

THE IRISA/METISS SYSTEMS FOR NIST SRE05

- **METISS Research Group:**

- ★ Since 2001, research project of the INRIA (National Research Institute for Computer Science and Automatics);
- ★ Audio Signal Processing (including Speech Processing): speaker characterization, information detection/tracking in audio streams, “advanced” processing (e.g., Blind Source Separation), speech recognition;
- ★ 3 permanent researchers, 2 engineers, 1 post-doc, 5 PhD students.

- **More info:**

<http://www.irisa.fr/metiss/>

- **Speaker:**

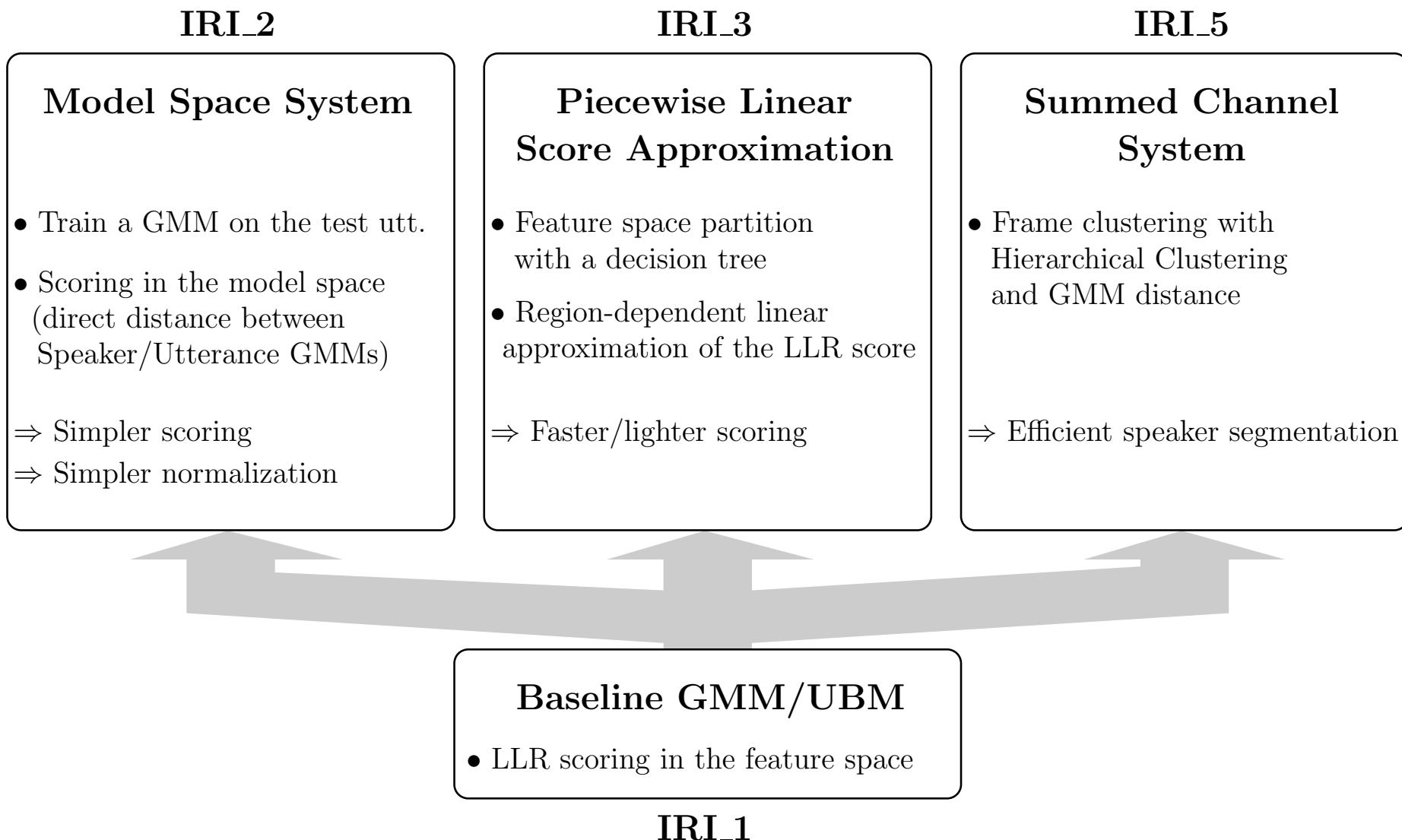
Sacha KRSTULOVIC sacha@irisa.fr

METISS and the NIST SRE05 campaign

Our research interests include:

