
Class-dependent Score Combination for Speaker Recognition

Luciana Ferrer1 Kemal Sönmez2 Sachin Kajarekar2

1 Department of Electrical Engineering
Stanford University, Stanford, CA, USA

2 Speech Technology and Research Laboratory
SRI International, Menlo Park, CA, USA

lferrer@stanford.edu {kemal,sachin}@speech.sri.com

Abstract

Many recent performance improvements in speaker
recognition using higher-level features, as demonstrated in the
NIST Speaker Recognition Evaluation (SRE) task, rely on
combinations of multiple systems modeling a large variety of
features. The diversity of the large set of features starting from
short-term acoustic spectrum features all the way to habitual
word usage from a large set of speakers in a multitude of
settings (acoustic environment, speaking style, quantities of
enrollment/test data) results in a challenging model
combination task. In this work, we are presenting a class-based
score combination technique that relies on clustering of both
the target models and the test utterances in a vector space
defined by a set of speaker-specific transformation parameters
estimated during transcription of the talker’s speech by
automatic speech recognition (ASR). We show that significant
performance gains are obtained by using the first few principal
components of a model transform for clustering the speaker
verification trials into classes for (target speaker, test
utterance) pairs, and then training a separate combiner for each
class. We report results on the NIST SRE 2004 and FISHER
datasets.

1. Introduction

Recent strides in speaker recognition using higher-level
features, as demonstrated in the NIST Speaker Recognition
Evaluation (SRE) task, have come to rely on combinations of
multiple speaker models of a variety of classes of features [1].
The short-term acoustic spectrum features, the traditional basis
of a GMM adapted speaker verification system, are combined
at the score level with a large number of systems using
features that cover various aspects of prosody and habitual
word usage. The heterogeneity of the rich set of features used
to model the large set of speakers and generate scores for
speaker verification in a variety of settings (acoustic
environment, speaking style, quantities of enrollment/test data)
results in a challenging model combination task. The central
goal of system combination is estimating a statistical mapping
from the set of scores produced by individual systems to a
combined score in order to reduce the equal error rate (EER)
or the NIST-defined Detection Cost Function (DCF), the
Bayesian risk with a specific set of parameters, both
performance metrics summarizing the ultimate measure of
performance, the ROC curve or the NIST-defined variation of
the ROC curve, the Detection Error Tradeoff (DET) curve.

Many different techniques have been tried for score
combination, the most common including linear combination,
neural networks, perceptrons [1,2], and support vector
machines [3]. Each of these approaches estimates the
parameters of a classifier for detecting true vs. impostor
speech given the claimed target identity in the vector space of

system scores being combined. The final score is either a
(possibly non)linear regression on system scores or a distance
from the separating boundary.

In designing a classifier in the score space, there is an
alternative rationale based on the observation of distinct
classes of target and test speakers or acoustical conditions,
and so on, which motivates designing separate classifiers for
each class. The class-based classifier scores are subsequently
combined and/or selected to generate the final score. For
example, in [4], trials are clustered according to the quality of
the test files to train multiple classifiers during score
combination of the cepstral and the higher-level systems.

In this work, we are presenting a class-based score
combination technique that relies on clustering of both the
target models and the test utterances in a vector space defined
by a set of speaker-specific transformation parameters
estimated during transcription of the talker’s speech by ASR.
Specifically, we use the parameters of the maximum
likelihood linear regression (MLLR) transform [9], which is
estimated for each speaker during ASR. We map the
components of the transform to a lower dimensional space via
principal component analysis (PCA) and perform the
clustering in this space. For each class in the product set, that
is, (target, test) pair of clusters, we allocate a separate
combiner trained to fit the data in the class. We show that
significant performance gains are obtained by using the first
few principal components of the MLLR transform for
clustering all the speakers into a small number of classes for
(target, test) pairs.

The paper is organized as follows. We describe the main
infrastructure, i.e. the task, corpora, component systems, and
the baseline combination setup in Section 2. The proposed
method of class-based score combination is detailed in
Section 3. Experiments on the NIST SRE task and analysis of
the results are presented in Section 4, with a discussion
concluding the paper in Section 5.

2. Baseline Setup

2.1. Task and corpora

The task on which we report performance of the class-based
combination techniques is the speaker verification task as
defined in the NIST SRE [5]. We report results in the
“common” condition, which has one conversation side (of a
5-minute conversation) as enrollment/training data for a target
speaker, and one side as the testing utterance. The main
criterion in the NIST SRE is the Detection Cost Function,
defined as the Bayesian risk with Ptarget = 0.01, Cfa=1, and
Cmiss=10. This is the measure of performance we aim to
optimize in this paper.

