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Abstract:

We describe a novel approach to modeling idiosyitcrprosodic behavior for automatic speaker
recognition. The approach computes various durapioh, and energy features for each estimatddlsgl

in speech recognition output, quantizes the featuiorms N-grams of the quantized values, and frode
normalized counts for each feature N-gram usingosdpvector machines (SVMs). We refer to these
features as “SNERF-grams” (N-grams of Syllable-Hdasd¢onuniform Extraction Region Features).
Evaluation of SNERF-gram performance is conductediveo-party spontaneous English conversational
telephone data from the Fisher corpus, using oneersation side in both training and testing. Rssshow
that SNERF-grams provide significant performancengavhen combined with a state-of-the-art baseline
system, as well as with two highly successful loagge feature systems that capture word usage and
lexically constrained duration patterns. Furthgresiments examine the relative contributions ofdess by
guantization resolution, N-gram length, and featiyyge. Results show that the optimal number of bins
depends on both feature type and N-gram lengthisbrdughly in the range of 5 to 10 bins. We fiihtt
longer N-grams are better than shorter ones, atditch features are most useful, followed by tdareand
energy features. The most important pitch featwes those capturing pitch level, whereas the most
important energy features reflect patterns of gsamd falling. For duration features, nucleus tlomais
more important for speaker recognition than aretiloms from the onset or coda of a syllable. OvVevad

find that SVM modeling of prosodic feature sequengeelds valuable information for automatic speaker
recognition. It also offers rich new opportunities exploring how speakers differ from each other i
voluntary but habitual ways.
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1 Introduction

Conventional speaker recognitfasystems rely on spectral features extracted frerg short time segments
of speech. This approach, while highly successfaléan or matched acoustic conditions, suffensifsgnt
performance degradation in the presence of handsitbility. Futhermore, because spectral slicesrat
modeled in sequence, the approach fails to captunger-range stylistic features of a person’s spepk
behavior, such as lexical, prosodic, and discotekded habits. Modeling such long-range features i
automatic speaker recognition is motivated foreatst three reasons. First, of course, such featmes
increase performance beyond that of cepstral featifrogress in this area has already been madsnivall
number of studies (Adami et al., 2003; Doddingt@Ap1; Ferrer et al., 2003; Kajarekar et al., 2003;
Kajarekar et al., 2004; Reynolds et al., 2003; &g et al., 2004; Weber et al., 2002). It has bé&sn found
that adding long-range features can provide a targlative gain in performance when larger amouwits
training data are available (e.g., Ferrer et @03). Second, unlike frame-based features, lorayege
features reflect voluntary behavior, and as suctdcpotentially be useful not only for recognizisigeakers,
but also for recognizing characteristics of theegpe such as the speakistyle (e.g., casual chit-chat versus
argumentation versus event planning). Finally,ardtgss of the applied task, research on long-range
features should be of fundamental scientific irgert® researchers interested in understanding sppak
behavior. This should be the case in particularnme speech studied is spontaneous (as it is, leneke
individual variation is greater and reflects mooatributing factors in spontaneous than in realhlooratory
speech (Blaauw, 1994; Laan, 1997).

A large literature in linguistics has describedividlial variation in articulation and acousticsgie Hawkins,
1997; Millar et al., 1980, Perkell et al., 1997)udh of this work focuses on variation in the sp@atiomain,
such as the location of formants. In general, ithithe type of variation that we normalize out iaehers
(Johnson and Mullenix, 1997), and thus do not peecas variation in style. Stylistic variation the
temporal domain has been reported by researchathén subdisciplines, particularly in descriptatadies
of speech prosody. Such work has shown that iddali speakers show significant differences in pso
patterns, including intonation, phrasing, accembumatpitch range, and speaking rate (Barlow and Wéag
1988; Blaauw, 1994; Dahan and Bernard, 1996; Tapgmeé Port, 1998; Van Donzel and Koopmans-van
Beinum, 1997). With few exceptions the researchfbassed on fairly small sets of features, and arot
discerning feature relationships; however, it hesvigled a useful starting point for the developmeht
potential features in this work.

Previous work in linguistics (Sussman et al., 1988well as in automatic speech recognition (Addaker
and Lamel, 1999; Weintraub et al., 1996) has alsonined what happens to pronunciation patternsrunde
different speaking conditions (e.g., reading veisuesaking spontaneously). Again, the focus hadeeh on
discerning feature relations or uncovering speakecific styles, but the studies provide informatio
relevant to features at the level of pronunciatioat might show individual differences. Finallysmall
number of additional studies have revealed oth&reésting ways in which speakers differ, including
variation in disfluency production (Lickley, 1998trangert, 1993).

In this paper we describe a new approach to maglediosyncratic stylistic prosodic behaviors fot@muatic
speaker recognition, first introduced in a moreitieh study (Shriberg et al., 2004). The approaeard
most similarity to past work by Adami et al. (200@ho modeled a small set of pitch, energy, ancititom
patterns using a bigram language model. In thiskywe compute a much larger set of prosodic feature
associated with each syllabiyl{able-basedhonuniformextractionregionfeatures, or “SNERFs”), and then

! In the literature, the term “speaker recogniti@tised to refer to both (open-set) speaker vatifio and (closed-set)
speaker identification. In this paper, we use “&peaecognition” to refer to “speaker verification”
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model counts of syllable-feature sequences (“SNBRIfS”) using support vector machines (SVMs). We
evaluate the approach on development data fortaraysubmitted to the NIST 2004 Speaker Recognition
Evaluation (SRE). The task is a speaker verificatask, in which one side of a short telephone emsation

is provided for training the speaker model, anila fom a different conversation is used in tegtin

The outline of the paper is as follows. Sectione3atibes the speech datl), the automatic speech
recognizer used2(2), support vector machine®.3), a state-of-the art cepstral systetmt), the SNERF-
gram system2.5), and two other state-of-the art systems wilttictv the SNERF system is combined—an
SVM-based word N-gram systen2.§) and a GMM-based lexically constrained duratiystem 2.7).
Section 2.8 describes system combination. SectBpresents results, including results by quantipati
resolution 8.1), by N-gram order3(2), by feature type and subtyf#3), and finally for combinations of the
SNERF system with the cepstral baseline system taodother noncepstral system3.4). Sectiond
discusses future work and conclusions.