- designing simpler/lighter score computation and normalization schemes;
- re-thinking the speaker verification process as a “template matching” procedure rather than a “stream scoring” procedure:
⇒ reduction of the complexity of the scoring (e.g., for embedded systems, faster online scoring etc.);
- applying speaker verification techniques in the framework of the segmentation of audio documents:
⇒ big audio databases demand lighter/faster recognition techniques.

The IRISA systems for NIST05



The IRISA systems for NIST05

- IRI_1: *GMM-UBM with LLR+T-norm scoring*

Tasks: 1conv4w-1conv4w, 1conv4w-10sec4w, 10sec4w-10sec4w.

- IRI_2: *GMM-UBM with model-space scoring*

The LLR is replaced with an estimate of the Kullback-Leibler distances between the GMMs. New normalization paradigm: BiT-norm.

Tasks: 1conv4w-1conv4w

- IRI_3: *Decision Trees and Linear Score Approximation*

Fast/computationally light approximation of the GMM scoring.

(Intended for use with SIM cards.)

Tasks: 1conv4w-1conv4w, 1conv4w-10sec4w, 10sec4w-10sec4w.

- IRI_5: *Summed-Channel System*

GMM-UBM with a speaker segmentation pre-processing.

Tasks: 1conv4w-1conv2w.

IRI_1: Baseline GMM-UBM

**1conv4w-1conv4w, 1conv4w-10sec4w,
10sec4w-10sec4w, 1conv4w-1conv2w**

Sacha Krstulović sacha@irisa.fr

Gilles Gonon gonon@irisa.fr

Guillaume Gravier ggravier@irisa.fr

IRI_1: Primary system (baseline)

“Plain vanilla” GMM-UBM:

- Preprocessing: silence removal, removal of low energy frames (2 mono-Gaussian EM classifiers);
- 16 LFCC + Delta + energy; CMS and variance normalization;
- UBM: 2048 Gaussians, diagonal covariances;
training data: 100 males + 100 females from NIST 2004;
- speaker models: MAP (means only), 1 iteration, $r=8$;
development set: 45 male, 159 female speakers from NIST04;
- scoring: LLR with T-norm (100 male, 99 female from NIST04).

IRI_2: Model space system

1conv4w-1conv4w

Mathieu Ben mben@irisa.fr

Sacha Krstulović sacha@irisa.fr

Frédéric Bimbot bimbot@irisa.fr

IRI_2: Model space system (1/4)

General principle :

1. estimate a GMM on the test material (one pass MAP)
2. compute a detection score based on distances between models
3. apply normalizations in the model space

Model distance and score definition :

- for two adapted GMMs P and \tilde{P} (adaptation of the means only):

$$D_E(P, \tilde{P})^2 = \sum_{k,d} w_k \cdot \frac{(m_{k,d} - \tilde{m}_{k,d})^2}{\sigma_{k,d}^2} \geq KL2(P, \tilde{P})$$

It can be shown [BEN04] that $D_E(P, \tilde{P})^2$ is strongly correlated with $KL2(P, \tilde{P})$: correlation coefficient = 0.99.

