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Abstract 

Many recent performance improvements in speaker 
recognition using higher-level features, as demonstrated in the 
NIST Speaker Recognition Evaluation (SRE) task, rely on 
combinations of multiple systems modeling a large variety of 
features. The diversity of the large set of features starting from 
short-term acoustic spectrum features all the way to habitual 
word usage from a large set of speakers in a multitude of 
settings (acoustic environment, speaking style, quantities of 
enrollment/test data) results in a challenging model 
combination task. In this work, we are presenting a class-based 
score combination technique that relies on clustering of both 
the target models and the test utterances in a vector space 
defined by a set of speaker-specific transformation parameters 
estimated during transcription of the talker’s speech by 
automatic speech recognition (ASR). We show that significant 
performance gains are obtained by using the first few principal 
components of a model transform for clustering the speaker 
verification trials into classes for (target speaker, test 
utterance) pairs, and then training a separate combiner for each 
class. We report results on the NIST SRE 2004 and FISHER 
datasets. 

1. Introduction 

Recent strides in speaker recognition using higher-level 
features, as demonstrated in the NIST Speaker Recognition 
Evaluation (SRE) task, have come to rely on combinations of 
multiple speaker models of a variety of classes of features [1]. 
The short-term acoustic spectrum features, the traditional basis 
of a GMM adapted speaker verification system, are combined 
at the score level with a large number of systems using 
features that cover various aspects of prosody and habitual 
word usage. The heterogeneity of the rich set of features used 
to model the large set of speakers and generate scores for 
speaker verification in a variety of settings (acoustic 
environment, speaking style, quantities of enrollment/test data) 
results in a challenging model combination task. The central 
goal of system combination is estimating a statistical mapping 
from the set of scores produced by individual systems to a 
combined score in order to reduce the equal error rate (EER) 
or the NIST-defined Detection Cost Function (DCF), the 
Bayesian risk with a specific set of parameters, both 
performance metrics summarizing the ultimate measure of 
performance, the ROC curve or the NIST-defined variation of 
the ROC curve, the Detection Error Tradeoff (DET) curve. 

Many different techniques have been tried for score 
combination, the most common including linear combination, 
neural networks, perceptrons [1,2], and support vector 
machines [3]. Each of these approaches estimates the 
parameters of a classifier for detecting true vs. impostor 
speech given the claimed target identity in the vector space of 

system scores being combined. The final score is either a 
(possibly non)linear regression on system scores or a distance 
from the separating boundary.  

In designing a classifier in the score space, there is an 
alternative rationale based on the observation of distinct 
classes of target and test speakers or acoustical conditions, 
and so on, which motivates designing separate classifiers for 
each class. The class-based classifier scores are subsequently 
combined and/or selected to generate the final score. For 
example, in [4], trials are clustered according to the quality of 
the test files to train multiple classifiers during score 
combination of the cepstral and the higher-level systems. 

In this work, we are presenting a class-based score 
combination technique that relies on clustering of both the 
target models and the test utterances in a vector space defined 
by a set of speaker-specific transformation parameters 
estimated during transcription of the talker’s speech by ASR. 
Specifically, we use the parameters of the maximum 
likelihood linear regression (MLLR) transform [9], which is 
estimated for each speaker during ASR. We map the 
components of the transform to a lower dimensional space via 
principal component analysis (PCA) and perform the 
clustering in this space. For each class in the product set, that 
is, (target, test) pair of clusters, we allocate a separate 
combiner trained to fit the data in the class. We show that 
significant performance gains are obtained by using the first 
few principal components of the MLLR transform for 
clustering all the speakers into a small number of classes for 
(target, test) pairs. 

The paper is organized as follows. We describe the main 
infrastructure, i.e. the task, corpora, component systems, and 
the baseline combination setup in Section 2. The proposed 
method of class-based score combination is detailed in 
Section 3. Experiments on the NIST SRE task and analysis of 
the results are presented in Section 4, with a discussion 
concluding the paper in Section 5. 

