

David van Leeuwen

TNO SRE-2005 submission

Defence, Security and Safety

TNO | Knowledge for business

The bottom line: improvements from last year's system

Development test 'half 2004':

- TNO 2004 GMM system

	min	act	EER(%)
--	-----	-----	--------

• TNO 2004 GMM system	0.533	0.551	14.5
-----------------------	-------	-------	------

- + 2004 tnorm models

• + 2004 tnorm models	-0.021		-1.28
-----------------------	--------	--	-------

- + feature mapping

• + feature mapping	-0.021		-1.59
---------------------	--------	--	-------

- + feature mapping + 2004 tnorm

• + feature mapping + 2004 tnorm	-0.072		-2.95
----------------------------------	--------	--	-------

- 512 → 2048 Gaussians

• 512 → 2048 Gaussians	-0.078		-2.50
------------------------	--------	--	-------

- TNO 2004 SVM system

• TNO 2004 SVM system	0.574	0.643	14.3
-----------------------	-------	-------	------

- + 2004 tnorm

• + 2004 tnorm	-0.082		-1.97
----------------	--------	--	-------

- feamap-2048, 2004 tnorm

• feamap-2048, 2004 tnorm	-0.097		-2.48
---------------------------	--------	--	-------

The bottom line: improvements from last year's system

System Fusing, all trials, 1side-1side

Dev 'half 2004'

- TNO 2004 5 subsystems linear fuse
- TNO 2005 gmm+svm linear fuse
 - Inknet fuse
 - + word *n*gram
 - + 3×SDV system
 - + PAV

min act EER(%)

0.517	0.574	13.9
-0.067	-0.119	-2.53
-0.066	-0.120	-2.52
-0.077	-0.126	-2.35
-0.144	-0.198	-3.98
-0.145	-0.198	-3.92

- which makes
- SRE 2005

0.372	0.376	9.89
0.271	0.282	7.90

Development test data

- NIST SRE 2004
- split in two halves per sex
 - ‘train’ half
 - T-norm models, calibration, PAV, ...
 - ‘development test’ half
 - optimization of parameters
- Random samples, but under constraints
 - difference sample min DCF < 0.01
 - difference sample EER < 0.5 %
 - for both 2004 GMM(1024) and SVM system
 - ~ 75 attempts of split
 - $\sigma(\text{EER}) \sim 0.8\%$, $\sigma(\text{mDCF}) \sim 0.025$

