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Prologue

• What made it work?



2002

2004

2005

SDV progress:
•Systems developed in different years
•All tested on 2005 data



What made the difference this 
year?

• Fusion
– Disassemble existing systems.
– Re-assemble them in a variety of different 

ways.
– Swap a system or two with your friends (TNO).
– Fuse them all together, the more the merrier!
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(1c4w)2 all: 9-system fusion

1. GMM
2. EigChan GMM F+R
3. EigenChan GMM F
4. EigenChan GMM R
5 DOT F
6 DOT R
7 TNO GMM
8 TNO SVM
9 Grand Log. Regr.
SDV-1 fusion

I spent 90%
of my time on
this system.



Summary
• (1C4W)2 condition only
• Cross-Channel-Squelch
• New discriminative approaches:

– new expanded feature set
– logistic regression
– grand logistic regression (new bilinear kernel)
– piggyback fusion

• score →log-likelihood-ratio calibration
– evaluation of calibration (APE curve)



Cross-Channel Squelch

• X-Ch-Sq helps to suppress unwanted echo-
cancellation residue. It was made possible 
this year by the new stereo data format.

• This did give a modest improvement.
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Cross-channel squelch
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Discard possible residues via cross-channel energy comparison.



• We experimented with our baseline (2004) 
GMM system:
– SDV0y: No cross-channel squelch – only the 

channel of interest was processed.
– SDV0x: With cross-channel squelch.

• The DET-curve does show an improvement 
(see next slide).
– This is one of the many small improvements 

that together gave a large improvement.

Does it make a difference?



without X-Ch-Sq

with X-Ch-Sq



New Discriminative Approaches

• Expanded features
• Objective function
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion



GLDS+SVM
test-segment front-end

polynomial expansion, normalization, avg. over frames

train-segment

SVM-trainingdot-product

SVM score

test-supervector train-supervector

model-supervector

(mfcc + ∆)



test-segment front-end train-segment

GMM-training

dot-product

DOT score

Linear approx. to GMM score

)|seg-test(log UBMp∇

model-supervectorgradient-supervector

(mfcc + ∆)

T-norm model − UBM



model space

score

UBM target model

log p(test-seg|model)GMM score

1st order
Taylor-series
approximationgradient



Expanded features
• As a side effect, the DOT score turned out 

to be complementary when fused with the 
GMM score!

• But, the primary purpose of this exercise 
was to generate supervectors (gradient and 
model) to use in a discriminative approach. 
We wanted to start from a linearized GMM 
score, and then replace the dot product with 
a discriminatively trained scoring 
procedure.  



Discriminative approach

• Expanded features
• Objective function: logistic regression
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion
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discriminative function

input vector

score

penalty

0

1

avg. over training data

adjust parameters
to minimize objective

objective function

This penalty is not calculus-friendly



discriminative function

input vector

score

penalty

0

1

avg. over training data

adjust parameters
to minimize objective

objective function

non-target trial

Sigmoid-penalty:
• differentiable
• used in neural networks
• optimization-unfriendly 

because objective can have
local optima



discriminative function

input vector

score

penalty

0

1

avg. over training data

adjust parameters
to minimize objective

objective function

SVM hinge penalty:
• convex objective

i.e. unique global minimum 
• somewhat complex 

constrained optimization
problem



discriminative function

input vector

log-likelihood-ratio?

penalty

0

1

avg. over training data

adjust parameters
to minimize objective

– log-likelihood(training labels)

Logistic regression:
• convex objective
• easier unconstrained optimization
• can give a score that is calibrated

as a log-likelihood-ratio 



Discriminative approach

• Expanded features
• Objective function
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion



Logistic regression training

• Since the objective function is convex and 
unconstrained, almost anything works.

• But some methods are a lot faster than 
others.

• We used a conjugate-gradient algorithm that 
uses 1st and 2nd derivatives of the objective 
function. (See the system description for a 
reference to the algorithm of Tom Minka.)



Discriminative approach

• Expanded features
• Objective function
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion



State-of-the-art discriminative 
speaker recognition

test-segment

train-segment feature 
extraction

GLDS
expansion

linear
transform

SVM
(linear kernel)

dot
product model

score



but we tried something 
different…



Discriminative detection-trial
recognition

test-segment

train-segment feature 
extraction

feature 
expansion

grand logistic 
regression machine

trial-supervector

detection score
(log-likelihood-ratio?)

discriminative 
training

over all available 
trials

can this solve the
channel problem? 



The ideal
• The ideal was to create a monolithic

discriminative approach to solve the whole 
speaker detection problem, including the 
channel mismatch problem.

• In other words, we tried to create a 
streamlined system that looks like this:





Instead it turned out like this:

generative 

discriminative



train-seg

test-seg

train
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train-seg

test-seg

train
GMM

DOT g′′′′ Y ′′′′ X m

Grand Log.Reg.
Construction

linear
model -
compensation

linear
feature -
compensation
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bilinear
product g′′′′ Z m

Grand Log.Reg.
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bilinear
product g′′′′ Z m

Grand Log.Reg.

train-seg

test-seg

train
GMM m

g
∇
+

T-norm

training 
problem ≡ Find the 150 million 

elements of Z



Finding Z , 
subject to regularization (to combat overtraining)

≡ (by the Representer Theorem)

Finding { αi } where:
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Grand Logistic Regression

In summary: 
• This is an attempt to improve a linearized

(t-normed) GMM score via further linear 
transformations in supervector space.

