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Abstract

We explore the use of adaptation transforms employed in
speech recognition systems as features for speaker recogni-
tion. This approach is attractive because, unlike standard frame-
based cepstral speaker recognition models, it normalizes for the
choice of spoken words in text-independent speaker verifica-
tion. Affine transforms are computed for the Gaussian means of
the acoustic models used in a recognizer, using maximum like-
lihood linear regression (MLLR). The high-dimensional vec-
tors formed by the transform coefficients are then modeled
as speaker features using support vector machines (SVMs).
The resulting speaker verification system is competitive, and
in some cases significantly more accurate, than state-of-the-art
cepstral gaussian mixture and SVM systems. Further improve-
ments are obtained by combining baseline and MLLR-based
systems.

1. Introduction
Current speaker recognition systems employ a combination of
knowledge sources, but the basis of most state-of-the-art sys-
tems is still the modeling of cepstral features extracted over
short time spans (a few tens of milliseconds) and modeled as
an unordered set of independent samples. The modeling is typ-
ically carried out in terms of log-likelihood ratios of Gaussian
mixtures [1], or discriminatively using support vector machines
(SVMs) [2]. There are two fundamental problems with this ap-
proach. First, it ignores longer-term and higher-order struc-
ture in the speech, such as is best described at the level of
phones, syllables, words, and whole utterances. Consequently,
there have been numerous recent developments to character-
ize speaker idiosyncrasies at those levels, and state-of-the-art
systems now typically employ a combination of long-term and
short-term features [3, 4].

The second fundamental problem with short-term cep-
stral modeling is that the overall cepstral distribution conflates
speaker characteristics with other factors, principally, channel
properties and the choice of words spoken. Standard signal
processing and feature-level normalization methods can alle-
viate some of the channel effects, and score-level normaliza-
tion techniques such as HNORM [1] and TNORM [5] partially
compensate for both sources of extraneous variability. Phone-
conditioned (see [6] for an overview) and word-specific [7] cep-
stral models are a direct attempt to make models invariant to the
choice of words (since words by and large determine the phone
sequence). However, these approaches have the drawback of
fragmenting the data and requiring sufficiently accurate speech
recognition. Other recent work has also tried to explicitly de-
compose cepstral variability by source and design filters that are

optimized for the factors that are desirable for a given task (e.g.,
speaker versus speech recognition) [8].

Although the speaker modeling approach proposed here
is also based on cepstral features, it was motivated and en-
abled by our work on higher-level stylistic features, which typ-
ically require the use of large-vocabulary word recognition sys-
tems. Such systems use elaborate forms of adaptation to turn
the speaker-independent recognition models into more accurate
speaker-dependent models. Instead of modeling cepstral ob-
servations directly, we can model the “difference” between the
speaker-dependent and the speaker-independent models. This
difference is embodied by the coefficients of an affine transform
of the Gaussian means in the recognition models. These trans-
forms apply to models that are specific not only to phones, but
to context-dependent phones (triphones). Thus, to the extent
that the triphone-conditioned recognition models are indepen-
dent of the choice of words, so are the speaker-specific trans-
forms. Because the transforms themselves are shared among tri-
phones (and to some extent also between phones), we avoid the
problem of data fragmentation. We can thus represent the cep-
stral observations in a feature space of fixed, and relatively low,
dimensionality. Furthermore, as we will show, the transform
features lend themselves quite well to discriminative modeling
with SVMs.

In the remainder of the paper we describe the details of our
approach and explore several variants that arise in its imple-
mentation. We test the method on several speech databases,
including the 2004 NIST speaker recognition evaluation (SRE)
dataset, and compare its performance to that of standard cep-
stral models. Finally, we give results for combinations of the
various models.

2. Method
2.1. Recognition system

Our speech recognition system is a fast, two-stage version of
SRI’s conversational telephone speech (CTS) system, as origi-
nally developed for the 2003 DARPA Rich Transcription evalu-
ation [9] and later modified for the NIST 2004 speaker recogni-
tion evaluation [3]. The system performs a first decoding using
Mel frequency cepstral coefficient (MFCC) acoustic models and
a bigram language model (LM), generating lattices which are
then rescored with a higher-order LM. The resulting hypotheses
are used to adapt a second set of models based on perceptual lin-
ear prediction (PLP) acoustic features. The adapted models are
used in a second decoding pass that is constrained by trigram
lattices, which generates N-best lists. These are then rescored
by a 4-gram LM and prosodic models to arrive at the final word
hypotheses. The whole system runs in about 3 times real time



on a hyperthreaded 3.4 GHz Intel Xeon processor.