2. Baseline Setup  

2.1. Task and corpora  

The task on which we report performance of the class-based 
combination techniques is the speaker verification task as 
defined in the NIST SRE [5]. We report results in the 
“common” condition, which has one conversation side (of a 
5-minute conversation) as enrollment/training data for a target 
speaker, and one side as the testing utterance. The main 
criterion in the NIST SRE is the Detection Cost Function, 
defined as the Bayesian risk with Ptarget = 0.01, Cfa=1, and 
Cmiss=10. This is the measure of performance we aim to 
optimize in this paper. 

The FISHER development set is created from the FISHER 
database, which is collected and distributed by LDC for the 



DARPA EARS program. We selected two nonoverlapping 
sets of speakers from this data [6]. Each set is balanced with 
respect to different genders and handsets. The first set and a 
part of the EVAL03 dataset involving 425 unique speakers 
were used to create the background models. The second 
FISHER set was divided into two equal splits, FISHER1 and 
FISHER2, and used to build train and development datasets. 
The 2004 NIST SRE dataset (referred to as EVAL04) is part 
of the conversational speech data recorded in the Mixer 
Project and was used for the final evaluation of the method. 

2.2. ASR for speaker recognition features 

The transcriptions and time alignments used for the long-
term, higher-level features were generated with SRI's 5xRT 
CTS recognition system, using improved models developed 
for the NIST RT-03F evaluation [6]. The WER on RT-03 
evaluation data was 21%.  

2.3. Component systems 

Following is a description of the systems included in the 
combination reporting performance on EVAL04 (100*DCF / 
EER%). 
Cepstral GMM system. (Perf: 3.37/8.01) This is a traditional 
background adapted cepstral GMM system that uses a 2048-
component GMM and is described in detail in [6]. 
Cepstral SVM system. (Perf: 3.13/8.01) This system uses the 
baseline cepstral feature vector with CMS and transform-
based channel normalization [7]. Four different systems 
modeling different projections of PCA-transformations of 
mean polynomial vectors (two of which are variance 
normalized) are combined with an equal weight to produce 
the final score. 
MLLR transform SVM system. (Perf: 3.09/8.92) The MLLR-
SVM system uses speaker adaptation transforms used in SRI's 
speech recognition system as features for speaker verification. 
The transform coefficients are modeled by SVMs [9]. 
Phone n-gram system. (Perf: 5.41/12.09) Phone bigram and 
trigram frequencies for each speaker are extracted from phone 
recognition lattices.  The frequencies for the most frequent N-
grams are combined into one feature vector and modeled with 
SVMs [8]. 
Word N-gram SVM system. (Perf: 8.06/23.05) This system 
uses a SVM with a linear kernel with first-, second-, and 
third-order word N-gram frequencies as features [6]. 
SNERF system. (Perf: 6.69/16.16) This system uses a set of 
prosodic features where the extraction region is defined by 
automatically estimated syllable boundaries. The modeling is 
done using SVMs [11]. 
Duration system. Three sets of duration features – state (Perf: 
7.16/15.81), phone (Perf: 8.73/19.75), and word level (Perf: 
8.62/21.50) – modeled by GMMs are used in this system [10].  

2.4. Neural network combiner 

The baseline combiner for the SRI system is a single-layer 
feed-forward network that uses a sigmoid output node during 
training and a linear output for the final predictions. The 
linear output allows better combination of these predictions 
with the ones from our class-dependent combiner. The scores 
from the component systems are normalized with respect to 
the statistics in the training set, and then used as inputs to the 
perceptron, which is trained by minimum squared error with 
training output labels, 0 (impostor), and 1 (target). 

3. Class-based Score Combination 

3.1. Main idea 

The hypothesis that motivates the class-based approach is that 
there are distinct classes of pairs of (target, test) trials, and for 
each class, the combination of short-term spectral and long-
term higher-level features may be optimized separately. We 
cluster target and testing conversation sides with identical 
schemes as described below, resulting in trial pairs specified 
by (target, test) clusters. Separate combiners are trained for 
each class, and during verification probabilities for each class 
are assigned to the trials and an appropriate mixture of 
combiners is used. 