Feature mapping

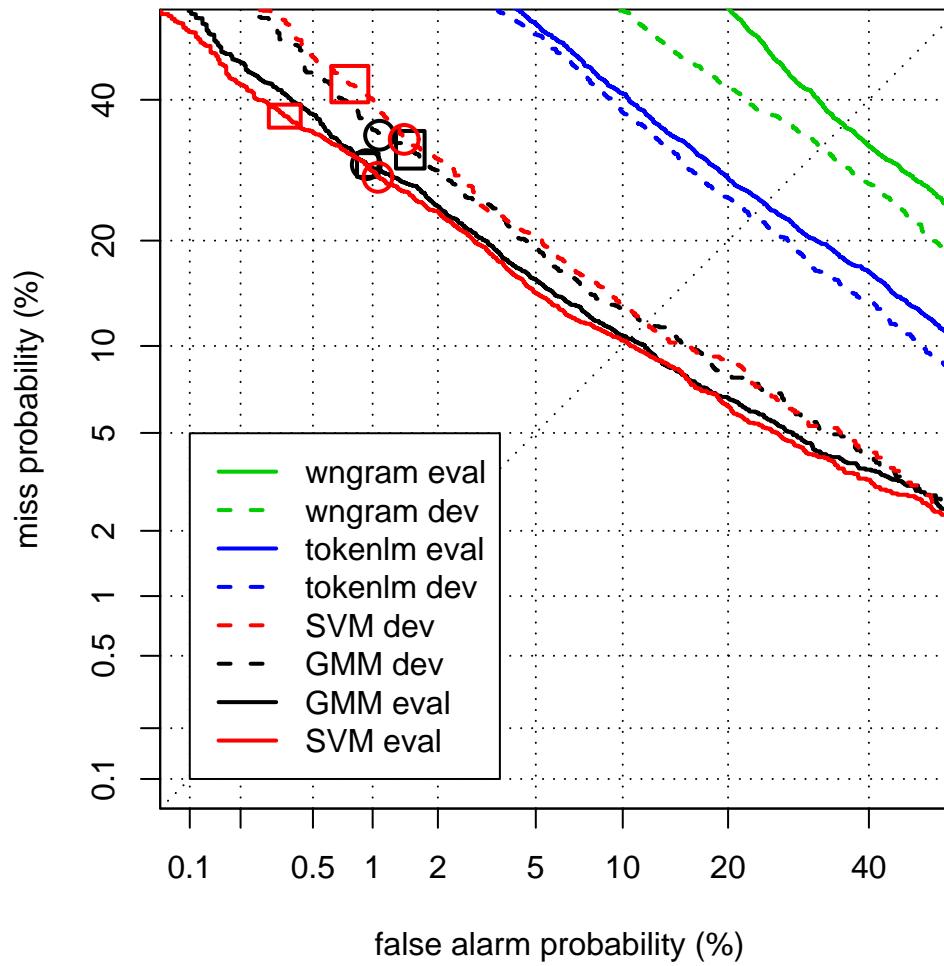
- After Doug Reynolds, ICASSP 2003
- 8 channels for ‘root UBM’
- 2 sex \times 4 microphone/channel types
 - Switchboard 2 phase 2 landline, MIT-LL classification
 - carbon/button
 - electret
 - NIST SRE 2001–2003
 - GSM
 - CDMA
- 80 speakers/channel, but
 - only 50+61 carbon/button m+f
- 591 speakers in total
- MAP adaptation of means from root UBM to each channel

Features and models

- Frame energy based E_{\max} – 30 dB speech detection
 - yield $\sim 30\%$
- 12 PLP coefficients + energy + delta/7, normalized,
 - no more feature warping
- Feature mapping using 8 channels, normalized
- UBM/GMM using 2048 mixtures
 - root UBM as UBM
- SVM using feature mapped inputs
 - 591 feature mapped background speakers

