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Abstract

Many recent performance improvements in speaker
recognition using higher-level features, as denratet in the
NIST Speaker Recognition Evaluation (SRE) tasky r@ah
combinations of multiple systems modeling a largeety of
features. The diversity of the large set of featigtarting from
short-term acoustic spectrum features all the veaipabitual
word usage from a large set of speakers in a md#itof
settings (acoustic environment, speaking stylentities of
enrollment/test data) results in a challenging rhode
combination task. In this work, we are presentimjpas-based
score combination technique that relies on clusgedf both
the target models and the test utterances in aowveagace
defined by a set of speaker-specific transformatiarameters
estimated during transcription of the talker's speeby
automatic speech recognition (ASR). We show ttgatiicant
performance gains are obtained by using the #stgrincipal
components of a model transform for clustering speaker
verification trials into classes for (target speakdest
utterance) pairs, and then training a separate iceanfor each
class. We report results on the NIST SRE 2004 dS#HER
datasets.

1. Introduction

Recent strides in speaker recognition using hidiest
features, as demonstrated in the NIST Speaker R#mmy
Evaluation (SRE) task, have come to rely on contmna of
multiple speaker models of a variety of classefeafures [1].
The short-term acoustic spectrum features, thétivadl basis
of a GMM adapted speaker verification system, amkined
at the score level with a large number of systersmgu
features that cover various aspects of prosody ratiitual
word usage. The heterogeneity of the rich set afufes used
to model the large set of speakers and generatessdor
speaker verification in a variety of settings (estou
environment, speaking style, quantities of enrolitiiest data)
results in a challenging model combination taske Eentral
goal of system combination is estimating a stat$tmapping
from the set of scores produced by individual systdo a
combined score in order to reduce the equal eatar (EER)
or the NIST-defined Detection Cost Function (DCH)e
Bayesian risk with a specific set of parametersthbo
performance metrics summarizing the ultimate measafr
performance, the ROC curve or the NIST-definedatam of
the ROC curve, the Detection Error Tradeoff (DET)ve.

Many different techniques have been tried for score
combination, the most common including linear camakion,
neural networks, perceptrons [1,2], and supporttorec
machines [3]. Each of these approaches estimates th
parameters of a classifier for detecting true wapastor
speech given the claimed target identity in thearespace of

system scores being combined. The final score theria
(possibly non)linear regression on system scoresdistance
from the separating boundary.

In designing a classifier in the score space, theran
alternative rationale based on the observation iefindt
classes of target and test speakers or acousticalitons,
and so on, which motivates designing separateifiassfor
each class. The class-based classifier scoresibsecuently
combined and/or selected to generate the finalescBor
example, in [4], trials are clustered accordingh® quality of
the test files to train multiple classifiers duringcore
combination of the cepstral and the higher-levetays.

In this work, we are presenting a class-based score
combination technique that relies on clusteringboth the
target models and the test utterances in a veptaresdefined
by a set of speaker-specific transformation pararset
estimated during transcription of the talker's geby ASR.
Specifically, we use the parameters of the maximum
likelihood linear regression (MLLR) transform [94hich is
estimated for each speaker during ASR. We map the
components of the transform to a lower dimensigpake via
principal component analysis (PCA) and perform the
clustering in this space. For each class in theyebset, that
is, (target, test) pair of clusters, we allocateseparate
combiner trained to fit the data in the class. \Wevs that
significant performance gains are obtained by ushegfirst
few principal components of the MLLR transform for
clustering all the speakers into a small numbeclagses for
(target, test) pairs.

The paper is organized as follows. We describentaim
infrastructure, i.e. the task, corpora, compongstesns, and
the baseline combination setup in Section 2. Trepgsed
method of class-based score combination is detaited
Section 3. Experiments on the NIST SRE task antysisaf
the results are presented in Section 4, with aud&on
concluding the paper in Section 5.

2. Basdline Setup

2.1. Task and corpora

The task on which we report performance of thesekmsed
combination techniques is the speaker verificatiask as
defined in the NIST SRE [5]. We report results imet
“common” condition, which has one conversation gjdea
5-minute conversation) as enroliment/training datea target
speaker, and one side as the testing utterance.nidie
criterion in the NIST SRE is the Detection Cost &ion,
defined as the Bayesian risk wilyqe = 0.01, Ci;=1, and
Cmiss=10. This is the measure of performance we aim to
optimize in this paper.

The FISHER development set is created from the EISH
database, which is collected and distributed by LDCthe



DARPA EARS program. We selected two nonoverlapping
sets of speakers from this data [6]. Each setl@nbad with
respect to different genders and handsets. Thieskitsand a
part of the EVALO3 dataset involving 425 unique apas
were used to create the background models. Thendeco
FISHER set was divided into two equal splits, FI$#iEand
FISHER2, and used to build train and developmetdsis.
The 2004 NIST SRE dataset (referred to as EVAL84)art

of the conversational speech data recorded in tleerM
Project and was used for the final evaluation efrtiethod.