3.2. Features for clustering 

For clustering the speakers we use as features the parameters 
of the two-class version of the MLLR transform as described 
in [9]. For each conversation side two affine transforms are 
estimated, one for the obstruents and one for the 
nonobstruents, each transform containing a translation vector 
and a rotation matrix. These transforms can be viewed as a 
text-independent encapsulation of the speaker's acoustic 
properties. These values are concatenated to form a long 
vector of dimension 3120. Half of the background model data 
are then used to compute the principal components (pc’s) of 
this vector. Finally, the vectors corresponding to the 
conversation sides on the other half of the background data 
and the ones used for train and test are transformed into the 
principal component space. Only the first few pc’s are used 
during clustering. 

Due to the speaker-dependent nature of the MLLR 
features, the obtained clusters contain speakers that are found 
by the recognizer to be acoustically similar. In particular, 
given that the MLLR transforms are computed in a gender-
dependent manner by the recognizer, we expect this 
automatically determined gender to be strongly reflected in 
the value of these features. In fact, we observe that the first pc 
simply conveys the information of the gender as detected by 
the recognizer. 

3.3. Clustering 

We use the remaining half of the background data to obtain 
the clusters by taking as feature vectors the first N pc’s of the 
MLLR features and training a Gaussian mixture model 
(GMM) with diagonal covariance, equal volume, and equal 
shape for each Gaussian. The GMM determines the 
probability of each conversation side belonging to each of the 
clusters determined by the Gaussians. 

The obtained clusters group the conversation sides into a 
small set of “prototypical speakers”. We use these clusters to 
assign classes to each of the trials in the train and test 
databases. The class is determined by the cluster to which the 
target and the test conversation sides belong. For example, if 
the target conversation side has the highest probability of 
belonging to cluster 1 and the test side has the highest 
probability of belonging to cluster 2, then the class for that 
trial is given by (1,2). Rather than making hard decisions, we 
assign probabilities to each of the classes for each trial. The 
probability for class (N,M) is given by the probability of the 
target conversation side belonging to cluster N times the 
probability of the test conversation-side belonging to cluster 
M. 



3.4. Class-dependent combiners 

Our goal is to train a model that is dependent on the class of 
the trial and generates a unique score for each trial given the 
nine-dimensional vector of individual scores. We have trained 
one combiner for each of the resulting classes (e.g., 4x4=16 of 
them if we are using four clusters), using all the samples to 
train all of the combiners, weighting the samples by the 
probability of belonging to each class times a factor that 
depends on the type of trial (true-speaker vs impostor) as 
explained below. This approach proved to be slightly more 
robust than using the training trials for which the probability 
for that class is the highest, especially when using more than 
two clusters. Linear combiners are trained to predict the labels 
of the trials (-1 for impostor and 1 for true-speaker) using 
weighted least squares (WLS) where the weight for each 
sample i when training the combiner corresponding to class j 
is given by 
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where pj,i is the probability of trial i belonging to class j, psp is 
the true-speaker prior probability, pimp is the impostor prior 
probability and sj,imp and sj,sp are the sum of the probabilities 
for all the impostor and true speaker trials for class j. Defining 
the weights in this way allows us to balance the data used to 
train each of the combiners to see an “equivalent” frequency 
of true speaker trials equal to the prior psp. This prior is set to 
0.09, as is usually done when trying to optimize for DCF with 
the NIST parameters. In our case the training database was 
built with these priors, hence no compensation needs to be 
done when training the class-independent combiners. 

During testing, all the combiners are used to score each of 
the trials. A weighted average of the resulting predictions is 
used, where the weight for combiner j is given by the 
probability for the trial of belonging to class j. The resulting 
scores determine the final predictions of our class-dependent 
combiner. 