2 Method
2.1 Speech Data

We used 2564 5-minute conversation sides from isleeF corpus of two-party telephone conversations o
various topics. We divided the Fisher data set ihtee independent subsets without overlappingkspsa

as shown in Table 1. The data set was designedllasv§. We separated the speakers into two sets: 1)
speakers with only one recording, and 2) speakérsmore than one recording. The first set was used
create the background model. The second set veaisasstest data. The test data set was furtherirgjli

two gender-balanced sets, which we also refer tg@is”. We use one split to train TNORM (see @t
2.3.2) and to train the combiner (see Secfd), when testing on the other split. Test setstlie one
conversation side training condition were desigasdollows. Given a set of conversation¥ from one
speaker, each conversation was used to create asatespeaker model. Thus the number of models
estimated for that speakerrisEach model was tested against all the conversatates excluding the one
that was used for training that model. Thus thaltetimber of possible target trialsng-1) We used only

a subset of the possible trials in our experimente subset was selected in order to create agestmilar

in composition to NIST evaluation sets in termshaf ratio of imposter to target trials, and to e a mix

of channel and handset conditions. As indicatedusesl only half of the original conversation sidedth

in our development sets, in an attempt to matclatieeage duration of a conversation side in theTNAG04
evaluation data (about two and a half minutes).

Background, Test | Test
Model Setl| Set 2
Conversation sides 1128 734 702
Unique speakers 1128 249 249
Imposter trials - 131309153
True speaker trials - 1508 1328
Average original side length (minutes) ~5 ~b ~5
Average side length used (minutes) ~5 ~25 ~p5

Table 1: Statistics on Fisher data sets.

We chose to use data from the Fisher corpus, rétlherdata from either the Switchboard (NIST 2006d a
2002 Extended Speaker Recognition Evaluation adatggus or Mixer (NIST 2004 SRE data) corpus, far th
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following reasons. First, the Fisher set contaimaigure of land-line and cellular phone data, kalthe
Switchboard data used in previous evaluations. i@kdbe Fisher corpus is more than twice the sizbe
Mixer data used in the 2004 evaluation. Third, ¢hleais been significant development on Switchbdawth(
Switchboard 1 and Switchboard 2) in past work, whsrthe Fisher data is less familiar and therefaree
challenging. To illustrate the relatively high faitilty of the Fisher data, we provide in Table 2 a
comparison of equal error rates (EERs) for differgata sets, using a roughly comparable (but not ou
latest) baseline system across corpora.

Datasets Drawn From Number of Training Equal Error Rate
Conversation Sides (%)
Switchboard 1 8 0.9
Switchboard 2 8 2.3
Switchboard 2 1 6.3
Fisher 1 8.4
Mixer 1 11.3

Table 2: Comparison of performance of a similasélane-only system across corpora, to illustrate
the relative difficulty of the Fisher data set usente.

As shown, Switchboard 2 is more difficult than Shthoard 1; this is generally thought to be attable to
greater dialect variation in the former. The Fisdataset is even more difficult than Switchboardn2;
addition to dialect variation, it also contains mdelephone channel variations. In our experimentilts
on Fisher have tended to generalize to the NISM2BRE data, in spite of the fact that the lattérise
considerably more difficult than Fisher (Kajarekaal., 2005).

2.2 Automatic Speech Recognition

Our features make reference to the time marks egedowith a speech transcription. Some features) as
duration features, which are normalized by thepeted values given segmental information, alsotlise
word hypothesis information itself. Since our sys$emust be fully automatic, we use the output of an
automatic speech recognition system to obtain lgsited words and their associated sub-word-léwvel t
marks. Note that an interesting issue here isth&abest speech recognition system as measutethis of
word error rate (WER), may or may not be the bgstesn to use for obtaining hypothesized words and t
marks for the task of speaker recognition. We Haued in different work using Gaussian mixture ralsd
(GMMs) to model word-, phone-, and state-level doramodeling, for example, that in some cases,emor
errorful speech recognition results in betsgreakerrecognition performance--presumably because the
patterns of speech recognition errors themselvgscmaelate with speakers.

For this work, all of our higher-level features éased on a decoding that uses a version of SiRd'sifnes

real time conversational telephone speech recognitystem (Stolcke et al., 2000). The system usekeln
developed for the NIST RT-03F evaluation. It isirte@l on Switchboard 1, some Switchboard 2, and
CallHome English data, as well as on Broadcast Newvasweb data for the language model. No Fisher dat
was used in training the ASR system. A speechperth hidden Markov model (HMM) was used first to
detect regions of speech; the speech regions #testdd form the basis of all processing, includheg of

the baseline speaker ID system. The system theorped one forward/backward decoding pass with a
bigram language model (LM) over a 37k word and 2Ktiword vocabulary, and gender-dependent within-
word triphone genonic (bottom-up state-clusterechuatic models trained with the MMIE criterion, to
generate word lattices. Front-end processingiatstage used Mel cepstral processing, vocal tesgth
normalization, and model-based HLDA. The model rsearre adapted to each conversation side using
MLLR without prior recognition, based on a phoneflanodel. Following the first recognition passtitas
were expanded and rescored with a 4-gram LM torgémedaptation hypotheses. These were then ased t
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adapt a second set of models based on PLP andlipgdsand MLLT transformed features, and using cfoss
word triphones. The adapted models and a trigratiivaoud LM were used to generate N-best lists. Sehe
were then rescored with a 4-gram LM, pronunciatioodels, a pause-LM, and a phone-in-word duration
model. All scores were combined and the 1-besbthgsis was obtained by decoding confusion networks
built from the N-best lists.

Two different versions of the ASR hypotheses aighatents were produced. The first version corredpon
to the output of the first decoding pass, whichdugéthin-word MFCC triphones and a bigram language
model. It had a word error rate of about 29% ondai& used here. The second version was the{dass-
recognition output, which uses cross-word PLP tigs rescored with a 4-gram language model asasell
other knowledge sources. This version had a waat eate of roughly 21%.