2.2. ASR for speaker recognition features

The transcriptions and time alignments used for Itreg-
term, higher-level features were generated with'SSBXRT
CTS recognition system, using improved models dxped
for the NIST RT-03F evaluation [6]. The WER on R3-0
evaluation data was 21%.

2.3. Component systems

Following is a description of the systems includedthe
combination reporting performance on EVALO4 (100BC
EER%).

Cepstral GMM system. (Perf: 3.37/8.01) This is a traditional
background adapted cepstral GMM system that us:8-
component GMM and is described in detail in [6].

Cepstral SVM system. (Perf: 3.13/8.01) This system uses the
baseline cepstral feature vector with CMS and foans
based channel normalization [7]. Four different teys
modeling different projections of PCA-transformaitso of
mean polynomial vectors (two of which are variance
normalized) are combined with an equal weight todpce
the final score.

MLLR transform SVM system. (Perf: 3.09/8.92) The MLLR-
SVM system uses speaker adaptation transformsinsgl's
speech recognition system as features for spe&k#ication.
The transform coefficients are modeled by SVMs [9].

Phone n-gram system. (Perf: 5.41/12.09) Phone bigram and
trigram frequencies for each speaker are extreobed phone
recognition lattices. The frequencies for the niesquent N-
grams are combined into one feature vector and leddeth
SVMs [8].

Word N-gram SVM system. (Perf: 8.06/23.05) This system
uses a SVM with a linear kernel with first-, secgndnd
third-order word N-gram frequencies as features [6]

SNERF system. (Perf: 6.69/16.16) This system uses a set of
prosodic features where the extraction region iindé by
automatically estimated syllable boundaries. Theeting is
done using SVMs [11].

Duration system. Three sets of duration features — state (Perf:
7.16/15.81), phone (Perf: 8.73/19.75), and worcli¢Perf:
8.62/21.50) — modeled by GMMs are used in thisesydtL0].

2.4. Neural network combiner

The baseline combiner for the SRI system is a sitayer
feed-forward network that uses a sigmoid outputenddring
training and a linear output for the final predicts. The
linear output allows better combination of thesedgtions
with the ones from our class-dependent combinee. Sdores
from the component systems are normalized witheesto

the statistics in the training set, and then usemhputs to the
perceptron, which is trained by minimum squarearewith

training output labels, 0 (impostor), and 1 (tayget

3. Class-based Score Combination

3.1. Mainidea

The hypothesis that motivates the class-based apipiis that
there are distinct classes of pairs of (target) teals, and for
each class, the combination of short-term speetndl long-

term higher-level features may be optimized sepgraiVe

cluster target and testing conversation sides wdéntical

schemes as described below, resulting in trialspspecified
by (target, test) clusters. Separate combinergraneed for

each class, and during verification probabilities éach class
are assigned to the trials and an appropriate neixtf

combiners is used.

3.2. Featuresfor clustering

For clustering the speakers we use as featuregatfzeneters
of the two-class version of the MLLR transform asctibed
in [9]. For each conversation side two affine tfarmas are
estimated, one for the obstruents and one for
nonobstruents, each transform containing a traoslatector
and a rotation matrix. These transforms can be edeas a
text-independent encapsulation of the speaker'sustico
properties. These values are concatenated to forlong
vector of dimension 3120. Half of the backgrounddelalata
are then used to compute the principal compongs)(of
this vector. Finally, the vectors corresponding tioe
conversation sides on the other half of the baakgodata
and the ones used for train and test are transtbimte the
principal component space. Only the first few pafe used
during clustering.

Due to the speaker-dependent nature of the MLLR
features, the obtained clusters contain speakatsate found
by the recognizer to be acoustically similar. Irrticalar,
given that the MLLR transforms are computed in adge-
dependent manner by the recognizer, we expect this
automatically determined gender to be stronglyectéld in
the value of these features. In fact, we obseratttte first pc
simply conveys the information of the gender asded by
the recognizer.

the

3.3. Clustering

We use the remaining half of the background dataht@in
the clusters by taking as feature vectors the firpt’s of the
MLLR features and training a Gaussian mixture model
(GMM) with diagonal covariance, equal volume, arglia
shape for each Gaussian. The GMM determines the
probability of each conversation side belongingdch of the
clusters determined by the Gaussians.

The obtained clusters group the conversation sitesa
small set of “prototypical speakers”. We use thelssters to
assign classes to each of the trials in the traid #est
databases. The class is determined by the clustehich the
target and the test conversation sides belongekample, if
the target conversation side has the highest pilityabf
belonging to cluster 1 and the test side has tlghesi
probability of belonging to cluster 2, then thessldor that
trial is given by (1,2). Rather than making hardisiens, we
assign probabilities to each of the classes foh ¢aal. The
probability for classN,M) is given by the probability of the
target conversation side belonging to cludiertimes the
probability of the test conversation-side belongiagcluster
M.