3.5. Combination with neural network scores 

The resulting prediction can be further averaged with the 
predictions obtained by the neural network. To this end, we 
first (Z-)normalize (substract mean and divide by standard 
deviation) the scale of the scores given by both systems so 
that equal weights can be used for the combination. The 
statistics used for Z-norm are obtained on the development 
test scores. As we will see in the next section, averaging the 
two combiners leads to additional performance improvement. 

4. Experiments and Results 

The system was developed with FISHER data. FISHER1 was 
used for training each of the combiners (including the neural 
network combiner), and FISHER2 was used for 
development/parameter tuning. The data used to train the 
background models for the individual systems was split into 
two and used for computation of the principal components for 
the MLLR features and training of the GMM clustering. 
EVAL04 data was used for the final evaluation of the method. 

We tried different numbers of clusters for both the 
training conversation side and the test conversation side and 
found that most of the improvement is achieved by using 2x2 
clusters. We will use this case to interpret the way the class-
dependent combiner is working. First, we observe that the 
clusters are almost exclusively composed of same-gender (as 
determined by the recognizer, which agrees most, but not all, 

of the time with the gender detected by a GMM-based gender 
classification system) conversation sides. This means that the 
2x2 case is almost the same as labeling the trials by the 
gender obtained by the recognizer for both train and test 
conversations and training a classifier for each of the four 
cases. In theory there should not be any "cross-cluster" trials 
because the task is designed to have only same-gender trials. 
However, since the gender as determined by the recognizer is 
not the same as the actual gender, there are enough trials in 
the cross-cluster classes to warrant separate linear classifiers.  

Table 1 shows several statistics for the data in each of the 
classes and on the complete dataset. First and second rows 
show the number of impostor and true-speaker trials in each 
class. Note that the cross-cluster classes ((1,2) and (2,1)) have 
one order of magnitude less data than the same-cluster 
classes. As mentioned before, this is because there are no 
same-gender trials in the task. Only those trials for which the 
recognizer’s gender label does not match the true gender fall 
in those classes. Hence, these classes correspond to the cases 
where the true-speaker trials were especially hard for the 
cepstral features that form the basis of the gender detectors to 
the degree that the recognizer thought that the conversation 
sides corresponded to two different genders, while they were 
actually from the same speaker.  

Table 1: The breakdown of data and results for the 
class-independent and class-dependent combiners.  

 Class 
(1,1) 

Class 
(1,2) 

Class 
(2,1) 

Class 
(2,2) 

All 
data 

Number of 
impostor trials 

8456 687 402 5525 15070 

Num. of true-
speaker trials 

794 38 38 638 1508 

EER for class-
indep. Classifier 1.97% 25.9% 29.6% 0.65% 3.09% 

EER for  class-
dep. Classifier 1.81% 18.5% 14.8% 0.65% 2.56% 

Rel. weight for 
noncep. systems 

8.1% 46.9% 42.0% 11.1% 11.3% 

 
Third and fourth rows show the EER for the data in each 

of the classes, when using a class-independent classifier 
(trained using least squares regression on the complete data) 
and the class-dependent classifier. Analyzing the performance 
of each of the classifiers in the case of the class-independent 
combiner we can observe that the cross-cluster cases are the 
hardest ones by far: with EER of more than 20% compared to 
less than 2% for the same-cluster cases, reflecting the 
observation above that the cross-cluster classes correspond to 
the hardest trials for the cepstral systems. For the same 
reason, note that it is in the cross-cluster classes where the 
class-dependent combiner makes the biggest difference, 
improving performance in those classes by up to 50% relative. 
Having a class-dependent combiner allows adaptation of 
combination weights by assigning more import to the 
noncepstral systems.  In fact, the noncepstral features 
(duration, snerf and word-ngram) receive a much higher 
weight relative to the class-independent case for those classes 
as can be seen in the last row in Table 1, which shows the 
percent of weights assigned to the noncepstral systems 
compared to the total sum of the weights for the classifiers 
trained using the weights for the corresponding class (in the 
case of all-data, the weights are one for all samples). Finally, 



the performance in the same-cluster classes does not degrade 
with respect to the class-independent classifier. 