2.3 SVM Modeling

2.3.1 General description

SVMs, which are now widely used, were first introdd by Vapnik (1995). They are a class of binary
classifiers that have been shown to have good gkretion performance and robustness to increasimgt
feature vector size. Features in text categodmatasks tend to be vectors of statistics, typjichligram
statistics such as raw or scaled relative freq@snciSince the number of N-grams for even modegksta
tends to be enormous, SVMs have been found to keydarly well suited to text categorization tasks
(Joachims, 1998). In fact, Yang and Liu (1999) pared a number of text categorization methods and
verified the claim in Joachims (1998) that SVMs acenpetitive, if not better, than other classifidisy
considered. The other classifiers included kNN €knest neighbors), Naive Bayes, and artificial aleur
networks. Further motivation for the use of SVMsnes from work by Campbell et al. (2004), who réigen
applied the approach to phone-based speaker atidic Since a significant amount of work in theld
uses SVMs for speaker verification, we expect dwiae of this classification paradigm to also make
work easier to compare and contrast with otheripétl experiments.

A unique and desirable feature of SVMs, which gbem apart from conventional hyperplane-based
classifiers, is that they seek to find the hypearplthat has the maximum margin (distance from eith¢he
convex hulls that enclose the positive and negataiaing instances). Vapnik (1995) showed thaemwthe
classifying hyperplane is defined this way, the amppound of the expected value of the error on an
identically distributed test corpus is minimizedn &xcellent tutorial on SVMs can be found in Burges
(1998), to which we refer the reader for furthetade. However, we provide below a very brief axew of

the theory behind SVMs, as a motivation for theneavork used in this research.

Suppose that our instances consist of feature rgexfowith their associated classgd{+1,-1}. Then a
hyperplane classifier is defined by
f(x) = sgnfwv-x + b)

wherew is a weight vector anldis a scalar bias that allows the hyperplane toffset from the origin. The
optimal hyperplane has the maximal margin of semardetween the two classesypfand it can be found
by solving a constrained quadratic optimizationlgbean using any of a number of standard numerical
toolkits. The remarkable extension to this basienfework offered by SVMs is that it is possible tapthe
input feature vector to a possibly higher dimenai®pace via some potentially nonlinear transfoionat
perform the linear classification therein, andl sgtain the mathematical validity of the correcdmeesults
and bounds that hold in the input space. The foam&d space, which is often referred to as théufea
space (in contrast to the input space), can bgitefdimensional and yet be tractably used by madaimg
variables in the lower and finite dimensional inppace. We note however that because we endedngpaus
linear kernel in this work, as described in thetreection, our classification happens in the irgp#ce itself;
the significant feature of SVMs that we exploit énés thus simply the maximization of the classtiima
margin.
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2.3.2 Application to our noncepstral systems

As noted earlier, our task is to classify a giveppexh sample as coming from either a target spesikamn
imposter. We do this by taking the value of theislen function output by the SVM classifier for éac
sample, which is the distance of the sample from dhassifying hyperplane. The actual decision
(target/imposter) is made by choosing a thresheler éhe range of the SVM outputs, using a held-out
development data set and determining on which afdie threshold a given sample’s decision function
mapping lies. We could have chosen instead torgemerobabilities, which are intuitively more apfieg.
There was no clear evidence, however, that sucletaad outperforms the baseline. Indeed, maxinaum
posteriori classification using a sigmoid after the SVM isiealent to classifying using a threshold as we
have doné. Alternately we could have used SVMs in regressimue to fit output values of -1 and +1 for
imposters and targets, respectively. Again, we dono convincing experimental evidence that such an
approach outperforms one in which the decision tiancis used directly. For a similar reason, weoals
decided to use a linear kernel over more complerets, after several exploratory experiments shomed
clear advantage of the latter.

In our experimental setup, each training or tesiveosation side was assumed to provide a singlet poi
the hyperspace. The coordinates of the point wesaraed to be given by the feature vector givenily o
noncepstral system. For practical reasons, we tdas®the complete set of features. Instead, veetstie
most frequent N-grams occurring in the backgrourwdieh training data. Subsetting the set of featimes
this way is not uncommon in the field. For exameddington (2001) used a subset of the all word-
bigrams that occurred at least 200 times in ordeimplement a word-bigram-based speaker verificatio
system. Subsetting has the dual advantage of makengroblem tractable and simultaneously allowisg

to filter out information that we intuitively fe@b be useless to the problem at hand. During trgineach
true speaker vector is assigned to the class 'arid,each imposter is assigned to the class "-1ie Store
assigned by the SVM to any patrticular test triabwee Euclidean distance from the separating hyaeeo
the point that represented the particular triathwiegative values indicating imposters. Finabgres were
normalized using TNORM (Aukenthaler et al., 200@fdoe being thresholded. TNORM is an impostor-
centric score normalization method. The assumpsidhat the variation in the test duration introgsia bias
and a variance in the scores. To get a better aiwf the score distribution, the score of eadl ts
normalized by a mean and a variance, which arenatd by scoring the same test file against a fset o
impostor models. Note that these impostor modedseatimated for each test split from the speakethe
other split.

We used the SVMLite toolkit (Joachims, 1998) touoe SVMs and classify instances. In view of the
extreme skew in the distribution of classes intth&ing data (1128 imposter samples versus ongytarget
sample) we also used a bias of 500 against midfitas®n of positive examples, a number that wigiaity

set to be the ratio between the number of poskive negative examples, subsequently refined through
experimentation. We tried to ameliorate the reatpaucity of positive examples by creating pseudo
instances through sampling from subsets of contiersaides belonging to the positive class. Thatie
divided each conversation side into several subsation sections and thus obtained multiple pasiti
instances where previously a single instance ordylev have been available. We gained no significant
improvement, however, from that approach, and thdisiot use it in the experiments reported here.

2.4 Baseline System

Our baseline cepstral Gaussian mixture model (GMygtem (after Reynolds, 1995) uses a 300-3300 Hz
bandwidth front end consisting of 19 MEL filters. domputes 13 cepstral coefficients (C1-C13) with
cepstral mean subtraction, and their first- andsearder differences, producing a 39-dimensiogature

2 We thank an anonymous reviewer for this point.
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vector. The feature vectors are modeled by a 2048onent GMM. The background GMM is trained using
gender- and handset- (electret, carbon and celghbalanced data. Target GMMs are adapted from the
background GMM using MAP adaptation of the meanstld Gaussian components. For channel
normalization, the feature transformation descriibe®eynolds (2003) is applied using gender- antibet-
dependent models that are adapted from the baakgrawdel. Verification is performed using 5-best
Gaussian components per frame, selected with regp#te background model scores.

