THE IRISA/METISS sysTEMs FOR NIST SREO05

e METISS Research Group:

* Since 2001, research project of the INRIA (National Research Institute for

Computer Science and Automatics);

* Audio Signal Processing (including Speech Processing):
speaker characterization, information detection/tracking in audio streams,

“advanced” processing (e.g., Blind Source Separation), speech recognition;

* 3 permanent researchers, 2 engineers, 1 post-doc, 5 PhD students.

e More info:

http://www.irisa.fr/metiss/

e Speaker:
Sacha KRSTULOVIC sacha@irisa.fr



METISS and the NIST SRE05 campaign

Our research interests include:

e designing simpler/lighter score computation and normalization

schemes;

e re-thinking the speaker verification process as a “template matching”

procedure rather than a “stream scoring” procedure:

= reduction of the complexity of the scoring

(e.g., for embedded systems, faster online scoring etc.);

e applying speaker verification techniques in the framework of the

segmentation of audio documents:

= big audio databases demand lighter/faster recognition techniques.



The IRISA systems for NIST05

IRI 2

IRI 3

IRI 5

Model Space System

e Train a GMM on the test utt.

e Scoring in the model space

(direct distance between
Speaker /Utterance GMMs)

= Simpler scoring

= Simpler normalization

.

Piecewise Linear
Score Approximation

e Feature space partition
with a decision tree

e Region-dependent linear
approximation of the LLR score

= Faster/lighter scoring

Summed Channel
System

e Frame clustering with
Hierarchical Clustering
and GMM distance

= Efficient speaker segmentation

Baseline GMM /UBM

e LLR scoring in the feature space

IRI 1




The IRISA systems for NIST05

e IRI_1: GMM-UBM with LLR~+T-norm scoring

Tasks: 1conv4w-1conviw, 1conviw-10secqiw, 10secqw-10secqw.

e IRI_2: GMM-UBM with model-space scoring
The LLR is replaced with an estimate of the Kullback-Leibler distances
between the GMMs. New normalization paradigm: BiT-norm.

Tasks: 1convjw-1convjw

e IRI_3: Decision Trees and Linear Score Approximation

Fast/computationally light approximation of the GMM scoring.
(Intended for use with SIM cards.)

Tasks: 1convjw-1conviw, 1convjw-10secqiw, 10secqw-10secw.

e IRI_5: Summed-Channel System
GMM-UBM with a speaker segmentation pre-processing.

Tasks: 1convjw-1conv2w.



IRI_1: Baseline GMM-UBM

lconv4dw-1conv4w, 1conv4w-10sec4w,

10sec4w-10sec4w, 1conv4dw-1conv2w

Sacha Krstulovi¢ sacha@irisa.fr
Gilles Gonon gonon@irisa.fr

Guillaume Gravier ggravier@irisa.fr



IRI_1: Primary system (baseline)

“Plain vanilla” GMM-UBM:

Preprocessing: silence removal, removal of low energy frames

(2 mono-Gaussian EM classifiers);
16 LFCC + Delta + energy; CMS and variance normalization;

UBM: 2048 Gaussians, diagonal covariances;
training data: 100 males 4+ 100 females from NIST 2004;

speaker models: MAP (means only), 1 iteration, r=8;

development set: 45 male, 159 female speakers from NIST04;

scoring: LLR with T-norm (100 male, 99 female from NIST04).



IRI_2: Model space system

lconv4dw-1conv4w

Mathieu Ben mben@irisa.fr
Sacha Krstulovi¢ sacha@irisa.fr

Frédéric Bimbot bimbot@irisa.fr



IRI 2: Model space system (1/4)

General principle :
1. estimate a GMM on the test material (one pass MAP)
2. compute a detection score based on distances between models

3. apply normalizations in the model space

Model distance and score definition :

e for two adapted GMMs P an P (adaptation of the means only):

— y 2 ~
Dg(P, P)? :Zwk.(m’“d 2mk’d) > KL2(P,P)

k.d Ok,d

It can be shown [BEN04] that Dy (P, P)? is strongly correlated
with K L2(P, P): correlation coefficient = 0.99.

e Score: S(X,Y) = Dg(Py, Pa)’ — Dg(Py, Px)*



Model space system (2/4)

Euclidean model space :

e Dy(P,P) is homogeneous to a Euclidean distance :

Dg(P, P) = ||1A = All2, with A = {Ae.a} = {Vwr

Q
ME,d—Mg g

Ok,d

e Model normalization = projection on a unit hypersphere
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Model space system (3/4)

Score normalization :

o Let uy = = >, S(T3,Y) be the mean distance of the test model Py

to the T-norm models Pr, (oy the standard deviation);

o let ux =+ >, S(T;, X) be the mean distance of the client model

Px to the T-norm models Pr, (ox the standard deviation);

S(X,Y) — Ky

Oy

= classical T-Norm (asymmetric) :

0Xx Oy

= bi-directional T-Norm :

= No need to score the frames once the models are trained:

scoring+normalization use simple Euclidean distances.