Although the interpretation of what the clusters and the 
classes are is not as clear as for the two-cluster case, using 
three and four clusters slightly improves the performance. 
Table 2 shows the results for 4x4 and 2x2 clusters for 
comparison (performance with the 3x3 clusters is in between). 
In all cases, no more pc’s than the first three were found to be 
useful. The measure of performance we are optimizing is the 
DCF. In FISHER2, a relative improvement of 12% in DCF 
with respect to the neural network performance is achieved by 
averaging the neural network prediction with the class-
dependent prediction. On EVAL04, the relative improvement 
is around 7%. For this data, the number of false rejections 
(true-speaker trials misclassified as impostor trials) for the 
averaged combiner at the DCF point is significantly smaller 
(at 95% level) than for the neural network, while the number 
of false alarms is not significantly different, reaffirming our 
observation that it is mainly the misclassified true-speaker 
trials that are corrected by this class-dependent combination 
method. 

Table 2: Performance (100*DCF/EER%) using neural 
network combiner and class-dependent combiner for 
different parameter settings. 

Class-dependent combiner Test 
DB 

Neural Net 
Performance Params Performance 

Neural Net + 
Class-dep 

Performance 

Gen 2x2 0.646 2.56 0.602 2.86 

Ran 2x2 0.668 3.09 0.609 3.01 

Hnd 3x3 0.745 3.24 0.639 3.01 

MLLR 2x2 0.541 2.56 0.511 2.94 

FISH 
2 

0.564 2.94 

MLLR 4x4 0.556 2.64 0.496 2.86 

MLLR 2x2 2.472 5.20 2.271 4.99 EVAL 
04 

2.370 5.27 
MLLR 4x4 2.579 5.55 2.194 5.13 

 
It is interesting to note that the performance of the 4x4 

class-dependent combiner alone is not better than that of the 
2x2 case, but in combination with the neural network the 
relative gain is greater. This indicates that the two combiners, 
the neural network and the class-dependent combiner, are less 
correlated when using more classes. In the 4x4 case, some of 
the classes end up with very few samples (less than a hundred 
in many cases). This indicates that a back-off technique could 
improve the performance of this combiner. One way to do this 
is to use fewer clusters for either the train or the test 
conversation, but this does not result in significant 
improvements. Using the same number of clusters for both the 
train and the test conversation sides seems to be optimal.  

For comparison, we tried using the gender automatically 
determined by a cepstral GMM gender detector, which results 
in predictions that are much closer to the true gender than 
those of the recognizer-determined gender, to label the trials. 
In this case, the cross-cluster trials are much fewer than in the 
case of two clusters given by MLLR features. The class-
dependent combiner using these labels is worse than the 
neural network combiner in DCF, and averaging those two 
gives only a very slight improvement of EER. Using random 
clusters or handset dependent clusters (three cases: cell, 
carbon and electret) does not give any improvement, not even 
after combining with the neural network result.  

Other feature vectors such as mean and standard deviation 
of the duration of the phones and latent semantic analysis 
features were tried as clustering features, but none of them 
showed consistent improvements over the neural network 
results.  

5. Conclusions 

We have introduced a novel technique for combining 
information sources in a speaker recognition system by 
classifying trials based on the parameters of an ASR speaker 
adaptation transform and training separate combiners for each 
trial class. Analysis of the resulting classes indicates that 
emerging cross-cluster classes contain the hardest trials for 
the short-term cepstral systems. Through estimation of 
distinct combiners for these classes, higher-level features are 
assigned more weight and the performance for the trials in 
cross-cluster classes improves dramatically, resulting in an 
overall performance gain. We have reported speaker 
verification results on the NIST SRE task, and the technique 
has been shown to provide significant performance gains in 
combination with a neural network combiner. 
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