- Score : $S(X, Y) = D_E(P_Y, P_\Omega)^2 - D_E(P_Y, P_X)^2$

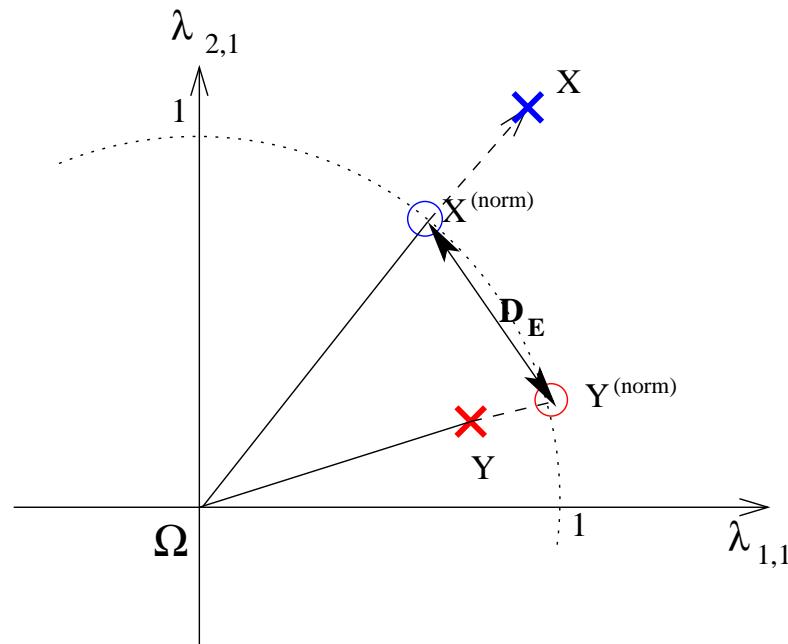
Model space system (2/4)

Euclidean model space :

- $D_E(P, \tilde{P})$ is homogeneous to a Euclidean distance :

$$D_E(P, \tilde{P}) = \|\underline{\lambda} - \tilde{\underline{\lambda}}\|_2, \text{ with } \underline{\lambda} = \{\lambda_{k,d}\} = \{\sqrt{w_k} \frac{m_{k,d} - m_k^\Omega}{\sigma_{k,d}}\}$$

- Model normalization = projection on a unit hypersphere



Model space system (3/4)

Score normalization :

- Let $\mu_Y = \frac{1}{N} \sum_i S(T_i, Y)$ be the mean distance of the *test model* P_Y to the T-norm models P_{T_i} (σ_Y the standard deviation);
- let $\mu_X = \frac{1}{N} \sum_i S(T_i, X)$ be the mean distance of the *client model* P_X to the T-norm models P_{T_i} (σ_X the standard deviation);

$$\Rightarrow \text{classical T-Norm (asymmetric)} : \quad \frac{S(X, Y) - \mu_Y}{\sigma_Y}$$

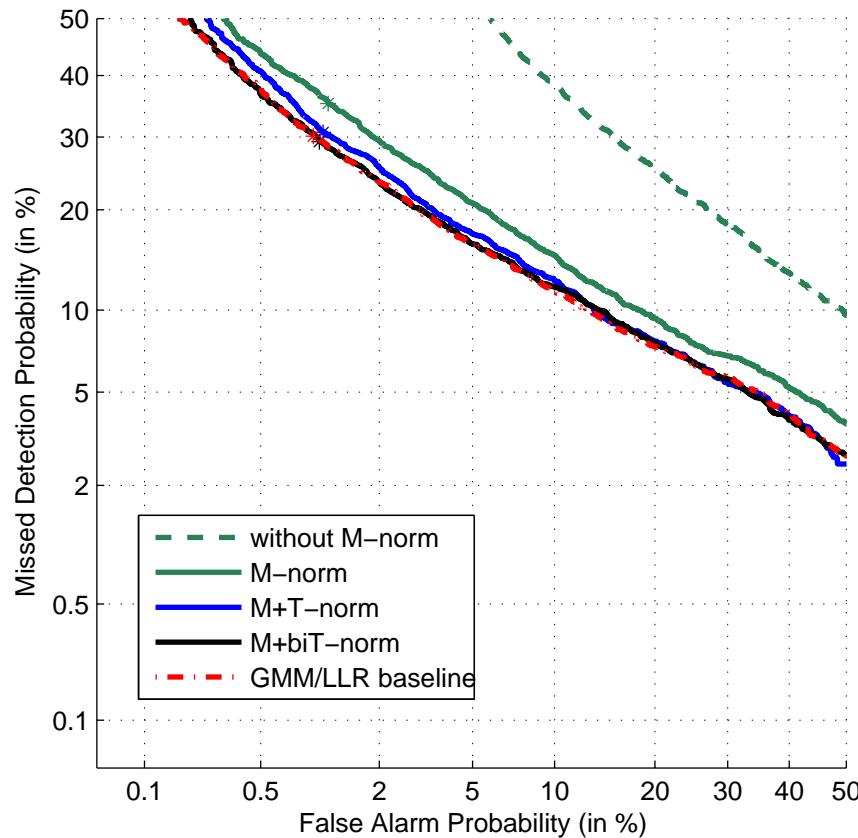
$$\Rightarrow \text{bi-directional T-Norm} : \quad \frac{S(X, Y) - \mu_X}{\sigma_X} + \frac{S(X, Y) - \mu_Y}{\sigma_Y}$$