The FISHER development set is created from the FISHER
database, which is collected and distributed by LDC for the

DARPA EARS program. We selected two nonoverlapping
sets of speakers from this data [6]. Each set is balanced with
respect to different genders and handsets. The first set and a
part of the EVAL03 dataset involving 425 unique speakers
were used to create the background models. The second
FISHER set was divided into two equal splits, FISHER1 and
FISHER2, and used to build train and development datasets.
The 2004 NIST SRE dataset (referred to as EVAL04) is part
of the conversational speech data recorded in the Mixer
Project and was used for the final evaluation of the method.

2.2. ASR for speaker recognition features

The transcriptions and time alignments used for the long-
term, higher-level features were generated with SRI's 5xRT
CTS recognition system, using improved models developed
for the NIST RT-03F evaluation [6]. The WER on RT-03
evaluation data was 21%.

2.3. Component systems

Following is a description of the systems included in the
combination reporting performance on EVAL04 (100*DCF /
EER%).
Cepstral GMM system. (Perf: 3.37/8.01) This is a traditional
background adapted cepstral GMM system that uses a 2048-
component GMM and is described in detail in [6].
Cepstral SVM system. (Perf: 3.13/8.01) This system uses the
baseline cepstral feature vector with CMS and transform-
based channel normalization [7]. Four different systems
modeling different projections of PCA-transformations of
mean polynomial vectors (two of which are variance
normalized) are combined with an equal weight to produce
the final score.
MLLR transform SVM system. (Perf: 3.09/8.92) The MLLR-
SVM system uses speaker adaptation transforms used in SRI's
speech recognition system as features for speaker verification.
The transform coefficients are modeled by SVMs [9].
Phone n-gram system. (Perf: 5.41/12.09) Phone bigram and
trigram frequencies for each speaker are extracted from phone
recognition lattices. The frequencies for the most frequent N-
grams are combined into one feature vector and modeled with
SVMs [8].
Word N-gram SVM system. (Perf: 8.06/23.05) This system
uses a SVM with a linear kernel with first-, second-, and
third-order word N-gram frequencies as features [6].
SNERF system. (Perf: 6.69/16.16) This system uses a set of
prosodic features where the extraction region is defined by
automatically estimated syllable boundaries. The modeling is
done using SVMs [11].
Duration system. Three sets of duration features – state (Perf:
7.16/15.81), phone (Perf: 8.73/19.75), and word level (Perf:
8.62/21.50) – modeled by GMMs are used in this system [10].

2.4. Neural network combiner

The baseline combiner for the SRI system is a single-layer
feed-forward network that uses a sigmoid output node during
training and a linear output for the final predictions. The
linear output allows better combination of these predictions
with the ones from our class-dependent combiner. The scores
from the component systems are normalized with respect to
the statistics in the training set, and then used as inputs to the
perceptron, which is trained by minimum squared error with
training output labels, 0 (impostor), and 1 (target).

3. Class-based Score Combination

3.1. Main idea

The hypothesis that motivates the class-based approach is that
there are distinct classes of pairs of (target, test) trials, and for
each class, the combination of short-term spectral and long-
term higher-level features may be optimized separately. We
cluster target and testing conversation sides with identical
schemes as described below, resulting in trial pairs specified
by (target, test) clusters. Separate combiners are trained for
each class, and during verification probabilities for each class
are assigned to the trials and an appropriate mixture of
combiners is used.

3.2. Features for clustering

For clustering the speakers we use as features the parameters
of the two-class version of the MLLR transform as described
in [9]. For each conversation side two affine transforms are
estimated, one for the obstruents and one for the
nonobstruents, each transform containing a translation vector
and a rotation matrix. These transforms can be viewed as a
text-independent encapsulation of the speaker's acoustic
properties. These values are concatenated to form a long
vector of dimension 3120. Half of the background model data
are then used to compute the principal components (pc’s) of
this vector. Finally, the vectors corresponding to the
conversation sides on the other half of the background data
and the ones used for train and test are transformed into the
principal component space. Only the first few pc’s are used
during clustering.