2.2. Speaker adaptation transforms

In maximum likelihood linear regression (MLLR) [10], an
affine transform(A; b) is applied to the Gaussian mean vectors
to map from speaker-independent to speaker-dependent means:
�0 = A�+b . In unsupervised adaptation mode, the transform
parameters (coefficients) are estimated so as to maximize the
likelihood of the recognized speech under a preliminary recog-
nition hypothesis. For a more detailed adaptation, the set of
phone models can be partitioned or clustered by similarity, and
a separate transform is applied to each cluster.

In our system, MLLR is applied in both recognition passes.
The first pass is based on a phone-loop model as reference,
and uses three transforms, for nonspeech, obstruent, and nonob-
struent phones, respectively. The second decoding pass uses a
more detailed MLLR scheme, based on word references gener-
ated by the first pass, and nine different transforms correspond-
ing to phone classes for nonspeech, voiced/unvoiced stops,
voiced/unvoiced fricatives, high/low vowels, retroflex phones,
and nasals.

2.3. Speaker-adaptive training

A variant of MLLR estimates transforms that apply to both
Gaussian means and variances (constrained MLLR or CMLLR)
[11]. The advantage of this approach that it can be equiva-
lently carried out by transforming the input features, rather than
the model parameters. This makes it easier to apply the trans-
forms on both training and test data, thus yielding models that
normalize out training speaker variability, an approach known
as feature-space MLLR (fMLLR) or speaker-adaptive training
(SAT) [12]. The SRI system uses a single such transform (ap-
plied to all frames/phones) in the second decoding pass. This
feature-space transform applies before the more detailed model-
space transforms described above.

2.4. Feature extraction and SVM modeling

The coefficients from one or more adaptation transforms are
concatenated into a single feature vector and modeled using
support vector machines. The data used is from conversational
telephone speech, and each conversation side is processed as
a unit by the speech recognition system. Consequently, each
conversation side produces a single set of adaptation transforms
pertaining to the same speaker, and hence a single feature vec-
tor. Since our acoustic features (after dimensionality reduction)
contain 39 components, the number of SVM feature compo-
nents will equal the number of transforms�39 � 40. In cases
where the adaptation scheme uses a separate transform for non-
speech models, that transform is left out of the feature vector,
since it is not expected to help in speaker recognition.

An SVM is trained for each target speaker using the feature
vectors from a background training set as negative examples (of
which there are many, typically in the thousands), and the tar-
get speaker training data as positive examples (of which there
are few, typically 1 or 8). To compensate for the severe im-
balance between the target and background data, we adopted a
cost model [13] to weight the positive examples 500-fold with
respect to the negative examples. Throughout, a linear inner-
product kernel function was used for SVM training.

We also found it advantageous to normalize the dynamic
ranges of the feature vector components. This is necessary be-
cause the SVM kernel function is sensitive to the magnitude of

Table 1: Data sets used in experiments
Test set SWB-II Fisher SRE-04
Training 1-side 8-side 1-side 1-side 8-side
Conv. sides 3642 3058 734 1384 2695
Models 578 546 734 479 225
Trials 9765 4911 16578 15317 7336

Table 2: Speaker verification results using MLLR features. The
top number (in italics) in each table cell is the EER (%). The
bottom number is the minimum DCF value. The 1st-stage
MLLR system uses Z-normalization on features, all other sys-
tems use rank-normalization.

SWB-II Fisher SRE-04
Features 1-side 8-side 1-side 1-side 8-side

1st stage MLLR 6.85 1.87 6.37 12.38 6.12
(2 transforms) .25060 .07429 .09934 .41594 .19934
2nd stage MLLR 4.75 1.23 5.57 9.49 4.96
(8 transforms) .1544 .04619 .08281 .33182 .18249
1st + 2nd MLLR 4.33 1.28 5.50 8.92 4.52
(10 transforms) .14318 .04288 .07818 .30949 .14987

the feature values, and hence to the relative weighting of fea-
ture dimensions. In the absence of prior information, a nor-
malization procedure that roughly equates the dynamic ranges
of feature components seems appropriate. We have had good
success with two simple normalization methods. One is Z-
normalization, which subtracts the means and divides by the
standard deviations along each feature dimension. Another
method is rank normalization, which replaces each feature value
by its rank (normalized to the interval[0; 1], i.e., the percentile)
in the background distribution. Rank normalization performs
an adaptive rescaling of the features to obtain an approximately
uniform distribution. Rank normalization is computationally
more expensive, but was found to work best in general; it was
used in all reported experiments unless noted otherwise.

