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Main Modules

• FrontEnd Processing
• Universal Background Model Training
• Speaker Model Adaptation
• LLR Score Computation 
• Fusion
• Making Decision 
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FrontEnd Processing

• FrontEnd Processing for MFCC 
• FrontEnd Processing for Pitch 
• FrontEnd Processing with Wavelet 
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FrontEnd Processing for MFCC 

• Band-limited (300Hz – 3400Hz)
• MFCC+Delta(16+16) with the 0th 

removed
• RASTA
• CMS
• Remove Silence
• Kurtosis Normalization
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Silence Removal

• Energy based threshold to remove long
period silence 

• Predictive Segment
– H0 : current frame is a new segment first frame
– H1: current frame is belong to previous segment
– |Xt – Seedt-1| < |Xt – O| , choose H0, 
– Else, choose H1

• Energy & Duration based threshold to 
remove silence segment
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Kurtosis Normalization
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The kurtosis of a random 

variable x is defined as

If a random variable has a kurtosis less than zero, it is termed
platykurtic i.e. sub-Gauss. If it has kurtosis greater than zero, it is 
termed leptokurtic i.e. super-Gauss. Speech signals are generally 
leptokurtic, so are speech cepstral parameters. 
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Kurtosis Normalization
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Kurtosis Normalization
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the sigmoid functions

We have proved that the optimization the 
parameter k of the sigmoid functions can make the 
kurtosis be zero for speech parameters.

where a and b are constant 
coefficients, k>0. In order to keep 
the means of speech parameters 
invariable, coefficients a and b are 
chosen to be 2 and 1 respectively. 
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Kurtosis Normalization

Experiment 
on NIST’04 
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Kurtosis Normalization

Experiment 
on NIST’04 
1conv-1conv   
male 
database
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Kurtosis Normalization

Experiment 
on NIST’04 
8conv-1conv    
male 
database
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Kurtosis Normalization

Maybe the more speech is used, 
the performance of the system is 
improved further with kurtosis 
normalization method.
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FrontEnd Processing for pitch

We firstly split pitch and energy contours into segment 
with 7 frames length. 4 parameters related to pitch 
were extracted:

• log (mean_F0) averaged over a segment
• log (max_F0) of a segment
• log (min_F0) of a segment
• F0_slop of a segment

Another 4 parameters related to energy are extracted 
as above. Total 8 parameters of a segment comprise 
an 8-dimension vector. 
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FrontEnd Processing with wavelet
We made wavelet analysis of the f0 and energy contour.
Subsequently, the prosodic features were extracted only 
from the 3rd level approximation coefficients

Prosodic Feature: 

[cA1 cA2 cA3 cA4 ESlope]
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Universal Background Model 

• Model Type
– GMM consist of 2048 mixtures (1conv)
– GMM consist of 512 mixtures (10seconds)
– UBM_F for female and UBM_M for male 

• Training data
– Selected from NIST’03&04  training and test 

data 

• Training Algorithm
– EM Algorithm
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Speaker Model Adaptation

• Model Type
– Same as UBM

• Training data
– Training data in NIST’05

• Training algorithm
– MAP from UBM_M or UBM_F
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LLR Score Computation 

• Log Likelihood Ratio 

• TNORM
– A speaker-specific T-norm selection 
– The closest set of P cohort models are used to    

Tnorm during run time where P is chosen to be 50. 
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Fusion 

• The scores from the sub-systems are 
fused with a perceptron classifier. The 
number of input nodes of the perceptron
is the same as the number of sub-
systems applied. There is no hidden 
layers and only one output node. 
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Making Decision 

• Threshold is tested with NIST’04  test 
utterances when the minimal DCF is 
reached. 



USTC 2-sp System
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Main Modules

• FrontEnd Processing
• Universal Background Model Training
• Segmentation
• Speaker Model Adaptation
• LLR Score Computation
• Making Decision
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FrontEnd Processing

• Feature for 2-sp Segmentation
– Band-limited(0Hz - 4000Hz)

– MFCC(23) without delta)
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FrontEnd Processing

• Feature for Speaker Verification 
– Band-limited(300Hz - 3400Hz)

– MFCC + Delta(16 + 16)
– RASTA

– CMS
– Remove Silence

– Kurtosis Normalization
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Universal Background Model

• UBM-F  training
• UBM-M training
• Gender Independent UBM training
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Gender Dependent UBM training
(UBM-F and UBM-M)

• Setting
– 2048 x 1

• Training Data: 
– NIST’03&04 Dev Training Data (IDs are 

selected)

• Training Algorithm:
– EM algorithm
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Gender Independent UBM training

• Setting
– 4096 x 1

• Training Algorithm
– Merge from UBM-F and UBM-M
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Unsupervised Speaker 
Segmentation

• Hierarchical agglomerative clustering
– Divide the speech into 1sec segments as 

initial clusters.
– Merge two clusters which have minimum 

pair distance.

– Until obtain three clusters ( speaker 1, 
speaker 2, overlap of two speakers)
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Pair-wise Distance Computing
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•Likelihood Ratio Score for Segment

•Likelihood Ratio 
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Pair-wise Distance Computing
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•Transition  Probability

•Duration time bias
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Pair-wise Distance Computing
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Speaker Model Adaptation

• Setting
– Same as UBM

• Training data
– 3 of the 9 Clusters are selected 

• Select most similar 3 clusters from 9 clusters.

• Training algorithm
– MAP from UBM
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• Likelihood Ratio Score

Utterance 
Score

LR Score Computation
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Making Decision

• Threshold Selecting
– NIST04 2-spk Evaluation Test 

Segments

– Minimal DCF