T-norm models *or how to be inefficient*

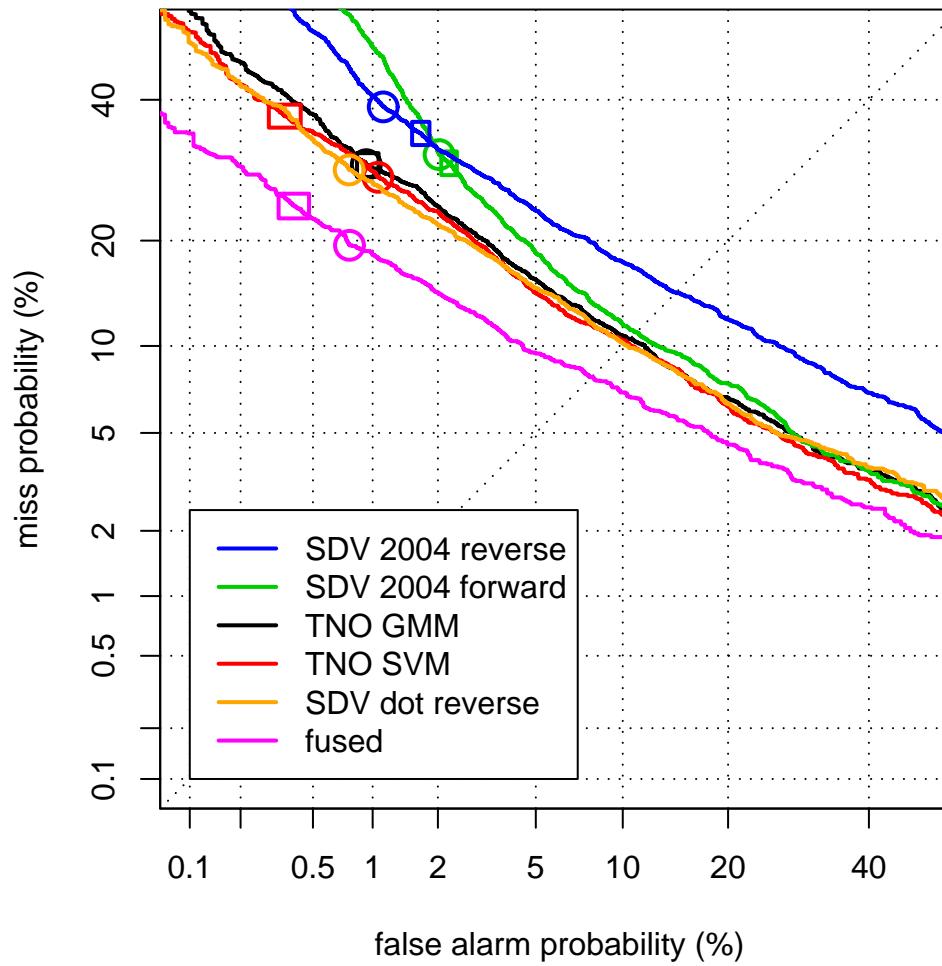
- 315 speaker models from 'train' half 2004
 - 155 different speakers
 - possibly 2 different channels per speaker?
- T-normalization sex-independent
 - applied using all 315 models
- Various samples of this set tried, but failed in performance
 - cohort selection using distance measure
 - top or bottom N models per trial
 - sex-dependent
 - accent-dependent


Word n -gram

- Background words from ‘train’ half 2004 ASR output
- Vocabulary restricted to words with frequency > 9
 - limits size LM
- Background bigram LM,
 - constant discount 0.1
 - SRILM toolkit
- Train:
 - build LM on ASR words,
 - mix (interpolate) LM with background LM for smoothing
- Test log likelihood score measure:
 - minus perplexity of test ASR word string on speaker LM

Tokenlm or ID- n -gram

- Basic token per frame:
 - index of most likely Gaussian
 - 512 Gaussians used
 - ‘free’ side-information in feature mapping process
- Otherwise identical to word n -gram