Due to the speaker-dependent nature of the MLLR
features, the obtained clusters contain speakers that are found
by the recognizer to be acoustically similar. In particular,
given that the MLLR transforms are computed in a gender-
dependent manner by the recognizer, we expect this
automatically determined gender to be strongly reflected in
the value of these features. In fact, we observe that the first pc
simply conveys the information of the gender as detected by
the recognizer.

3.3. Clustering

We use the remaining half of the background data to obtain
the clusters by taking as feature vectors the first N pc’s of the
MLLR features and training a Gaussian mixture model
(GMM) with diagonal covariance, equal volume, and equal
shape for each Gaussian. The GMM determines the
probability of each conversation side belonging to each of the
clusters determined by the Gaussians.

The obtained clusters group the conversation sides into a
small set of “prototypical speakers”. We use these clusters to
assign classes to each of the trials in the train and test
databases. The class is determined by the cluster to which the
target and the test conversation sides belong. For example, if
the target conversation side has the highest probability of
belonging to cluster 1 and the test side has the highest
probability of belonging to cluster 2, then the class for that
trial is given by (1,2). Rather than making hard decisions, we
assign probabilities to each of the classes for each trial. The
probability for class (N,M) is given by the probability of the
target conversation side belonging to cluster N times the
probability of the test conversation-side belonging to cluster
M.

3.4. Class-dependent combiners

Our goal is to train a model that is dependent on the class of
the trial and generates a unique score for each trial given the
nine-dimensional vector of individual scores. We have trained
one combiner for each of the resulting classes (e.g., 4x4=16 of
them if we are using four clusters), using all the samples to
train all of the combiners, weighting the samples by the
probability of belonging to each class times a factor that
depends on the type of trial (true-speaker vs impostor) as
explained below. This approach proved to be slightly more
robust than using the training trials for which the probability
for that class is the highest, especially when using more than
two clusters. Linear combiners are trained to predict the labels
of the trials (-1 for impostor and 1 for true-speaker) using
weighted least squares (WLS) where the weight for each
sample i when training the combiner corresponding to class j
is given by

(1)
 rialsimpostor tfor

ialsspeaker tr for true

,,

,,
,





=
impjimpij

tspjtspij

ij spp

spp
w

where pj,i is the probability of trial i belonging to class j, psp is
the true-speaker prior probability, pimp is the impostor prior
probability and sj,imp and sj,sp are the sum of the probabilities
for all the impostor and true speaker trials for class j. Defining
the weights in this way allows us to balance the data used to
train each of the combiners to see an “equivalent” frequency
of true speaker trials equal to the prior psp. This prior is set to
0.09, as is usually done when trying to optimize for DCF with
the NIST parameters. In our case the training database was
built with these priors, hence no compensation needs to be
done when training the class-independent combiners.

During testing, all the combiners are used to score each of
the trials. A weighted average of the resulting predictions is
used, where the weight for combiner j is given by the
probability for the trial of belonging to class j. The resulting
scores determine the final predictions of our class-dependent
combiner.

3.5. Combination with neural network scores

The resulting prediction can be further averaged with the
predictions obtained by the neural network. To this end, we
first (Z-)normalize (substract mean and divide by standard
deviation) the scale of the scores given by both systems so
that equal weights can be used for the combination. The
statistics used for Z-norm are obtained on the development
test scores. As we will see in the next section, averaging the
two combiners leads to additional performance improvement.

4. Experiments and Results

The system was developed with FISHER data. FISHER1 was
used for training each of the combiners (including the neural
network combiner), and FISHER2 was used for
development/parameter tuning. The data used to train the
background models for the individual systems was split into
two and used for computation of the principal components for
the MLLR features and training of the GMM clustering.
EVAL04 data was used for the final evaluation of the method.

We tried different numbers of clusters for both the
training conversation side and the test conversation side and
found that most of the improvement is achieved by using 2x2
clusters. We will use this case to interpret the way the class-
dependent combiner is working. First, we observe that the
clusters are almost exclusively composed of same-gender (as
determined by the recognizer, which agrees most, but not all,

of the time with the gender detected by a GMM-based gender
classification system) conversation sides. This means that the
2x2 case is almost the same as labeling the trials by the
gender obtained by the recognizer for both train and test
conversations and training a classifier for each of the four
cases. In theory there should not be any "cross-cluster" trials
because the task is designed to have only same-gender trials.
However, since the gender as determined by the recognizer is
not the same as the actual gender, there are enough trials in
the cross-cluster classes to warrant separate linear classifiers.