3. Experiments and Results
3.1. Datasets

We tested our baseline and MLLR-based systems on three
databases: a subset of the NIST SRE-03 (Switchboard-II phase
2 and 3) data set, a selection of the Fisher collection conver-
sations, and the NIST SRE-04 (Mixer) data. For Switchboard-
II and SRE-04, two data sets were available, for training on 1
and 8 conversation sides, respectively. Table 1 summarizes the
statistics of these data sets. The Switchboard-II trials were a
subset of those used in the NIST SRE-03 evaluation, but had
difficulty comparable to the full evaluation set, as measured by
the performance of our baseline system.

The background training set consisted of 1553 conversation
sides from Switchboard-II and Fisher that did not occur in (and
did not share speakers with) any of the test sets, and that had
duplicate speakers removed.

All data was processed identically by SRI’s speech recogni-
tion system as described above. None of the test or background
data were used in training or tuning of the recognition system.

In addition to feature-level normalization, we performed
TNORM score-level normalization [5] in all experiments, in-
cluding for the baseline systems reported later.

3.2. MLLR system results

We first tested systems based solely on the model adaptation
transforms employed in the first and second recognition stages



Table 3: Speaker verification results using baseline, MLLR, and
combined systems. The MLLR SVM system uses 10 transforms
(same as last row in Table 2).

SWB-II Fisher SRE-04
System 1-side 8-side 1-side 1-side 8-side

MFCC GMM 4.63 1.92 4.57 7.77 4.95
.17857 .08353 .10259 .31126 .21146

MFCC SVM 5.82 1.49 5.43 9.48 4.22
.22088 .05821 .13693 .38951 .16748

MLLR SVM 4.33 1.28 5.50 8.92 4.52
.14318 .04288 .07818 .30949 .14987

MFCC GMM 6.04 3.64
+MLLR SVM .26537 .13088
MFCC SVM 6.89 3.64
+MLLR SVM .28271 .11739
MFCC GMM 7.17 4.23
+MFCC SVM .32338 .17173

of our systems. The first stage uses two speech transforms,
yielding a 3120-dimensional feature vector. The second stage
uses eight speech transforms, yielding a 12480-dimensional
feature vector. We can also concatenate both these sets of trans-
forms into a single 15600-dimensional feature. Table 2 summa-
rizes the results in terms of both minimum detection cost func-
tion (DCF) and equal error rate (EER). DCF is the Bayesian
risk function defined by NIST withPtarget = 0:1, Cfa = 1,
andCmiss = 10.

The results with 8-transform MLLR features are competi-
tive with the best reported results for cepstral systems (cf. re-
sults in next section). Surprisingly good results are achieved
by the 2-transform MLLR system, which uses only a simple
phone-loop reference hypothesis, i.e., it does not rely on word
recognition search. Finally, a consistent improvement over the
8-transform system is obtainable by concatenating the two fea-
ture vectors (using 10 transforms per speaker), showing that the
two features are not entirely redundant. This may be in part
because the two recognition stages (and corresponding MLLR)
are based on different front-end features (MFCC versus PLP).

We also tried to optimize the number of transforms used in
the second adaptation stage, since initially 8 just happened to
be the value that was found to work best for speech recognition.
However, no further improvement was obtained by either col-
lapsing or refining the phone classes, indicating that the optimal
choices for speech recognition and speaker recognition must be
quite similar.

3.3. Baseline system combination

We compared the 10-transform MLLR system to two state-
of-the-art cepstral systems. The first baseline system is a
Gaussian mixture model (GMM) with universal background
model (UBM) [1], based on 13 MFCCs (without C0) and first-,
second-, and third-order difference features. The features are
mean-subtracted and modeled by 2048 mixture components.
Gender-handset models are adapted from this model and used
for feature transformation [14]. The final features are mean and
variance normalized at the utterance level. The detection score
is the target/UBM likelihood ratio after TNORM.

The second baseline system is also based on MFCCs (with
first- and second-order differences), followed by the same fea-
ture transformation and normalization steps. The final features
are then modeled with SVMs utilizing the polynomial sequence
kernel proposed by [2]. This baseline system shares with the
MLLR system the advantages of discriminative training and
classification afforded by the SVM framework, but uses essen-
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Figure 1: Detection error tradeoff (DET) curves for baseline,
MLLR, and combined systems.

tially the same features as the more traditional GMM-UBM sys-
tem.