TNO 1conv4w-1conv4w

Fusing

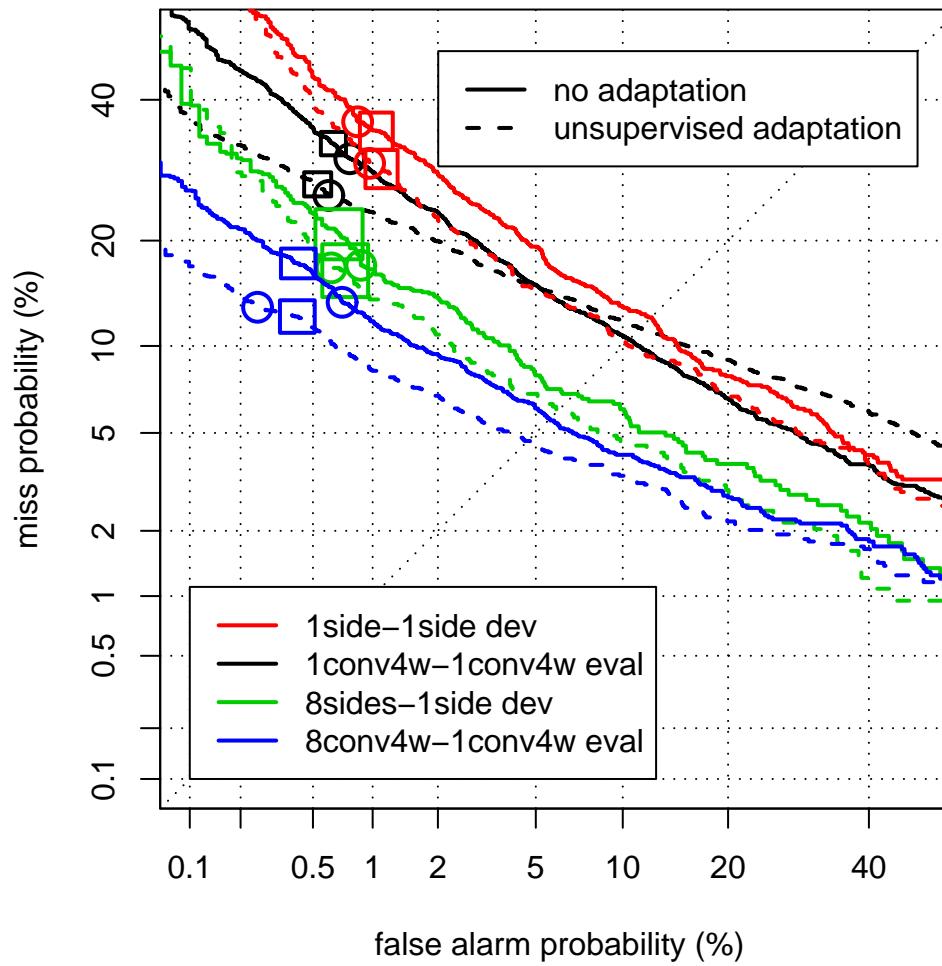
- This year, investigated lnknet software rather than linear fusion
- lnknet
 - needs training/calibration data set
 - we (re-)used ‘train’ half \Rightarrow questionable
 - accepts *prior class probability*
 - here: ‘effective prior odds’ 9.9:1
 - makes decision on ‘posterior odds > 1 ’
 - we used PAV score \rightarrow likelihood ratio mapping
- Biggest gain in performance from fusing with 3 SDV systems
 - SDV eigenchannel forward (SDV3)
 - SDV eigenchannel reverse (SDV4)
 - SDV adapted supervector dot product reverse (SDV6)

TNO 1conv4w–1conv4w fusion SRE 2005

Pool Adjacent Violators algorithm (PAV) *from the creative brain of Niko Brümmer*

- converts scores to likelihood ratios
 - uses training scores and truths
 - here 'train' half 2004
 - calibrates likelihood ratios to application type
 - here 'effective prior odds' 1/9.9

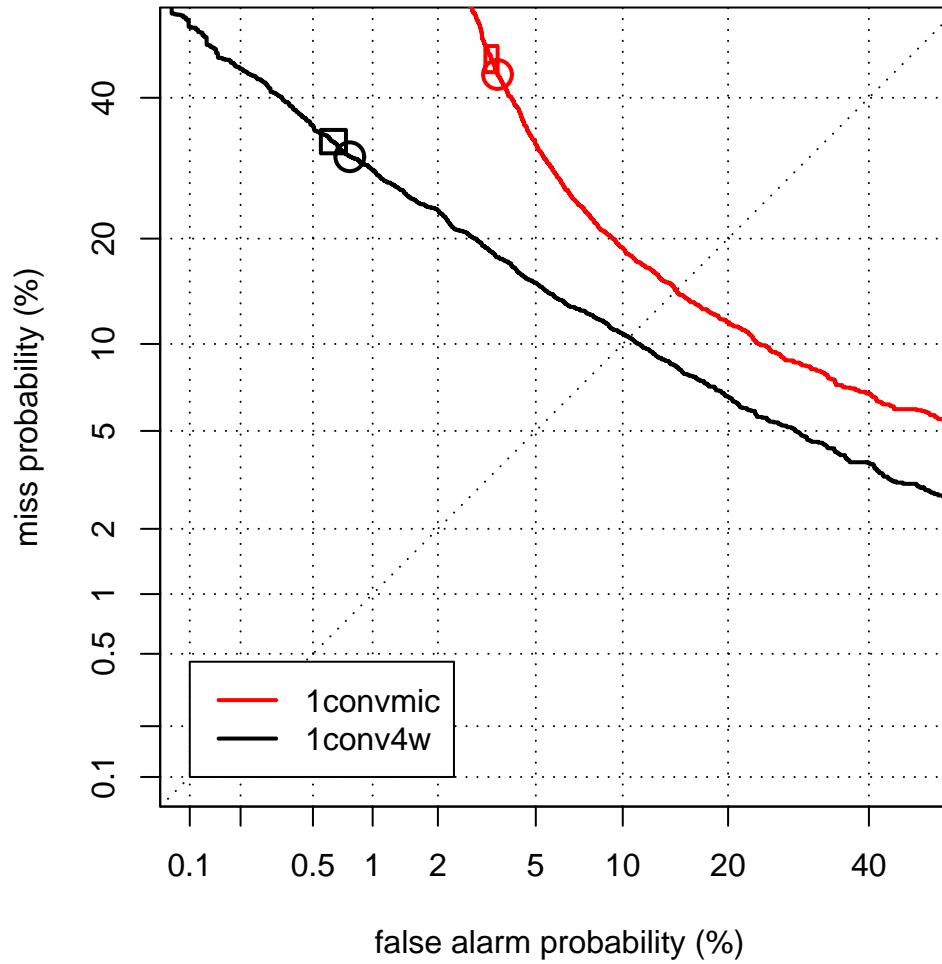
$$\mathcal{O}_{\text{eff}} = \frac{C_{\text{miss}}}{C_{\text{FA}}} \frac{P_{\text{target}}}{1 - P_{\text{target}}}$$