2.5 SNERF-Gram System

The SNERF-gram system employs a novel approachottehprosodic information, and thus for clarity we
provide an overview of the approach in Figure epS in the figure are further explained in thetises
below. It is of particular importance to note thia¢ final features provided to the classifier hased on
counts(of specific prosodic feature sequences), rathan ton the values of prosodic features themselves.
We will use the term “feature” to refer both to podic features and to the final values (based omtsoof
N-grams of discretized prosodic values) input ®$VM; the distinction should be clear from context

Compute Syllable-Level Prosodic Features

Syllabify recognizer output; extract duration, giteenergy measures within each syllakt
compute various features. S€ection 2.5.1.

!

Discretize Features

Create X equally-filled bins; X =2, 3,5, 10, 3®).Section 2.5.1.4.

!

Create N-Grams

For each syllable-level feature, concatenate diszee values for N consecutive syllable
(counting pause as a syllable); N = 1, 2, $ection 2.5.2

!

Obtain Conversation-Level N-Gram Frequencies

W ithin each conversation side, obtain count for leapecific Ngram; divide by tote
number of syllables in conversation sideection 2.5.2

!

Rank-Normalize N-Gram Frequencies

Use background data distributions to map N-grangé@rencies to a uniform distribution
and obtain comparable dynamic ranges across featumgut to SVM.Section 2.5.3

!

Prune Feature List

Prune based on overall feature frequency or othigeda. Sections 2.3.2 and 3.1.

Model Features Apply TNORM Combine
Using SVM > to Scores > Scores
Section 2.3.2. Section 2.3.2. Section 2.8.

Figure 1: Overview of SNERF-gram modeling

2.5.1 Syllable-level features
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To obtain estimated syllable regions, we sylladifiae output of the speech recognizer using ‘tsylb2
(Fisher, 1995), a program that uses a set of huwrested rules that operate on the best-matchedmacy
pronunciation for each word. For each resultindgfyé region, as illustrated in Figure 2 , we abtahone-
level alignment information from the speech recagniand then extract a large number of featulesece
to the duration, pitch, and energy values in thialshe.

“REMEMBER”
|II;I||1|}J |I | ITlllF) IIIIIeIrlllll
V7 v N
r 1y m_eh m b er

A

onset nucleus coda

Figure 2: lllustration of syllabification based @acognizer output. The smallest units indicated are
10-millisecond frames. The minimum frame coungafigphone models is 3.

The duration features are obtained from recograignments. Pitch is estimated using get_fOfunction

in ESPS/Waves (Entropic, 1993), and then post-grmak using an approach adapted from Sénmez et al.
(1998). The post-processing median-filters thetpiaind then fits linear splines, and producesptsterior
probability of pitch halving and pitch doubling feach frame using a log-normal tied-mixture model o
pitch. The model also estimates speaker pitch r@agameters used for normalization. Energy featares
obtained using the RMS energy values from ESPS/¥/aaned post-processed to fit one spline for each
segment obtained from the pitch stylization. Weertbat while we used this approach to energyzstiitin

for convenience, we are aware that the approashhbsptimal, since the stylization assumptions aset

on characteristics of FO rather than of energy.sThwe expect that if there is any benefit to suchdely
stylized energy features, a better-fitting algaritivould only yield improved results. After extrawti and
stylization of these features, we created a nurobduration, pitch, and energy features aimed pturang
basic prosodic patterns at the syllable level. Miogivation for computing features that are higtdyrelated
(differing, for example, only in normalization, Inimg, or N-gram length, as described below) is tratdo

not know ahead of time which versions of a feanebest given robustness issues, or how thoserésat
interact with other features.

2.5.1.1 Duration features

For duration features, we use five different regiam the syllable: onset, nucleus, coda, onseteusgl
nucleus+coda, and the full syllable. We obtain dioeation for that region, and normalize it usingeth
different approaches for computing normalizaticatistics based on data from speakers in the backdgro
model. We use instances of the same sequence oéglappearing in the same syllable position, theesa
sequence of phones appearing anywhere, and instafidbe same triphones anywhere. We cross these
alternatives with four different types of normatina: no normalization, division by the distributionean,
Z-score normalization ((value-mean)/st.dev), anctgtile, as shown in Figure 3. Note that Figur@s

well as Figure 4 and Figure 5 to follow) is meantyoas a convenient schematic to illustrate thesibdes
features. Not all combinations of region, measarg] normalization are used, because some combhisatio
are ill defined or do not make sense.
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Normalized by
duration statistics
{from background

model data)

Duration of Normalization type
Same phone
Onset sequence, None
anywhere
Nucleus i Divide by mean
Same phone
Coda < equeEc e in Subtract mean,
Onset+Nucleus same position divide by st.dev.
Nucleus+Coda Same triphone Percentile
Syllable anywhere

Figure 3: Duration features.

2.5.1.2 Pitch features

The overall framework for the computation of pifelatures is illustrated in Figure 4.

Normalization
) Measures None
In region N
Syllable v Divide by mean
ean
Syllable (no H/D) : Subtract mean
Min Subtract mean,
l Max - Min divide by st.dev.
Filter :
# F/R/D/H/V frames Percentile
Raw
Median Length first/last slope None
Stylized # changes in pattern \ Divide by. region
: duration
First/last slope
Divide by #
A 1 i
VeTase Tope voiced frames

Max +/- slope

Figure 4: Pitch features. “/” indicates separatersions of features; “#” = number of; V = voiced,
H/ D = estimated pitch halving/ doubling using LTibdel, F/R = falling/rising frames = frames
within a falling/rising linear spline from FO fittig; pattern = sequences of automatically labeled
F/R/H/D frames after collapsing multiple adjacerarfie labels.

