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Prologue

e What made 1t work?
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What made the difference this
year?

e Fusion
— Disassemble existing systems.

— Re-assemble them 1n a variety of different
ways.

— Swap a system or two with your friends (TNO).

— Fuse them all together, the more the merrier!
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Summary

(1C4W)? condition only
Cross-Channel-Squelch

New discriminative approaches:
— new expanded feature set

— logistic regression
— grand logistic regression (new bilinear kernel)
— piggyback fusion

score — log-likelihood-ratio calibration
— evaluation of calibration (APE curve)



Cross-Channel Squelch

e X-Ch-Sq helps to suppress unwanted echo-
cancellation residue. It was made possible
this year by the new Stereo data format.

e This did give a modest improvement.
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Discard possible residues via cross-channel energy comparison.



Does 1t make a difference?

 We experimented with our baseline (2004)
GMM system:

— SDVO0y: No cross-channel squelch — only the
channel of interest was processed.

— SDVOx: With cross-channel squelch.
e The DET-curve does show an improvement
(see next slide).

— This 1s one of the many small improvements
that together gave a large improvement.
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New Discriminative Approaches

Expanded features
Objective function
Optimization procedure
Grand logistic regression
Piggyback fusion

Linear fusion
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Linear approx. to GMM score
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Expanded features

e As a side effect, the DOT score turned out

to be complementary when fused with the
GMM score!

e But, the primary purpose of this exercise
was to generate supervectors (gradient and
model) to use in a discriminative approach.
We wanted to start from a linearized GMM
score, and then replace the dot product with
a discriminatively trained scoring
procedure.



Discriminative approach

Expanded features

ODbjective function: logistic regression
Optimization procedure

Grand logistic regression

Piggyback fusion

Linear fusion
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Sigmoid-penalty:

e differentiable

e used 1in neural networks

e optimization-unfriendly
because objective can have
local optima
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SVM hinge penalty:

e convex objective
i.e. unique global minimum

e somewhat complex
constrained optimization
problem
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Logistic regression:

e convex objective

e casier unconstrained optimization

e can give a score that is calibrated
as a log-likelihood-ratio



Discriminative approach

Expanded features
Objective function
Optimization procedure
Grand logistic regression
Piggyback fusion

Linear fusion



Logistic regression training

e Since the objective function 1s convex and
unconstrained, almost anything works.

 But some methods are a |lot faster than
others.

 We used a conjugate-gradient algorithm that
uses 15t and 2" derivatives of the objective
function. (See the system description for a
reference to the algorithm of Tom Minka.)



Discriminative approach

Expanded features
Objective function
Optimization procedure
Grand logistic regression
Piggyback fusion

Linear fusion



State-of-the-art discriminative
speaker recognition
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but we tried something
different...



Discriminative detection-trial
recognition

test-segment

grand logistic
regression machine

trial-supervector

detection score
(log-likelihood-ratio?)

can this solve the
channel problem?



The 1deal

e The ideal was to create a monolithic
discriminative approach to solve the whole
speaker detection problem, including the
channel mismatch problem.

* In other words, we tried to create a
streamlined system that looks like this:






Instead it turned out like this:
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Grand Logistic Regression

In summary:

* This 1s an attempt to improve a linearized
(t-normed) GMM score via further linear
transformations 1n supervector space.

e The linear transformations are effected by
regularized kernel logistic regression.

e Does 1t work?



Does 1t work?

 No. Performance was much worse (EER=25%)
than the baseline dot-product which corresponds
to Z = 1. This suggests it may have fared better
with more training examples (which were
unavailable.)

e Fortunately, we found a way to make it pay
anyway:

* Instead of using GLR on its own, we trained it to
be a fusion complement to an already good
system. In this case it provides some improvement
above this good system. We called this strategy
piggyback fusion.