Table 1 shows several statistics for the data in each of the
classes and on the complete dataset. First and second rows
show the number of impostor and true-speaker trials in each
class. Note that the cross-cluster classes ((1,2) and (2,1)) have
one order of magnitude less data than the same-cluster
classes. As mentioned before, this is because there are no
same-gender trials in the task. Only those trials for which the
recognizer’s gender label does not match the true gender fall
in those classes. Hence, these classes correspond to the cases
where the true-speaker trials were especially hard for the
cepstral features that form the basis of the gender detectors to
the degree that the recognizer thought that the conversation
sides corresponded to two different genders, while they were
actually from the same speaker.

Table 1: The breakdown of data and results for the
class-independent and class-dependent combiners.

 Class
(1,1)

Class
(1,2)

Class
(2,1)

Class
(2,2)

All
data

Number of
impostor trials

8456 687 402 5525 15070

Num. of true-
speaker trials

794 38 38 638 1508

EER for class-
indep. Classifier 1.97% 25.9% 29.6% 0.65% 3.09%

EER for class-
dep. Classifier 1.81% 18.5% 14.8% 0.65% 2.56%

Rel. weight for
noncep. systems

8.1% 46.9% 42.0% 11.1% 11.3%

Third and fourth rows show the EER for the data in each

of the classes, when using a class-independent classifier
(trained using least squares regression on the complete data)
and the class-dependent classifier. Analyzing the performance
of each of the classifiers in the case of the class-independent
combiner we can observe that the cross-cluster cases are the
hardest ones by far: with EER of more than 20% compared to
less than 2% for the same-cluster cases, reflecting the
observation above that the cross-cluster classes correspond to
the hardest trials for the cepstral systems. For the same
reason, note that it is in the cross-cluster classes where the
class-dependent combiner makes the biggest difference,
improving performance in those classes by up to 50% relative.
Having a class-dependent combiner allows adaptation of
combination weights by assigning more import to the
noncepstral systems. In fact, the noncepstral features
(duration, snerf and word-ngram) receive a much higher
weight relative to the class-independent case for those classes
as can be seen in the last row in Table 1, which shows the
percent of weights assigned to the noncepstral systems
compared to the total sum of the weights for the classifiers
trained using the weights for the corresponding class (in the
case of all-data, the weights are one for all samples). Finally,

the performance in the same-cluster classes does not degrade
with respect to the class-independent classifier.

Although the interpretation of what the clusters and the
classes are is not as clear as for the two-cluster case, using
three and four clusters slightly improves the performance.
Table 2 shows the results for 4x4 and 2x2 clusters for
comparison (performance with the 3x3 clusters is in between).
In all cases, no more pc’s than the first three were found to be
useful. The measure of performance we are optimizing is the
DCF. In FISHER2, a relative improvement of 12% in DCF
with respect to the neural network performance is achieved by
averaging the neural network prediction with the class-
dependent prediction. On EVAL04, the relative improvement
is around 7%. For this data, the number of false rejections
(true-speaker trials misclassified as impostor trials) for the
averaged combiner at the DCF point is significantly smaller
(at 95% level) than for the neural network, while the number
of false alarms is not significantly different, reaffirming our
observation that it is mainly the misclassified true-speaker
trials that are corrected by this class-dependent combination
method.

Table 2: Performance (100*DCF/EER%) using neural
network combiner and class-dependent combiner for
different parameter settings.

Class-dependent combiner Test
DB

Neural Net
Performance Params Performance

Neural Net +
Class-dep

Performance

Gen 2x2 0.646 2.56 0.602 2.86

Ran 2x2 0.668 3.09 0.609 3.01

Hnd 3x3 0.745 3.24 0.639 3.01

MLLR 2x2 0.541 2.56 0.511 2.94

FISH
2

0.564 2.94

MLLR 4x4 0.556 2.64 0.496 2.86

MLLR 2x2 2.472 5.20 2.271 4.99 EVAL
04

2.370 5.27
MLLR 4x4 2.579 5.55 2.194 5.13

It is interesting to note that the performance of the 4x4

class-dependent combiner alone is not better than that of the
2x2 case, but in combination with the neural network the
relative gain is greater. This indicates that the two combiners,
the neural network and the class-dependent combiner, are less
correlated when using more classes. In the 4x4 case, some of
the classes end up with very few samples (less than a hundred
in many cases). This indicates that a back-off technique could
improve the performance of this combiner. One way to do this
is to use fewer clusters for either the train or the test
conversation, but this does not result in significant
improvements. Using the same number of clusters for both the
train and the test conversation sides seems to be optimal.