We use two different regions: voiced frames inshable, and voiced frames ignoring any frames=e
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to be halved or doubled by the pitch post-procesdiescribed earlier. The pitch output in theseoregiis
then used in one of three forms: raw, median-Blieror stylized using the linear spline approachtinaed
earlier. For each of these pitch value sequenees;ompute a large set of features: maximum pitodan
pitch, minimum pitch, maximum minus minimum pitchnumber of frames that are
rising/falling/doubled/halved/voiced, length of tfikst/last slope, number of changes from falligey value

of first/last/average slope, and the maximum pessitiegative slope. The first four features are rabzad

by five different approaches using data over thele/tonversation side: no normalization, dividenbgan,
subtract mean, Z-score normalization, and pereentdlue. The features involving frame counts are
normalized by both the total duration of the regand the duration of the region counting only vdice
frames.

2.5.1.3 Energy features

For energy features, we used four different regitms nucleus, the nucleus minus any unvoiced feathe
whole syllable, and the whole syllable minus anyaiced frames. These values were then used to wemp
features in a manner similar to that describegfimh features, and as shown in Figure 5. Note hewthat
unlike the case for pitch, we did not include umnalized values for energy, since raw energy magegu
tend to reflect characteristics of the channelaathan of the speaker.

_ Measures Normalization
In region
Max Divide by mean
Nucleus
_ Mean Subtract mean
Nucleus, no unvoiced )
Min Subtract mean,
Syllable Max - Min divide by st.dev.
Syllable, no unvoiced Percentile
l # rising/falling frames
. None
Filter # changes in pattern \ Y .
Raw First/last slope Rk dirai;;‘iglon
Stylized Average slope .
¥ T £C S0P Divide by #
Max +/- slope voiced frames

Figure 5: Energy features.

2.5.1.4 Syllable-level feature discretization

Because we use count-based features in the SVMImgdg is necessary to discretize the duratiatchp
and energy features just described. Since we tlknmva priori where to place thresholds for binning the
data, we try a small number of different total baunts (2, 3, 5, 10, 30, 60), creating severaldinversions
for each feature. In each case, we attempt to atiger evenly on the rank distribution of values floe
particular feature, so that resulting bins contaoghly equal amounts of data. For some featums, f
example discrete features having a small numbeliftdrent values, we use a smaller number of bins t
avoid having bins with no data. In the case of mnsually frequent value, we allow that value toéhenore
mass (i.e., we do not split identical values ackoss). We assign a separate bin for any inherenifging
values, for example, values for pitch featuresriydyllables without any detected voicing.
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2.5.2 Sequences of discretized syllable-level featuregréihs)

Each resulting syllable-level feature, for each k@eolution, is then also modeled in three ways$gram
(current syllable only), bigram (current syllabledgprevious syllable or pause), and trigram (cursgtiable
and previous two syllables or pauses). Pausesmirasenteresting case in this approach. Althoungy tdo
not contain pitch or energy information, we do waint to ignore them. They provide useful conditign
information when present in the longer N-grams, pravide the priors for pause occurrence when ased
unigrams. We thus needed to come up with a binapggoach for pauses. Currently we simply bin pause
into short and long pauses, with a threshold afrdfies, across all features. Clearly this is @a avhere
future work on threshold tuning is likely to be pifell; it may also be the case that different apphes to the
binning of pauses should be used for differentsygfefeatures.

The resulting number of different observed N-grgmisere an N-gram is a sequence of specific bineslu
for a specific feature) is large—on the order o€ anmillion. For each N-gram, we count the number of
appearances of that N-gram and normalize that coyrbe total number of syllables in the convemsati
side. After pruning of the N-gram list according frequency and other criteria (see SectBh), the
resulting values are provided to the SVM.

2.5.3 Rank-normalization of normalized counts

In order to map the N-gram frequencies to a unifdrstribution and obtain comparable dynamic rarfges

all feature dimensions we apply a slightly modifiegtsion of a technique known as rank normalization
The feature value distribution for each featuréhie background data is recorded. In testing, aifeatalue

is replaced by its rank, i.e., the total numbebaékground data instances that fall below the gixadne on
that dimension. The rank is then divided by thaltaumber of background instances (1128 in our,dhse
number of speakers in the background set). Thetireguormalized value lies in the closed interfraim O

to 1. Zero values, which correspond to instancewtiich a speaker has no occurrences of a parnticula
prosodic feature sequence, are each mapped toT4g@sopreserves the sparseness of the featurerseeto
important consideration for efficient processinghafh-dimensional feature vectors. More importaotthe
extent that the test samples conform to the digiob of background values, the resulting normalize
distribution will be uniform. Another intuitive wato understand rank normalization is that theedéhce
between any two normalized feature values corredpém the percentage of background speakers who fal
between the two values. Thus, feature value diftege are amplified in regions of high populationsiey

and compressed in those of low density.

2.6 Word N-gram SVM System

The true test of the utility of the SNERF systemidssee whether it provides complementary inforomati
beyond that already modeled by effective systemeldped in past work. Here we present two addition
systems, each of which has consistently improvetbpeance under a variety of conditions (differenae

data sets, amount of data, and other models witbhithey were combined). The first of these veoad N-

gram system. The word N-gram-based SVM systenréent extension of work on idiosyncratic word N-
gram usage, which was first explored in a languagdeling approach by Doddington (2001). These exarli
language models, however, were not optimized fecrdnination among speakers, since they were taine
with the maximum likelihood criterion. Following éhsame approach as used for the SNERF system, we
constructed speaker-specific word N-gram modelsguSVMs.
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The word N-gram SVM operates in a feature spacergby the relative frequencies of word N-gramsim t
recognition output for a conversation side. Eaclgrin corresponds to one feature dimension. We
considered all N-grams up to length three as piatleinfput features, and selected those that ocdurmrere
than once in the background training set. This Iteguin roughly 150 000 N-grams. The 150 000-
dimensional feature space is feasible since iteig/ wsparse: only a few N-grams occur in any given
conversation side. As was done for the SNERF-gggstem, the N-gram frequencies are rank-normalized
and modeled in an SVM with a linear kernel, withbias of 500 against misclassification of positive
examples. These scores were also TNORMed.