- set decision threshold to $\log(9.9) \sim 2.29$
- but output is also calibrated for other application types

Unsupervised adaptation in 2005: *quite a hassle but it seems to work now*

- GMM: same adaptation principle as in 2004 (Claude Barras, Odyssey 2004)
 - process trials sequentially
 - adapt speaker model with test segment if T-normed score $> a$, using relevance r
- SVM: new this year for 8conv4w-1conv4w
 - add test segment to positive examples and retrain SVM, if T-normed score $> a$

	1conv4w		8conv4w	
• train condition	a	r	a	r
• system				
• GMM-512	3.5	24	-	-
• GMM-2048	5	8	4	16
• SVM	-		4	


TNO SRE-2005 unsupervised adaptation

1convMIC test condition

- Feature mapping approach
- used available training material for microphone data distributed by NIST
- use 20 dB dynamic range for speech/non-speech detector
 - rather than 30 dB for telephone signals
- 8 channels, as from training
- Train microphone channel models from root UBM
- In testing, classify each test segment as one of microphone channels, map features back to 'telephone feature space'
- Otherwise the same as in normal speaker detection
- No development test material available
 - T-normalization and fixed threshold of 3.0
- ASR output not used

TNO 1conv4w microphone condition GMM+SVM fuse

Other submissions

- This year, devtest material was available for all other conditions
 - 8conv4w-1conv4w (6/13)
 - influence of more training, word n -gram, SVM adaptation
 - 8conv4w-10sec4w (1/6)
 - robustness against short test segments
 - 10sec4w-10sec4w (1/10)
 - robustness against short training segments
- Not investigated, but possibly interesting
 - 10sec4w-1conv4w
 - unsupervised adaptation mode
 - no adaptation: use ‘reverse trick’ (SDV) or symmetric measure (e.g., SVM)

Conclusions

- Teaming up with alternative system developer is useful
- Feature mapping is good idea
 - microphone test conditions
 - SVM input features
- Difficult to get good results with cohort T-norming
 - best results with full set, but slow
 - for some systems, T-norming not important in fusing
- Lnknet + PAV can work together for fusion and calibration
 - PAV more consistently better in calibration (not for 1c-1c...)
- Speaker adaptation in NIST SRE tricky
 - evaluation priors not realistic to verification application
 - optimal parameter settings not very robust against SRE year
- SRE 2005 'easier' than SRE 2004