- ⇒ No need to score the frames once the models are trained:
scoring+normalization use simple Euclidean distances.
- ⇒ **Future work:** channel & other normalizations ? (PCA, ...)

Model space system (4/4)

Results

DET curves : performance of the model space system
1conv4w/1conv4w – all trials



- submission to NIST was bugged
- de-bugged results :
 - model normalization (M-norm) is crucial
 - bi-directional T-norm improves performance over classical T-norm
 - same performance as the GMM/LLR baseline system when bi-Tnorm is used

IRI_3: Decision tree based system

1conv4w-1conv4w, 1conv4w-10sec4w

Gilles Gonon gonon@irisa.fr

Rémi Gribonval remi@irisa.fr

Frédéric Bimbot bimbot@irisa.fr

Sacha Krstulović sacha@irisa.fr

IRI_3: Decision tree based system (1/4)

- **Context of the work: the Inspired project**
 - Integrated Secure Platform for Interactive Personal Devices
 - Research, development, testing and certification on next generation secure smart devices
 - Feasibility of biometric authentication on such devices, including speaker recognition.
- **Description of the system**
 - Decision trees and Linear Regression are combined to provide a *piecewise linear approximation* of the scoring function of a GMM/UBM system.
⇒ builds on a trained GMM/UBM system:
 - ★ 12 LFCC+ Δ +energy, GMMs w/ 128 components
 - The scoring complexity becomes suitable for embedded devices.

Decision tree based system (2/4)

- Piecewise linear approximation of the LLR with trees:
 1. The tree divides the feature space in client/world regions.
(Training: CART method.)
 - ★ Trick: the feature space is augmented with a fixed set of *oblique discriminant features*, related to the underlying GMM system:
 - find the Gaussians most shifted by the MAP adaptation
 - ⇒ best locally discriminating directions: $\Delta\mu_i = \Sigma^{-1}(\mu_i^X - \mu_i^{\bar{X}})$
 - ⇒ feature projection (scalar product): $\langle \Delta\mu_i, y_t \rangle$
 2. A linear scoring function is affected *a posteriori* to each region/leaf
 - ★ Multiple regression on the development set's LLRs over each region (Ordinary Least Squares).
Partly smooths the discontinuities of the piecewise approximation, as opposed to a hard score (+1/-1) or an average score over a region.

Decision tree based system (3/4)