2.7 GMM Duration System

The second noncepstral system we include herehighdy successful prosodic system, described inemor
detail in Ferrer et al. (2003). This system, whishactually a combination of three individual dioat
systems, uses Gaussian mixtures to model a speakiesyncratic temporal patterns in the pronuiaiadf
individual words, phones, and subphones (stateg)as inspired by previous work on similar featunesd
for improving automatic word recognition (Gadde0@p

Three different types of features are created:

1. Word features that contain the sequence of phoretidos in the word, and
have varying numbers of components depending onuh#er of phones in
their pronunciation. Each pronunciation gives risea different feature
space.

2. Phone features that contain the duration of cofitelépendent phones; these
are one-dimensional vectors.

3. State-in-phone features that contain the sequehkE®i® state durations in
the phones. Since our recognition system uses -gtadée phone HMMs
throughout, all feature vectors are three-dimeraion

For the extraction of these features we used &a&d-alignments from the recognizer describedieardFor
each feature type, a model is built using the bamkyd model data for each occurring word or phone.
Speaker models for each word and phone are theinebtthrough MAP adaptation of means and weights
of the corresponding background model. During nestihree scores are obtained, one for each feptpee
Each of these scores is computed as the sum tddHikelihoods of the feature vectors in the tatserance,
given its models. This number is then divided by tlumber of components that were scored. The stwle

for each feature type is obtained from the differefvetween the speaker-specific model score and the
background model score. This score is further nbzedusing TNORM. The three resulting scores can b
used in the final system combination either indelgertly, or after a simple summation of the threeres.
Since results are similar using either approachyseethe single summed version here.

2.8 System Combination

We used split 1 of the data to train the combioersplit 2, and split 2 to train it for split 1. Fa given trial,
our GMM-based systems output the logarithm of tkelihood ratio between the corresponding speakdr a
background model, and our SVM-based systems ouhmutdiscriminant function value for a given test
vector and speaker model. This output, or score, iisal-valued number. Our final decision is magle b
combining the scores from individual systems. Toal @f the system combination procedure is to coebi
the N individual score vectors (where N = total t@mof trials) from the M different component systg
while minimizing the overall error. In our systerambination, we minimize equal error rate (EER){har
error rate at which the number of false alarmgjisakto the number of false rejections.
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We experimented with different approaches to matthbination, including majority voting, simple
weighted sums, error-correcting codes, decisiogsir&VMs, and maximum entropy models. We found that
a simple neural network combiner with no hiddenetagnd sigmoid output nonlinearity, a common
combination approach in the field, yielded restitat were as good as results obtained using ther oth
approaches just mentioned. Therefore, we repauttselsere for the neural network combiner only. Wéée,
however, that there are known suboptimalities whging this approach under certain conditions, duad t
further research in this area is certainly warrdnte

3 Results and Discussion

We present results based on a pooling of resuts froth test splits. In all cases, we use EERrastac. It

is worth noting that another metric, the detectamst function (DCF) is also used by NIST in speaker
recognition evaluations. Because the DCF assigossaito the different error types, and is spedifica
particular application, we focus only on the EEReh@nd accordingly optimize our results for thatnmac.

3.1 Results Relevant to Pruning: Effects of Binning andN-gram Order by Feature Type

As noted earlier, a goal before supplying feattioethe SVM is to prune the large feature list tanimize
computational load. It is also useful to prunddess that add noise or may be detrimental to padace.

As a first (albeit heuristic) pruning, we considei@nly the 100 000 most frequent features, disogrthe
rest. This pruning corresponds to an average mimnof six occurrences of each feature in each
conversation side in the background model. In érparts not shown here, we found that we did not los
performance if we removed the divide-by-mean noizatibn for duration features, and if we removed th
non-percentile-based normalizations for all featu(kept only raw and percentile-based values). All
experiments reported here thus omit these spdeditires.

We were particularly interested in the issue ofrization level. Alternative binnings of the saneature
are obviously highly correlated, and it is likelyat each feature type has a “sweet spot” in terfrthio
factor. We should thus be able to considerablynrihe list of features by omitting binnings theg &0
detailed, since having large bin counts combineth higher-order N-grams dramatically increases the
number of final features. Through experimentatiee,found that rather than use only a particular Ioemof
bins, or that number of bins plus all coarser bigsj it is better to use the following approachur & given
feature N-gram and a given maximum bin count, idelnext-coarser binnings only until reaching thipo
at which about 90% of the feature sequences faoibihaing value are present in our list of the DO@ most
frequently occurring N-grams. Once this constrar#atisfied, omit the remaining coarser binnings.

Using this approach, we ran experiments breakingndine set of features input to the SVM by maximum
number of bins, by N-gram order, and by featureetyguration, energy, or pitch). Results are shawn
Figure 6 Each data point corresponds to an experimentcrmiiains a particular subset of the full set of
features computed. All results have had TNORM agbli
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Figure 6: Results by maximum number of bins, N-goader, and feature type. Curves for bigrams and
trigrams do not include data for higher binningsedo data sparsity.

3.1.1 Results by N-gram order

A first observation is that overall, performancepnoves with higher-order N-grams. We can interpinet
as indicating that local context in prosodic sylkakevel features is important for distinguishiradkers. For
example, two speakers may have similar convers#iagl histograms of duration values, but one speak
may alternate durations from syllable to syllablbjle the other may speak quickly in some utteraraed
slowly in others. Higher-order N-grams suffer frdata sparsity, however, and thus in some caseteshor
grams can outperform longer ones for certain maminfinning values. This is the case for the duratio
features, where bigrams outperform trigrams starinthe maximum bin value of 10. Energy featsteswy

a different pattern, with bigrams approaching tleefgrmance of trigrams at a bin value of 5, but abt
higher values.
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3.1.2 Results by quantization level

Results show that across the board, moving frong 8nfo 5 bins results in sharp gains in performance
clearly, 2 or 3 bins is too crude. In the casehef all-features condition, the optimum maximumniig
resolution (given the bin values we ran here) mual30 for unigrams and bigrams, and about 5 fgrams.

If we look at individual feature types, howevere thicture is quite different. Duration features \sha
leveling off in performance at about 5 or 10 biwih the exception of a poor result at the valud®fbins

for unigrams (yet unexplained, but apparently & taffect). Energy features, however, show marked
degradation in performance for unigrams after aibigp of 5; pitch features show a similar behaviberaa
binning of about 30. Both of these features areriahtly noisier and more variable than is duratasseen

in particular in the case of the unigram results.