Finally, we performed a pairwise score-level combination
of all three systems (baseline and MLLR), using a neural net-
work trained to minimize DCF. The results are summarized in
Table 3, and the detection error tradeoffs for a subset of the
systems are plotted in Figure 1. The combination systems are
evaluated only on the SRE-04 data sets since the other sets had
been used to tune the combiner itself.

The results show that the MLLR-based system is as good
as or better than either of the baseline cepstral systems. DCF
values for the MLLR systems are consistently lower than for
the baseline systems. Furthermore, combination of one of the
baseline systems with the MLLR system yields DCFs that are
between 15% and 38% lower than the corresponding baseline
results. EERs are reduced by 14% to 27% relative. By con-
trast, a combination of the two baseline systems yields a much
smaller error reduction over the individual baselines, showing
that system combinationper seis not sufficient to obtain opti-
mal results, and that the MLLR system contributes information
that complements the baselines.

3.4. SAT transform features

One adaptation transform we have ignored so far is the fea-
ture (speaker-adaptive training, SAT) transforms employed in
the second stage of our recognition system. SAT uses a single
transform that operates on speech and nonspeech frames alike,
so it is not clear what its role in speaker modeling should be. To
answer this question, we built three variants of our 8-transform
system. The first system uses the approach followed so far, i.e.,
the 8 model transforms apply after the features have been SAT-
normalized, and the information in the SAT transforms is ig-
nored. The second system estimates model transforms on fea-
tures that have not been transformed (no SAT in recognition).
This might be better if the SAT transform removes variability
that is useful for speaker identification. The final variant sys-
tem uses the SAT transform-normalized features, but concate-
nates the feature transform coefficients and the 8 standard model
transform features into one SVM feature vector. (This diagnos-



Table 4: Speaker verification results on Fisher data, using SAT
feature transforms.

Features Fisher 1-side

8-transform MLLR 5.50
after SAT norm .08150
8-transform MLLR 5.64
without SAT norm .08483
8-transform MLLR 5.50
+ 1-transform SAT .08020

Table 5: Speaker verification results using MLLR and SAT
transforms.

Fisher SRE-04
Features 1-side 1-side 8-side

MLLR 5.50 8.92 4.52
(10 transforms) .07818 .30949 .14987
MLLR + SAT 5.50 9.07 4.96
(11 transforms) .07686 .31287 .17790

tic experiment was carried out using only Fisher background
and test data, so the numbers are not directly comparable to the
results reported earlier.)

Table 4 summarizes the results. Comparing the first two
systems, we can observe that removal of SAT feature normaliza-
tion from the MLLR-only system doesnot improve the speaker
modeling, or conversely, that the SAT normalization does not
remove information from the MLLR system that is useful in
speaker modeling. Furthermore, comparison of the first and last
systems shows that explicit inclusion of SAT transforms as fea-
ture vectors gives only marginally improved speaker models.

A final result that clarifies the role of SAT in relation to
MLLR appears in Table 5. Here we added the SAT transform
(as a feature vector) to the best MLLR system, thus obtaining
a total of 11 transforms. We see that SAT features improve the
system on Fisher data (only in DCF), but degrade accuracy on
the SRE-04 data set. Recall that SRE-04 data does not appear
in the background training set, whereas Fisher data does.

The tentative conclusion we can draw from these diagnos-
tic experiments is that SAT features are largely determined by
channel and corpus mismatch between the reference models and
the test data. They are thus not generally useful for speaker
modeling purposes, for which most of the relevant information
is found in the MLLR transforms. This is also consistent with
the earlier result that SAT normalization prior to MLLR im-
proves speaker verification accuracy.

4. Conclusions and Future Work
We have proposed a speaker recognition approach based on
SVM modeling of the speaker adaptation transforms found in
modern speech recognition systems. By combining MLLR
transforms for multiple recognition stages and phone classes
we obtain a system that rivals or exceeds the accuracy of state-
of-art speaker verification with frame-cepstrum features and
GMM or SVM modeling. Furthermore, the MLLR system
gives additional gains in combination with cepstral systems. We
also found that the feature-level normalization in the recognizer
seems to be helpful in removing variability due to source and
channel.

We have yet to optimize the recognizer as a feature extractor
for speaker recognition purposes. The present good results are
achieved with features that are by-products of a system that was
tuned for word recognition accuracy. It is quite possible that

some of the other normalizations used (such as for vocal tract
length) are in fact detrimental to speaker recognition.
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