do that, first the inflection 
points for each trajectory at the zero-crossings of the derivative (using a +-2 frame span) are detected. 
Second, each utterance is segmented using the inflection points from both time contours and the start and 
end of voicing. Finally, each segment is converted into a set of tokens that describes the joint-dynamics of 
both temporal trajectories. This conversion is carried out using a four level quantization of the slopes of 
the F0 and energy contours (fast-rising, slow-rising, fast-falling, slow-falling). Since errors in the F0 and 
energy estimation are likely to generate small segments, all segments smaller than 30 ms are removed 
from the sequence of joint-state classes. The same token is assigned to all the unvoiced regions of each 
utterance since no F0 information is available for quantization. To avoid the modeling of classes across 
utterances, the token <s> is introduced between utterances. Next table shows all possible tokens used to 
describe the speech utterances. 
 
 

DESCRIPTION 
TOKEN 

FO E 
1 Fast-rising Fast-rising 
2 Fast-rising Slow-rising 
3 Slow-rising Fast-rising 
4 Slow-rising Slow-rising 
5 Fast-falling Fast-falling 
6 Fast-falling Slow-falling 
7 Slow-falling Fast-falling 
8 Slow-falling Slow-falling 
9 Fast-rising Fast-falling 
10 Fast-rising Slow-falling 
11 Slow-rising Fast-falling 
12 Slow-rising Slow-falling 
13 Fast-falling Fast-rising 
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14 Fast-falling Slow-rising 
15 Slow-falling Fast-rising 
16 Slow-falling Slow-rising 
17 UV --- 
<S> --- --- 

 
5.2. Modeling 
 
HTK 3.2.1 n-gram modeling tools are used to train gender-dependent UBMs and the target-speaker 
models. Male and female training data from NIST 2005, NIST 2004, SWITCHBOARD I and 
SWITCHBOARD II Extended-data task is used to train the male and female UBMs, respectively. Trigram 
models are used for that purpose. The target-speaker models are created by linear interpolation of the 
corresponding UBM (gender-dependent) and the speaker training data. The interpolation coefficients are 
set to 0.8 for the speaker data and 0.2 for the UBM. By including the “general knowledge” provided by 
the UBM into the target-speaker models, the amount of data needed for a good estimation of the trigram 
models is reduced. 
 
5.3. Scoring 
 
The speaker detection score is computed using a conventional log-likelihood ratio test between the target-
speaker model and the corresponding UBM averaged over all n-gram types. Tnorm [2] technique is 
applied for score normalization. Cohorts consist of 60 models from NIST SRE 2004 database. 
 

6. Phone Trigram System 
 
6.1 Feature extraction and signal processing: 
 
Two schemes have been used for feature extraction: 
 

• The Advanced Distributed Speech Recognition Standard Front-End defined in the standard ETSI 
ES 202 050 [8]. This standard includes mechanisms for protection against additive noise (a 
double Wiener filter) and against channel distortion (blind equalization). The standard includes a 
Voice Activity Detection algorithm to discard non-speech frames that have not been used in our 
system. Apart from the noise and channel robustness mechanisms the front-end is based on the 
typical 13 Mel-Frequency Cepstral Coefficients (MFCC) with delta and double delta coefficients. 
The C0 coefficient is combined with the log-energy per frame.   

• Sphinx [12] feature extraction system. This system is based on 13 MFCC coefficients along with 
delta and double delta coefficients and C0. The built-in automatic gain control was also used. 
CMN technique was applied for channel compensation. Audio was filtered and frecuencies 
outside of  the range 130Hz-3700Hz were discarded. 

 
6.2 Acoustic Modelling 
 
Our system makes use of three independet sets of gender and context-independent phone models (for 
English, Spanish and Basque) based on Hidden Markov Models (HMMs). The HMM topology is three-
state left-to-right with no skips. The output pdfs of each state are modelled as GMMs. The number of 
Gaussians per state were adjusted on the NIST SRE’05 data task corpus to miminize speaker recognition 
EER. 
 
The set of English phone HMMs was trained on the TIMIT corpus. Since this corpus is microphone 
speech sampled at 16 kHz, we filtered it to simulate the telephone channel and then downsampled it to 8 
kHz. One gaussian/state was used to model output pdfs. 
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The set of Spanish phone HMM was trained on the Albayzin corpus. The same subsampling process as 
described above was applied for this case. Five gaussians/state were used to model output pdfs. 
 
Both systems use the ETSI ES 202 050 parameteriser. 
 
Basque SpeechDAT was used in order to train the Basque phone HMM set, modelling output pdfs with 20 
gaussians per state. The parameterisation was performed using the Sphinx parameteriser.  
 
All sets were trained using HTK v3.2.1.  
 
6.3 Acoustic-Phonetic Decoding 
 
Acoustic-phonetic decoding (phone recognition) was performed with every recogniser on Switchboard I, 
Switchboard II, NIST SRE’04, NIST SRE’05, NIST SRE’06 train and test files using HTK v3.2.1, the 
trained models and a null grammar. The only information used from the acoustic-phonetic decoding was 
the phone streams. The output phone streams were filtered to avoid repetitions of inter-word silences.  
 
6.4 Training 
 
The Universal Background Phone Model (UBPM) is a trigram language model trained with data from 
Switchboard I, Switchboard II, NIST SRE’04  and NIST SRE’05. Smoothing of unlikely trigrams was 
performed with absolute discounting. No cut-off factor was applied. A different UBPM was used for each 
phonetic decoder. 
 
Speaker Phone Models (SPMi) are created by linear interpolation of the 8 sides training material for each 
target speaker from NIST SRE’06 training data. The interpolation factor (weight of the UBPM) for this 
adaptation was adjusted on NIST SRE’05 extended data task and was found to be optimal for an UBPM 
weight of 0.7. 
 
6.5 Scoring 
 
Scoring of a test file against a target speaker i consists of producing the phone stream, X, from its 
acoustic-phonetic decoding and computing the log-likelihood ratio:  
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This log-likelihood ratio is normalized by the number of phones (iN ) in X to yield the final score. Both 

ngram training and scoring was performed using HTK Language Modelling Tools. 
 
6.5 Score normalization 
 
For score normalization Tnorm [2] was applied using as cohort a gender dependent set of 60 models 
extracted from NIST SRE’04. 
 

7. Fusion Strategies 
 
Linear SVMs are trained to separate the genuine and impostor distribution of scores obtained with the 
ATVS-UAM individual systems on data from NIST 2004 evaluation. The fused scores for NIST 2005 
evaluation are obtained as signed distances to these separating hyperplanes [9].  
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8. Log-LR calibration and decision 
 
The Pair Adjacent Violators (PAV) algorithm has been used for log-likelihood ratio (llr) calibration (see 
[11]). The score to likelihood ratio mapping has been trained using NIST SRE 2005 development data. 
The resulting non-parametric mapping function has been linearly interpolated in order to guarantee 
monotonicity. 
 
The final decision has been taken assuming log-likelihood ratios and a prior-cost ratio (or ‘effective 
prior’) of 9.9 versus 1, as defined by NIST. Thus, the threshold is established at log(9.9) = 2.29. 
 
For trials involving all training or test data detected as empty, the final score was set to Log-LR=0 
(LR=1). 
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