= Future work: channel & other normalizations ? (PCA, ...)



Missed Detection Probability (in %)

Model space system (4/4)

Results
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e submission to NIST was bugged
e de-bugged results :

— model normalization (M-norm)

is crucial

— bi-directional T-norm improves
performance over classical

T-norm

— same performance as the
GMM/LLR baseline system

when bi-Tnorm is used



IRI_3: Decision tree based system

lconv4dw-1conv4w, 1conv4w-10sec4w

Gilles Gonon

Rémi Gribonval
Frédéric Bimbot

Sacha Krstulovié
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IRI 3: Decision tree based system (1/4)

e Context of the work: the Inspired project
o Integrated Secure Platform for Interactive Personal Devices

o Research, development, testing and certification on next generation

secure smart devices

o Feasibility of biometric authentication on such devices, including

speaker recognition.

e Description of the system

o Decision trees and Linear Regression are combined to provide a

piecewise linear approximation of the scoring function of
a GMM /UBM system.

= builds on a trained GMM/UBM system:
* 12 LFCC+A+-energy, GMMs w/ 128 components

o The scoring complexity becomes suitable for embedded devices.
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Decision tree based system (2/4)

e Piecewise linear approximation of the LLR with trees:

1. The tree divides the feature space in client/world regions.
(Training: CART method.)

* Trick: the feature space is augmented with a fixed set of oblique
discriminant features, related to the underlying GMM system:

O find the Gaussians most shifted by the MAP adaptation

= best locally discriminating directions: Ap; = X7 (X — ,ufz)

= feature projection (scalar product): < Ap;,yr >

2. A linear scoring function is affected a posteriori to each region/leaf

* Multiple regression on the development set’s LLRs over each region
(Ordinary Least Squares).

Partly smooths the discontinuities of the piecewise approximation,

as opposed to a hard score (4+1/-1) or an average score over a region.

13



Decision tree based system (3/4)

e Complexity of the scoring for NIST 05 SRE:

Frame score = region-dependent linear combination of frame features

Final score = mean score for all the frames
o Average number of leaves (nbr of regions): 320 (min:183, max:355).
o Tree depth (nbr of tests per frame): minimal=4, maximal=20.
o Number of multiply-adds per frame: 100 < N < 500.
o Suitable for real-time/streaming scoring applications.

o Memory size of the speaker templates: 64kB.

e But:

o the tree training complexity is huge (greedy algorithm);

14



Decision tree based system: results (4/4)

1conv4w-1conv4w: CART Vs. GMM, 1conv4w-10secd4w: CART Vs. GMM,
with Tnorm, all trials with Tnorm, all trials
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IRI_5: Summed channel system

lconvdw-1conv2w

Daniel Moraru dmoraru@irisa.fr
Guillaume Gravier ggravierQirisa.fr

Sacha Krstulovié sacha@irisa.fr
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IRI_5: Summed Channel System (1/3)

General principle of the summed channel system:
the speech segments of the test file are divided in two

speaker-dependent frame subsets which are scored independently.

1. Segmentation of the test file in mono-speaker segments:

silence detection + speaker change detection.

2. Clustering of the segments in 2 speaker-dependent classes:
Agglomerative Hierarchical Clustering.

= Extraction of two subsets of speaker-dependent frames.

3. Speaker verification: core system applied to both frame subsets,

final score taken as the max of both tests.

The parametrization is not the same for all the steps.
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Summed Channel System (2/3)

Step 1, segmentation:
e silence detection: energy bi-Gaussian;

e speaker change detection in the speech segments:
Bayesian Information Criterion (BIC) w/ full cov. mono-Gaussian, 24 Mel

Filter Banks coeffs. (~3% misclassified frames in ESTER evaluations.)
Step 2, clustering:
e segment models: GMMs, MAP adapted from a UBM, 1 pass, r=30;
e UBM: 64 comp. diagonal GMM, gender independent, 16 MFCC+Energy;
e distance: model space based, approx. of the Kullback-Leibler Distance;

e re-estimate a model on the fused segments at each iteration;
stop when 2 classes, ideally corresponding to the 2 speakers, are left.
(~17% misclassified frames in ESTER evaluations.)

e Very fast.
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Summed Channel System (3/3)

1conv4w-1conv2w: effect of the Tnorm, all trials
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Summary and conclusion

Assets of the IRISA systems:

o simpler normalization of the scores in the model space;

(Towards channel compensation in the model space ?7)

o faster/lighter scoring for important amounts of data, both with
the model-space scoring and the piecewise linear score

approxrimation;

e application to fast speaker segmentation.

THANK YOU FOR YOUR ATTENTION.
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