New Discriminative Approaches

Expanded features
Objective function
Optimization procedure
Grand logistic regression
Piggyback fusion

Linear fusion
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Grand Logistic Regression
Summary

e Tricky to get to work:
— choice of feature expansion
— normalization?
— choice of kernel
— regularization constant

— does not give a well-calibrated log-likelihood-ratio
score.

— training can take very long
— poor performance (20-25% EER) on its own (so far)

e But, with some effort, can probably be used via
piggyback to improve almost any existing system.



New Discriminative Approaches

Expanded features
Objective function
Optimization procedure
Grand logistic regression
Piggyback fusion

Linear fusion



Linear logistic regression fusion

Easy to implement. (It just works.)

Not regularized (no constant to choose).

Training 1s very fast.

Gives a well-calibrated log-likelihood-ratio score.

Results seem stable between development and test
data.

See system description for details.

See next slide for summary of fused systems ...
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Note on asymmetry of eval. data

e Are 1C4W (or 1-side) test- and train- segments
the same thing?

e According to our experiments on 2004 and 2005
data: No.

 For our GMM systems, we get a large difference
between:

— Forward: Train model on train- and score on test-
segment.

— Reverse: Train model on test- and score on train-
segment.

» (With the dot-product approximation, this is not
the case.)
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Asymmetry

e Some part of the fusion success 1s probably
attributable to the fact that this asymmetry
had a similar nature 1n the 2004 and 2005

data sets.

— Fusion weights for the reverse systems were
smaller than for the forward systems.



Calibration

* We relied on linear logistic regression to
give scores that are well-calibrated log-
likelihood-ratios.

 We performed no special optimization for
the NIST operating point.

* We chose no special decision thresholds.
We simply used the theoretical log-
likelihood-ratio threshold of log 9.9 = 2.29.



Calibration

e This linear fusion to give a log-likelihood-
ratio 1s similar to what MIT did this year.
The difference 1s they used a mean-squared-
error optimization objective. The MSE can
be biased so that it does optimize for the
NIST operating point. (Indeed MIT found

MSE to give better C and EER than
logistic regression.)



Calibration

e The reason we stuck with logistic regression
instead of MSE, was that for practical applications
of our system, we are interested not only in the
NIST operating point. We want to be able to apply
our system for as wide a range of applications as
possible.

e For this purpose, we argue that the logistic
regression objective (a.k.a. Cross-entropy) is more
suitable.

e For detailed comparison between MSE and cross-

entropy see (Brummer, Computer Speech and
Language, 2005).



Evaluation of quality of log-
likelihood-ratio (lIr)
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How do we adjust % ?

e It turns out a one-dimensional adjustment is sufficient:
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C, 1s:

(minus) Information delivered to user by system

Expected cost of using system (over different
applications)

Total error-rate (over different applications)
(minus) log-likelihood of the eval. answer-key
Logistic regression objective

a.k.a cross-entropy

Subject of my Odyssey ‘04 and CSL ‘035 papers.



C,, evaluation of the score
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APE-plots

e The interpretation of C;;, as an integral over
error-rates, has a useful graphic
representation, which we called:

Applied Probability of Error (APE) plot.

 When used for lIr evaluation it gives
information that 1s complementary to the

DET-plot.

 We used APE-plots 1n addition to DET-plots
to make all of our development decisions.



APE-plots show:

EER = max of green curve
(scaled) Cper and min Cye

= values of red and green curves at —2.29
C,, = area under red curve

minimum C,;, = area under green curve
Calibration loss = area between curves
Example: SDV-1, SDV-2 and SDV-3:
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Examples of bad calibration

e SDV-1 : (not damaged)
e SDV-1 : lIr multiplied by 2
e SDV-1 :llr divided by 2
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Note: ACE-plot

* Very similar, and dual to the APE-plot is the
Applied Cost of Error (ACE)-plot

* based on the expected cost interpretation of
CIIr y



Conclusion

e Generative methods of channel
compensation formed the mainstay:

— Eigenchannel (SDV)
— Feature mapping (TNO)

e But these were complemented, fused and
calibrated with new discriminative methods.