Based on these observations, we chose to useltbeif@g maximum number of bins by type and N-gram
order (unigrams, bigrams, and trigrams, respe@jv80, 10, and 5 for duration; 5, 5, and 5 forrggeand

10, 10, and 5 for pitch. After applying the vasopruning methods just described, we ran the dveral
SNERF-gram system. The resulting EER was 11.18%.

3.2 Results by N-gram Order for Pruned System

A careful reader will notice that iRigure 6 performance for the trigrams-only system appreacdhe result
just reported for the pruned system using all Nvgtangths (11.18%). Thus, we may ask whether it is
important to include lower order N-grams in thetegs at all. To address this question, we starti¢hdl tve
pruned system, and selectively removed particultgradin lengths (collapsed over type and binning esjlu
to produce results for the complete set of possibiebinations. Results are shown in Table 3.

Feature Length(s) Included EER (% Significantly

Different From

(a) Unigrams 13.68 b,c,defg

(b) Bigrams 11.64 a, defg

(c) Trigrams 11.50 aefg

(d) Unigrams + Bigrams 11.32 ab

(e) Unigrams + Trigrams 11.32 a,b,c

(f) Bigrams + Trigrams 11.28 a,b,cg

(g) Unigrams + Bigrams + Trigrams 11.18 a,bcf

Table 3: Results for pruned system for differergraim order combinations. Significance is evaluated
in a McNemar matched pairs test, at 95% confideismmre-level combination results are for best
found combination of systems (a) through (g), usmmgbiner in Sectiof.8.

As shown, unigrams alone perform significantly veotisan all other conditions; this is expected gitlen
trends seen earlier for the unpruned system resulgure 6. Also as expected from the earlieultes
longer N-grams are better than shorter ones. \ghateresting about these results is that in tavfriSERS,

all other conditions peform fairly similarly—whicimight lead one to just choose a condition with fewe
lengths—and yet many of the differences in EER sigaificant. For example, the system including all
lengths (g) differs from that including only bigrarand trigrams (f) by only 0.1% EER, and yet thenfer is

a significantly better system. Even systems wlid same EER (d and e) differ in terms of which othe
systems they significantly surpass. Although ibfisccourse easier to reach significance in a matgaas
test when the systems compared are highly cortklabese results demonstrate that different N-gram
lengths make systematically different errors. T$uggests that some gain might be obtained by ogeati
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separate SNERF subsystems based on different Ndgragth combinations, and then combining outputs at
the score level. We ran this experiment, and indbedapproach leads to an improvement. A scord-leve
combination of systems (b), (c), (e), (f), and (gults in 10.90% EER. Clearly more work can beedo
along these lines, but to keep things simple, diugher analyses in this paper we use the besispming
system from Table 3, i.e. the system that incladel-gram orders (g).

3.3 Results by Feature Type and Subtype

A main interest in our analyses of results is tdaratand which feature types contribute most taave
performance. Such analysis can lead to the desippetter features, as well as to new hypothesdmsic
science about how speakers differ stylistically.tHis section we again start with the pruneddfsteatures
described ir8.1, but this time selectively include or removet@ia types and subtypes pfosodicfeatures.
For each main prosodic feature type (duration, gnesind f0), we ran an experiment including onlgtth
feature type. In addition, within each featureetype defined subtypes of features. For examplepitch
features we created groups such as pitch “levefiximum, mean, and minimum pitch in the syllabléfchp
“slopes” (determined by the fitted splines desdatibarlier), “voicing” features, and so on. A contplbst of
the subtypes is given in the caption of Figure fictv shows results for each of the three main fedtypes
alone, followed by numbered experiments in whicbheaf the subtypes is selectively removed from that
main feature type.

o N
o =}
T T
1 |

=N
(@]
T
I

Equal Error Rate (EER) in %

14 .
Dur D1D2D3 Energy E1 E2 E3 Pitch P1 P2 P3 P4 P5P6
Features Present

Figure 7: Performance of systems by feature typd ambtype. “Dur’= include duration
features only, “Energy’=include energy features pnl‘Pitch”=include pitch features only.
Numbered conditions refer t@moval of subtypes of features within each category,oilew.
D1=remove whole-syllable duration features, D2=remmucleus-related features, D3=remove
onset and coda features. El=remove energy leveturess E2=remove slope features,
E3=remove fall-rise pattern features. Pl=removdclpi level features, P2=remove slope
features, P3=remove slopes at syllable edges oBR¥sremove halving/doubling features,
P5=remove fall-rise pattern features, P6=removetdieas related to ratio of voiced to unvoiced
frames. Significance results are provided in the.te

A first observation from Figure 7 is that experirtgethat include features from only one main featype
(duration, energy, or pitch) all perform signifitlgnworse (as verified in a McNemar matched pagést &t
95% confidence) than the all-features system (EEHR..28%) described earlier. Pitch features protide
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most information, since pitch alone achieves tiveelki EER of any feature type alone. The importasfce
pitch is further supported by additional experinsefmot shown in Figure 7), in which a main featiyye is
removed from the all-features system. Removingrg@gndeatures degrades performance to 11.53%,
removing duration features degrades it to 12.94%,ramoving pitch degrades it to 13.72%. Figuaso
shows that after pitch, duration is the next maesful feature type.

The numbered subtype experiments reveal furtherdsting details on feature importance. In the cdse
duration, all three conditions (“D1”, “D2”, and “D@differ significantly from the all-duration contitbn.
The most important duration features for distinging speakers involve the duration of the syllahleleus.
This is followed by features reflecting duratiorisoasets and codas, and finally by features cangisif the
whole syllable. It is not surprising that vowelso®s more absolute variation, since this is predicte
phonetically, but it is interesting that this i timformation that is most discriminative amongasges. The
pattern also suggests that the durational infoonatiaptured is more robust when using less phonetic
context. This may be due in part to the fact thable syllables occur less frequently than do siélgdarts
(allowing the former to be more robustly estimated)d also to some relationship between unit sizkeN:
gram length. In considering the latter, it is wontbting that in Sectio.1.1 we found that duration features
are at their best when modeled as bigrams. It wel) be that speaker-specific patterns for conseeut
syllables are most robust when considering onlyrtheleus in two consecutive syllables, rather ttren
complete syllable lengths.