3.4. Class-dependent combiners

Our goal is to train a model that is dependentlendass of
the trial and generates a unique score for eaghdiven the
nine-dimensional vector of individual scores. Weéhaained
one combiner for each of the resulting classes, (@@=16 of
them if we are using four clusters), using all Haenples to
train all of the combiners, weighting the samplgs the
probability of belonging to each class times a dadhat
depends on the type of trial (true-speaker vs ingupsas
explained below. This approach proved to be shghibre
robust than using the training trials for which r@bability
for that class is the highest, especially whengisiore than
two clusters. Linear combiners are trained to mtettiie labels
of the trials (-1 for impostor and 1 for true-spegkusing
weighted least squares (WLS) where the weight fache

samplei when training the combiner corresponding to class j

is given by

[ Pji Pep/Sissp fOr truespeaker tials (1)

"1 Py Pinp/Siimp fOr impostor tials

wherep; is the probability of trial belonging to clasp ps is
the true-speaker prior probabilitg,, is the impostor prior
probability ands;n, ands;s, are the sum of the probabilities
for all the impostor and true speaker trials fass]. Defining
the weights in this way allows us to balance thie dsed to
train each of the combiners to see an “equivaléetjuency
of true speaker trials equal to the pnigy This prior is set to
0.09, as is usually done when trying to optimizeDE&€F with
the NIST parameters. In our case the training da@lwas
built with these priors, hence no compensation sdedbe
done when training the class-independent combiners.

During testing, all the combiners are used to seah of
the trials. A weighted average of the resultingdprgons is
used, where the weight for combingris given by the
probability for the trial of belonging to clagsThe resulting
scores determine the final predictions of our clegsendent
combiner.

3.5. Combination with neural network scores

The resulting prediction can be further averageth whe
predictions obtained by the neural network. To #misl, we
first (Z-)normalize (substract mean and divide Wbgndard
deviation) the scale of the scores given by bottesys so
that equal weights can be used for the combinatidre
statistics used for Z-norm are obtained on the Idgment
test scores. As we will see in the next sectioeragying the
two combiners leads to additional performance imeneent.

4. Experimentsand Results

The system was developed with FISHER data. FISHERL
used for training each of the combiners (including neural
network combiner), and FISHER2 was
development/parameter tuning. The data used to titee
background models for the individual systems wdi spo

two and used for computation of the principal congras for
the MLLR features and training of the GMM clustgrin
EVALO4 data was used for the final evaluation & thethod.

We tried different numbers of clusters for both the

training conversation side and the test convensatide and
found that most of the improvement is achieved fingi 2x2
clusters. We will use this case to interpret the thee class-
dependent combiner is working. First, we obsenat the
clusters are almost exclusively composed of samelaye(as
determined by the recognizer, which agrees mostnbuall,

of the time with the gender detected by a GMM-bagender
classification system) conversation sides. Thisnedhat the
2x2 case is almost the same as labeling the thwplghe
gender obtained by the recognizer for both traid #est
conversations and training a classifier for eachthef four
cases. In theory there should not be any "crossesfutrials
because the task is designed to have only samegénls.
However, since the gender as determined by thegnézer is
not the same as the actual gender, there are ertgatghin
the cross-cluster classes to warrant separate litessifiers.

Table 1 shows several statistics for the data ah ed the
classes and on the complete dataset. First anchdaoms
show the number of impostor and true-speaker tialsach
class. Note that the cross-cluster classes ((b@)21)) have
one order of magnitude less data than the sameeclus
classes. As mentioned before, this is because twereno
same-gender trials in the task. Only those triatsafhich the
recognizer’s gender label does not match the temeler fall
in those classes. Hence, these classes correspdhd tases
where the true-speaker trials were especially Hardthe
cepstral features that form the basis of the geddtctors to
the degree that the recognizer thought that theversation
sides corresponded to two different genders, whigy were
actually from the same speaker.

Table 1: The breakdown of data and results for the
class-independent and class-dependent combiners.