For comparison, we tried using the gender automatically
determined by a cepstral GMM gender detector, which results
in predictions that are much closer to the true gender than
those of the recognizer-determined gender, to label the trials.
In this case, the cross-cluster trials are much fewer than in the
case of two clusters given by MLLR features. The class-
dependent combiner using these labels is worse than the
neural network combiner in DCF, and averaging those two
gives only a very slight improvement of EER. Using random
clusters or handset dependent clusters (three cases: cell,
carbon and electret) does not give any improvement, not even
after combining with the neural network result.

Other feature vectors such as mean and standard deviation
of the duration of the phones and latent semantic analysis
features were tried as clustering features, but none of them
showed consistent improvements over the neural network
results.

5. Conclusions

We have introduced a novel technique for combining
information sources in a speaker recognition system by
classifying trials based on the parameters of an ASR speaker
adaptation transform and training separate combiners for each
trial class. Analysis of the resulting classes indicates that
emerging cross-cluster classes contain the hardest trials for
the short-term cepstral systems. Through estimation of
distinct combiners for these classes, higher-level features are
assigned more weight and the performance for the trials in
cross-cluster classes improves dramatically, resulting in an
overall performance gain. We have reported speaker
verification results on the NIST SRE task, and the technique
has been shown to provide significant performance gains in
combination with a neural network combiner.

6. Acknowledgements
We thank our SRI colleagues Elizabeth Shriberg, Andreas Stolcke and
Anand Venkataraman for valuable suggestions and comments.

This work was funded by NSF STIMULATE 9619921 (which
supports an offsite RAship through Stanford University), and by an
interagency KDD project administered through NSF 9619921. The
views herein are those of the authors and do not reflect the views of
the funding agencies.

7. References
[1] D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Peskin, A.
Adami, Q. Jin, D. Klusacek, J. Abramson, R. Mihaescu, J. Godfrey,
D. Jones, and B. Xiang, “The SuperSID Project: Exploiting high-level
information for high-accuracy speaker recognition”, Proc. IEEE
ICASSP, Hong Kong, 2003
[2] J. Campbell, D. Reynolds, and R. Dunn, “Fusing high- and low-
level features for speaker recognition”, Proc. Eurospeech, Geneva,
Switzerland, 2003.
[3] D. Garcia-Romero, J. Fierrez-Aguilar, J. Ortega-Garcia and J.
Gonzalez-Rodriguez, “Support vector machine fusion of idiolectal and
acoustic speaker information in Spanish conversational speech”, in
Proc. IEEE ICASSP, Hong Kong, April 2003.
[4] Y. Solewicz and M. Koppel, “Enhanced fusion methods for
speaker verification”, SPECOM, Saint-Petersburg, September, 2004
[5] NIST 2004 Speaker Recognition Evaluation plan,
http://www.nist.gov/speech/tests/spk/2004/SRE-04_evalplan-v1a.pdf.
[6] S. Kajarekar, L. Ferrer, E. Shriberg, K. Sonmez, A. Stolcke, A.
Venkataraman, and J. Zheng, "SRI's 2004 NIST speaker recognition
evaluation system," Proc. IEEE ICASSP, Philadelphia, March 2005.
[7] W. M. Campbell, “Generalized linear discriminant sequence
kernels for speaker recognition,” Proc. ICASSP, Orlando, May 2002.
[8] A. Hatch, B. Peskin and A. Stolcke, “Improved phonetic speaker
recognition using lattice decoding”, Proc. IEEE ICASSP,
Philadelphia, March 2005.
[9] A. Stolcke, L. Ferrer, S. Kajarekar, E. Shriberg, and A.
Venkataraman, “MLLR transforms as features in speaker
recognition”, submitted to Eurospeech, 2005
[10] L. Ferrer, H. Bratt, V. R. Gadde, S. Kajarekar, E. Shriberg, K.
Sonmez, A. Stolcke, and A. Venkataraman, “Modeling duration
patterns for speaker recognition”, Proc. Eurospeech, Geneva,
September, 2003.
[11] E. Shriberg, L. Ferrer, A. Venkataraman, and S. Kajarekar,
“SVM modeling of SNERF-grams for speaker recognition”, Proc.
ICSLP, South Korea, September, 2004.

