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e System Overview

* New for 2005
— Data Sets
— SVM NAP
— SVM Text-constrained
— Phone and word lattice
— Metadata for fusion

* Analysis
— 2 wirevs. 4 wire
— Conv. mic vs. main conditions
— AT-Norm cohort selection
— Metadata fusion
— Word LLR Smoothing
— Phonetic Refraction

® Conclusion
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System Overview
Likelihood Ratio Detector

® Basic decision statistic in core detectors is the likelihood-ratio
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System Overview
Core Detectors

e MFCC GMM-UBM system

e MFCC NAP SVM GLDS kernel system spectral
e MFCC SVM GLDS kernel system

e MFCC SVM Text-Constrained

* Pitch/Energy GMM-UBM system

* Pitch/Energy Slope N-gram system
® Sub-band prosodic modeling

* Phone N-gram system

* Phone SVM system phone‘ric
* Word SVM system

* Word N-gram system

e Fusion idi y
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e New for 2005
— Data Sets
— SVM NAP
— SVM Text-constrained
— Phone and word lattice
— Metadata for fusion
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Data Sets
Dev Set Design
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* Evaluation '04 indices were redesigned to focus on harder
Impostor trials

— Target trials were same as Eval04

— Imposter trials were chosen only from the same dialect as the
target speaker (L1)

* Focus on “all” pooling and cross-language conditions
— Turns out this was not really represented in eval05 data
* Development using two equal splits with non-overlapping

8
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speakers

GMM-UBM | 8conv4w/1conv4w | 1conv4w/lconv4w

eval04 eer=7.71 eer=11.97
dcf=0.0327 dcf=0.0478

dev05 eer=8.71 eer=12.82
dcf=0.0380 dcf=0.0516

eval05 eer=6.82 eer=10.56
dcf=0.0270 dcf=0.0392
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= Data Sets
Model Training

* GMM UBM background model and cohort training
— Swbll, Fisher and Eval04

e SVM background
— Fisher, CallFriend and CallHome

e Word and Phone SVM/LLR backgrounds
— Fisher, CallFriend and CallHome

* Fusion
— Eval04

DevO05 results 8conv4w/lconv4w | 1conv4w/lconv4w
GMM-UBM eer=8.71 eer=12.82
SWBII dcf=0.0380 dcf=0.0516
GMM-UBM eer=7.89 eer=11.24
SWBII, new SAD dcf=0.0373 dcf=0.0493
GMM-UBM eer=7.26 eer=10.94
SWBII+eval04, dcf=0.0371 dcf=0.0477
new SAD
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Nuisance Attribute Projection (NAP)*

""
&

* Remaove directions which have significant channel variability using

a projection: ‘
P=1-ww
* The new kernel is:

K(X,y) = Pb(x)-Pb(y)

®* The projection is designed with the following criterion:

2 1 forl, | h |
5:2 Wij‘P(b(Xi)—b(xj))‘ W, :{O or i, j same channe
i

for i, j different channel

e We trained the I@r_ojection using automatically labeled data from the
Elstft'lel‘ and CallFriend corpus. Labels were cell, electret, and carbon
utton.

‘Alex Solomonoff, W. Campbell, I. Boardman, “Advances In Channel
Compensation For SVM Speaker Recognition,” ICASSP 2005, pp. 629-632.
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SVM NAP
Performance — All Trials

— 15/1s NAP
=== 15/1s SVM Plain
- 3s5/1s NAP
=== 35/1s SVM Plain
—— 8s/1s NAP
=== 8s/1s SVM Plain
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Text Constrained SVM
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®* Uses Base-Generalized Linear Discriminant Sequence (GLDS)
Kernel with a directed search during training

* Expansion vectors are average per word per utterance
* Background trained using Fisher 2004 collect
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Text Constrained SVM
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* Testing utilizes the same two step front-end
— Detection
— Feature Generation

Test Speech

Glottalziation
“hh'"“ »‘ Detection I .

Front-end
processing

Detection
Decision

Target Model
(Support Vectors)
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Text-Constrained SVM
Results
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Sub-band Prosodic Modeling

* Aim: capture frequency-localized energy and pitch correlations characteristics

* Approach: apply n-gram modeling to the sequence of symbols estimated from
the sub-band frequency energy and FO
* Description
— Critical-band energy instead of short-term energy
15 Bark-scale critical bands (1-Bark spacing between filters)

— Logblikeéihood ratio between the target-speaker and the background bigram models
per ban

— Frequency-bands fusion using linear combination

— Background model trained using (Switchboard 2 (phases 1, 2, 4, and 5) corpora and
the NIST SRE’'04 )

— T-norm (gender and training condition dependent) applied using speakers from
Background model

Pitch
> detection [
Frequency-band Log-likelihood
_t modeling #1 » ratio estimation [
Frequency-bhand Log-likelihood Score Likelihood
Speech signal L SPB‘CU"?I 3 modeling #2 » ratio estimation fusion — o
analysis - =
Frequency-band Log-likelihood
__t modeling #N » ratio estimation [
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SVM Phone

N,
3
Comparison: Lattice vs. 1best, English Only
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SVM Word System

Bigram (n=2)

Uh-1 0.022
Uh-yeah 0.001

Un-well 0.025

Uh I thinkyeah ...  speaker ngrams

VWWW Speech recognizer I > SVM score

* Uses SVM Word system described in Campbell, et. al.

®* Uses lattices and expected counts from Byblos ASR (same as
LLR system)

* Unigram and Bigram Probabilities used
® Sparse Vector inner products used

* Weighting was similar to TFLLR; used a log squashing function
instead of a square root

* Background trained from Fisher and CallFriend

17 W.Campbell, J.Campbell, D.Reynolds, D.Jones, T.Leek, “High Level SpeMklérr Lincoln Laboratory

NIST SRE

07-08 June 2005 Recognition with Support Vector Machines,” ICASSP 2004.



SVM Word & LLR Word
Comparison: All Trials

Miss probability (in %)
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&S Fusion System Design

* Metadata

— Channel type (Landline/Cell)
Test: Encoded as single field (Land=0, Cell=1)
Model: Fraction of number of training files labeled cell
— Duration (number of frames)
Test: Number of frames
Model: Total number of frames in all training files
— Gender (Male/female)
Test:. Male=0, Female=1
Model: Male/Female per index lists
— Language (Arabic/English/Mandarin/Russian/Spanish)
Test: Encoded as five 1/0 fields
Model: Five fields represent fraction of number training files

* Development experiments show improvements on actual
DCF for the language metadata
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&3 Post Eval results
Comparison of fusers (ALL) 1c and 8c Comparison of fusers (CORE) 1c and 8c
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* Metadata does not improve DET curve but improves actual DCF
— Channel, gender, duration and language

ALL 1c 0.024120/.023545 8c 0.022971/0.022378
CORE 1c 0.015458 /.012740 8c 0.014102/0.011362
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