Class | Class | Class | Class | All
@) | @2 | @1 | 22 | data
_Numberof 1 g456 | 687 | 402 | 5525| 1507
impostor trials
Num. of true- 794 38 38 638 1508
speaker trials
EERfor class- |y g79; | 55.995| 29.6% 0.65% 3.09%
indep. Classifier
EERfor class- |, o100 | 18506| 14.8% 065% 2.56%

dep. Classifier

Rel. weight for

8.1% | 46.9% | 42.0%| 11.19 11.3%

noncep. systems

used for

Third and fourth rows show the EER for the dataach
of the classes, when using a class-independensifias
(trained using least squares regression on the letengata)
and the class-dependent classifier. Analyzing #réopmance
of each of the classifiers in the case of the aladspendent
combiner we can observe that the cross-clusterscagethe
hardest ones by far: with EER of more than 20% ey to
less than 2% for the same-cluster cases, reflectimg
observation above that the cross-cluster classesspmnd to
the hardest trials for the cepstral systems. Fer thme
reason, note that it is in the cross-cluster cksgeere the
class-dependent combiner makes the biggest differen
improving performance in those classes by up to &€lgidive.
Having a class-dependent combiner allows adaptatibn
combination weights by assigning more import to the
noncepstral systems. In fact, the noncepstralufest
(duration, snerf and word-ngram) receive a muchhdig
weight relative to the class-independent casehfosé classes
as can be seen in the last row in Table 1, whigwshthe
percent of weights assigned to the noncepstralesst
compared to the total sum of the weights for tresgifiers
trained using the weights for the corresponding<l@n the
case of all-data, the weights are one for all sas)plFinally,



the performance in the same-cluster classes ddedegoade
with respect to the class-independent classifier.

Although the interpretation of what the clustersl dhe
classes are is not as clear as for the two-clustse, using
three and four clusters slightly improves the penfance.
Table 2 shows the results for 4x4 and 2x2 clusfers
comparison (performance with the 3x3 clusters isdtween).
In all cases, no more pc’s than the first threeevieund to be
useful. The measure of performance we are optigisrthe
DCF. In FISHER2, a relative improvement of 12% i€P
with respect to the neural network performancehieved by
averaging the neural network prediction with thesst
dependent prediction. On EVALO4, the relative imyenment
is around 7%. For this data, the number of falgections
(true-speaker trials misclassified as impostorldyidor the
averaged combiner at the DCF point is significastiyaller
(at 95% level) than for the neural network, whie humber
of false alarms is not significantly different, figaning our
observation that it is mainly the misclassifiedetapeaker
trials that are corrected by this class-dependemntbination
method.

Table 2: Performance (100*DCF/EER%) using neural
network combiner and class-dependent combiner for
different parameter settings.

Test | NeuralNet | Class-dependent combindr Neural Net +
DB Performance Params Performancg Pce:ﬁi;ii?;e
Gen2x2 | 0.64d 254 0602 246
Ran2x2 | 0.668 3.04 0609 3.41
FISH os6a| 2.94| Hnaaxa | 0748 324 063D 3t
MLLR 2x2 | 0.541| 2.56| 0511 2.9}
MLLR 4x4 | 0.556 | 2.64 | 0.496 | 2.86
MLLR 2x2 | 2.472| 5.20| 2.271 4.99
E\éﬁL 23701 527 MLLR 4x4 | 2.579| 555 [ 2.194| 5.13

It is interesting to note that the performance e #x4
class-dependent combiner alone is not better thanaf the
2x2 case, but in combination with the neural nekwtre
relative gain is greater. This indicates that the tombiners,
the neural network and the class-dependent comtanetess
correlated when using more classes. In the 4x4, casee of
the classes end up with very few samples (lessdatamdred
in many cases). This indicates that a back-offriggke could
improve the performance of this combiner. One veagd this
is to use fewer clusters for either the train oe ttest
conversation, but this does not result in significa
improvements. Using the same number of clusterbdt the
train and the test conversation sides seems tptiaal.

For comparison, we tried using the gender automistic
determined by a cepstral GMM gender detector, wheshilts
in predictions that are much closer to the truedgerthan
those of the recognizer-determined gender, to ltdzetrials.
In this case, the cross-cluster trials are muclefahan in the
case of two clusters given by MLLR features. Thass}
dependent combiner using these labels is worse than
neural network combiner in DCF, and averaging thive
gives only a very slight improvement of EER. Usiagidom
clusters or handset dependent clusters (three :casdls
carbon and electret) does not give any improvenmaiteven
after combining with the neural network result.

Other feature vectors such as mean and standaiatidav
of the duration of the phones and latent semantalyais
features were tried as clustering features, butenointhem
showed consistent improvements over the neural arktw
results.

5. Conclusions

We have introduced a novel technique for combining
information sources in a speaker recognition systeymn
classifying trials based on the parameters of aR AfBeaker
adaptation transform and training separate combifoereach
trial class. Analysis of the resulting classes daths that
emerging cross-cluster classes contain the hatdalst for
the short-term cepstral systems. Through estimatidn
distinct combiners for these classes, higher-lés@iures are
assigned more weight and the performance for tiads tm
cross-cluster classes improves dramatically, resulin an
overall performance gain. We have reported speaker
verification results on the NIST SRE task, and tdehnique
has been shown to provide significant performaraesyin
combination with a neural network combiner.
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