In the case of energy, removal of any of the sugsyfsom the all-energy condition leads to significa
degradation. The most severe degradation is se@83/', in which features related to the rising datling
pattern features have been removed. These rise$alie are independent of the absolute energyl lave
speaker is in, and thus form a rather striking @sttto results for pitch (below) in which just thpposite
result pertains (what is most useful there is rangérises and falls). It is also worth notingttkhe pattern-
based rise and fall features come from the adnjttedide spline-fitting algorithm described earli@ihe
approach nevertheless seems to capture usefulindiisative information about energy patterns; better
techniques for fitting energy patterns are likeyhly improve results.

Perhaps the most interesting results are thosgitidr features. As shown, results for pitch areimbetter
overall than those for the other two features. eBithe extreme degradation in condition “P1”, nafghe
effect for pitch seems to come from features rdlatea speaker’s pitch level. This is not surpgsigsince
pitch level is determined to some extent by phggipl Pitch is also captured by the cepstral baseli
system, however, so an important question is whettee SNERF-gram system can contribute information
after combination. This question is addressedhénfollowing section. There is also significant etation
from the all-pitch condition to conditions “P5” at¥é6”, suggesting that there is some contributiamf the
patterns of falling and rising pitch (although st great a contribution as seen in the case ofygnhand
from the speaker’s ratio of voiced to unvoiced shefeames.

3.4 Combination Results

Since the applied goal of this work is to use loagge features to improve on the state of thevest,
investigated performance after combination with baseline system as well as with the two long-range
feature systems described earlier. Results angrshioTable 4.
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Includes Significantly
D # of Word 3 EER Better than All
Systems| Baseline Duration | SNERFs (%) Systems from
N-grams Systems ato<ID>
a 1 X 27.362 -
b 1 X 12.271 a
c 2 X X 11.741 b
d 1 X 11.177 C
e 2 X X 11.037 C
f 2 X X 8.181 e
g 3 X X X 7.969 e
h 1 X 7.687 f
i 2 X X 7.405 h
j 2 X X 6.664 i
k 2 X X 6.594 i
I 3 X X X 6.418 j
m 3 X X X 6.382 i
n 3 X X X 6.065 |
0 4 X X X X 5.783 m

Table 4: Equal error rates for system combinatiomslered from highest to lowest resulting EER.
Significance is evaluated in a McNemar test, at @tfidence

Of the three individual noncepstral systeraslf, d, the SNERF system alone significantly outperforms
both the word N-grams system alone (the weakesthefsystems) and the duration system (itself a
combination of three subsystems) alone. Of the wag-combinations of noncepstral systemse| j, the
best resultf§ combines the SNERF and duration systems. This m@tibn is significantly better than using
either individual system alone, and demonstratas while the duration and SNERF systems both model
duration features, they nevertheless provide comgigary information. Next in performance is a thneey
combination of all noncepstral systengs. (Although the noncepstral systems are not irddrid be used on
their own, together they achieve performance thaiot far from (and not significantly worse thahatt of

the cepstral systenhy

If the baseline system is allowed to combine witlyane other system, best performance is achibyed
choosing the SNERF systei).(If the baseline can combine with two other systelnest results include the
SNERF system as one of those two systems. We Imatéor many of these later comparisons, it isiclift

to reach significance given the amount of datalabbks. Also, in some cases significance resultissteow a
reversal in direction; this is the case for combtora(m), which has a lower EER than dods but which
differs significantly from onlyi{ rather than fromj). Such cases can occur because the matched ¢xstirs t
removes matched decisions, making it easier tchregmificance when the two overall systems congbare
are highly correlated than when they differ on mdegisions. In general, combination systems thatesh
the same component systems are more likely to belated; this explains the reversal seennil (vhich
differs, more than doe$ {from the components used ji (

Perhaps the most important observation to note,ekery is the overall result from the four-way
combination. Without the SNERF system, the bedilrés combination Ij, with an EER of 6.418. By
adding the SNERF systern)(we reach an EER of 5.783, a significant improgetn
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4 Future Work and Conclusions

This work has important potential extensions, safehich have been alluded to earlier. One oféhiss
that the system should be more powerful if it isditioned in some way on word information. Speakers
clearly have distinct ways of pronouncing certaords and N-grams. The challenge in such work lsdam
which words or word groups to condition on, and ckhio collapse over (since unmotivated conditioning
merely splits the data and decreases robustne§¥)vious candidates for idiosyncratic behavior are
discourse-related forms, such as filled pausesodise markers, and backchannels, some of which hav
been explored from the perspective of usage statist previous work (e.g., Reynolds et al., 2008)ote
that word-based conditioning could limit some of bigram and trigram features, since features wowld
longer necessarily be contiguous. A second isstleeixhoice of our unit, the syllable. While thisagvan
obvious choice for the modeling of properties likgration, there is no reason to restrict the fraor&wo
syllables. Other larger or smaller units couldaety be used. In fact, because our featurecauats, it
should also be possible to combine features agreéifit levels of resolution in the same SVM. Thauld
allow for the use of different feature extracti@gions by feature, depending on what the featunaigiral”

unit appears to be. Third, since we find in gentrat longer N-grams perform better than shortesoit is
worthwhile to move beyond trigrams. Fourth, althloymgeliminary work has shown conflicting resultsisi
possible that a nonlinear kernel could better mdelaglures or feature interactions in this type ystem.
Finally, SNERF-gram modeling and modeling of norstegd features in general, should investigate the
relationship between the contribution of individggistems (and their component features), and tloaiaim

of training data used. Systems that use longegad@atures are likely to show relatively more bigrower
cepstral-based systems when more training dataikhle.

Overall, we find that SVM modeling of prosodic fesd sequences provides useful information for aatam
speaker recognition. It performs well on its owng @ombines successfully with three other statthrefart
systems (a cepstral system, word N-gram model, andexically constrained duration model). On the
theoretical side, unlike most conventional systeised in speaker recognition, the general framewsdd

in modeling SNERFs supports analyses that can ieaa better understanding of how speakers differ
prosodically in largely voluntary ways. Althoughraurrent prosodic features are admittedly crudzhape
that in the longer term, such efforts can help hedslight on basic individual differences in prosod
speaking behavior.
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