• The linear transformations are effected by 
regularized kernel logistic regression.

• Does it work?



Does it work?
• No. Performance was much worse (EER=25%) 

than the baseline dot-product which corresponds 
to Z = I. This suggests it may have fared better 
with more training examples (which were 
unavailable.)

• Fortunately, we found a way to make it pay 
anyway:

• Instead of using GLR on its own, we trained it to 
be a fusion complement to an already good 
system. In this case it provides some improvement 
above this good system. We called this strategy 
piggyback fusion.



New Discriminative Approaches

• Expanded features
• Objective function
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion
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grand logistic regression
linear fusion (8 systems)
piggyback fusion (9 systems)

standalone EER=25%

piggyback EER=50%



Grand Logistic Regression 
Summary

• Tricky to get to work:
– choice of feature expansion
– normalization?
– choice of kernel
– regularization constant
– does not give a well-calibrated log-likelihood-ratio 

score. 
– training can take very long
– poor performance (20-25% EER) on its own (so far)

• But, with some effort, can probably be used via 
piggyback to improve almost any existing system.



New Discriminative Approaches

• Expanded features
• Objective function
• Optimization procedure
• Grand logistic regression
• Piggyback fusion
• Linear fusion



Linear logistic regression fusion
• Easy to implement. (It just works.)
• Not regularized (no constant to choose).
• Training is very fast.
• Gives a well-calibrated log-likelihood-ratio score.
• Results seem stable between development and test 

data.
• See system description for details.
• See next slide for summary of fused systems …
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Note on asymmetry of eval. data
• Are 1C4W (or 1-side) test- and train- segments 

the same thing?
• According to our experiments on 2004 and 2005 

data: No.
• For our GMM systems, we get a large difference 

between:
– Forward: Train model on train- and score on test-

segment.
– Reverse: Train model on test- and score on train-

segment.
• (With the dot-product approximation, this is not 

the case.)
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EigChan GMM Forward
EigChan GMM Reverse
EigChan DOT Forward
EigChan DOT Reverse



Asymmetry

• Some part of the fusion success is probably 
attributable to the fact that this asymmetry 
had a similar nature in the 2004 and 2005 
data sets. 
– Fusion weights for the reverse systems were 

smaller than for the forward systems. 



Calibration

• We relied on linear logistic regression to 
give scores that are well-calibrated log-
likelihood-ratios.

• We performed no special optimization for 
the NIST operating point.

• We chose no special decision thresholds. 
We simply used the theoretical log-
likelihood-ratio threshold of log 9.9 ≈≈≈≈ 2.29.



Calibration

• This linear fusion to give a log-likelihood-
ratio is similar to what MIT did this year. 
The difference is they used a mean-squared-
error optimization objective. The MSE can 
be biased so that it does optimize for the 
NIST operating point. (Indeed MIT found 
MSE to give better CDET and EER than 
logistic regression.)



Calibration
• The reason we stuck with logistic regression 

instead of MSE, was that for practical applications 
of our system, we are interested not only in the 
NIST operating point. We want to be able to apply 
our system for as wide a range of applications as 
possible. 

• For this purpose, we argue that the logistic 
regression objective (a.k.a. cross-entropy) is more 
suitable. 

• For detailed comparison between MSE and cross-
entropy see (Brummer, Computer Speech and 
Language, 2005). 



Evaluation of quality of log-
likelihood-ratio (llr)

speech

detector

score

calibration

llr

decision

PT

Cmiss,Cfa

CDET measures here

DET- curve, EER, min CDET

measure here

How do we measure here?
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How do we adjust ?PT

Cmiss , Cfa

• It turns out a one-dimensional adjustment is sufficient:

10,
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Cllr is:
• (minus) Information delivered to user by system
• Expected cost of using system (over different 

applications)
• Total error-rate (over different applications)
• (minus) log-likelihood of the eval. answer-key
• Logistic regression objective
• a.k.a cross-entropy
• Subject of my Odyssey ‘04 and CSL ‘05 papers.



Cllr evaluation of the score
speech

detector

score

calibration

llr

calibration,
optimized 
by evaluator,
subject to
monotonicity
(PAV algorithm)

Cllr

minimum Cllrllropt

Evaluation



(llr is also a score)
speech

detector

llr

calibration,
optimized 
by evaluator,
subject to
monotonicity
(PAV algorithm)

Cllr

minimum Cllrllropt

Evaluation



APE-plots
• The interpretation of Cllr as an integral over 

error-rates, has a useful graphic 
representation, which we called:

Applied Probability of Error (APE) plot.

• When used for llr evaluation it gives 
information that is complementary to the 
DET-plot.

• We used APE-plots in addition to DET-plots 
to make all of our development decisions.



APE-plots show:

• EER = max of green curve

• (scaled) CDET and min CDET

= values of red and green curves at –2.29
• Cllr = area under red curve
• minimum Cllr = area under green curve
• Calibration loss = area between curves 
• Example: SDV-1, SDV-2 and SDV-3:
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Examples of bad calibration

• SDV-1 : (not damaged)
• SDV-1 : llr multiplied by 2
• SDV-1 : llr divided by 2
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Note: ACE-plot

• Very similar, and dual to the APE-plot is the
Applied Cost of Error (ACE)-plot 

• based on the expected cost interpretation of 
Cllr .



Conclusion

• Generative methods of channel 
compensation formed the mainstay:
– Eigenchannel (SDV)
– Feature mapping (TNO)

• But these were complemented, fused and 
calibrated with new discriminative methods.