- **Complexity of the scoring for NIST 05 SRE:**

Frame score = region-dependent linear combination of frame features

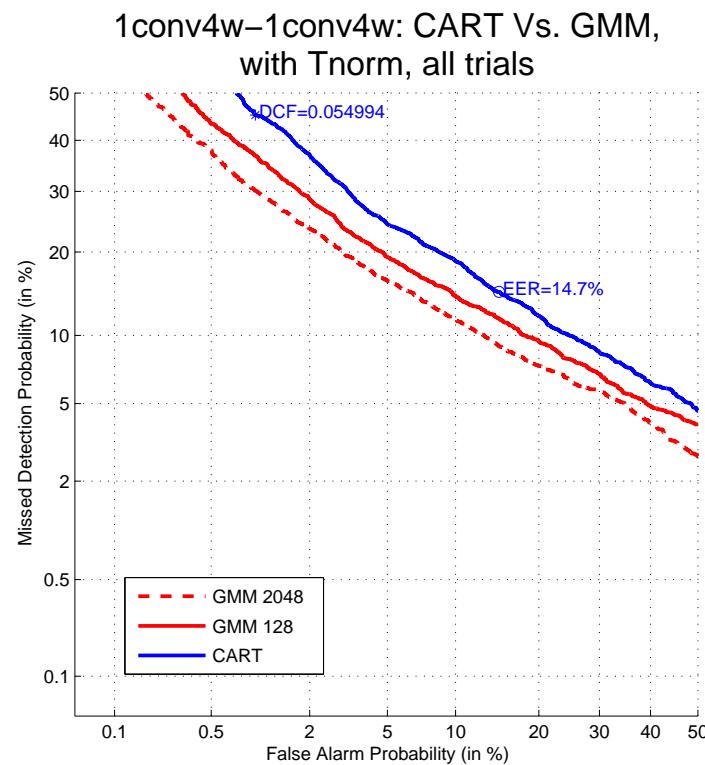
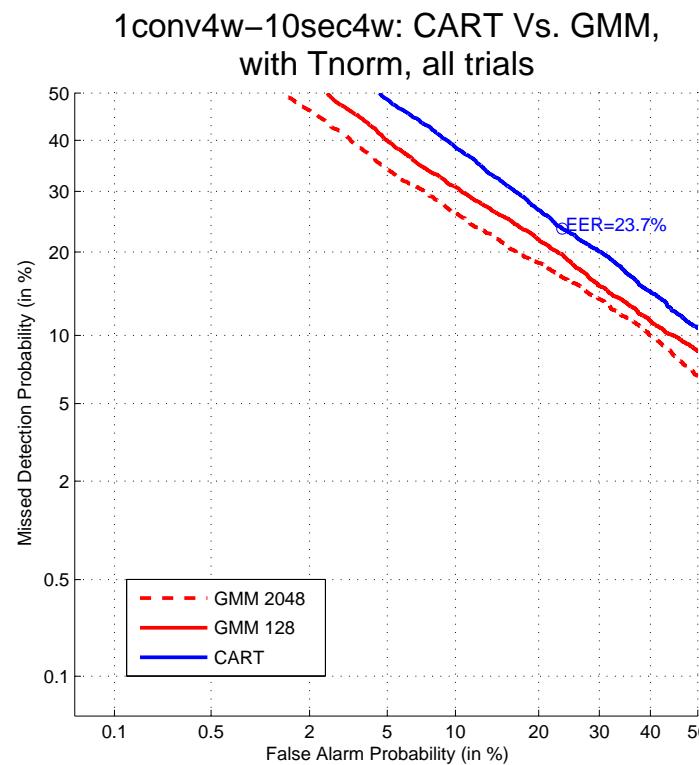
Final score = mean score for all the frames

- Average number of leaves (nbr of regions): 320 (min:183, max:355).
- Tree depth (nbr of tests per frame): minimal=4, maximal=20.
- Number of multiply-adds per frame: $100 < N < 500$.
- Suitable for real-time/streaming scoring applications.
- Memory size of the speaker templates: 64kB.

- **But:**

- the tree training complexity is huge (greedy algorithm);

Decision tree based system: results (4/4)



IRI_5: Summed channel system

1conv4w-1conv2w

Daniel Moraru dmoraru@irisa.fr

Guillaume Gravier ggravier@irisa.fr

Sacha Krstulović sacha@irisa.fr

IRI_5: Summed Channel System (1/3)

General principle of the summed channel system:

the speech segments of the test file are divided in two speaker-dependent frame subsets which are scored independently.

1. Segmentation of the test file in mono-speaker segments:
silence detection + speaker change detection.
2. Clustering of the segments in 2 speaker-dependent classes:
Agglomerative Hierarchical Clustering.
⇒ Extraction of two subsets of speaker-dependent frames.
3. Speaker verification: core system applied to both frame subsets, final score taken as the max of both tests.

The parametrization is not the same for all the steps.

Summed Channel System (2/3)

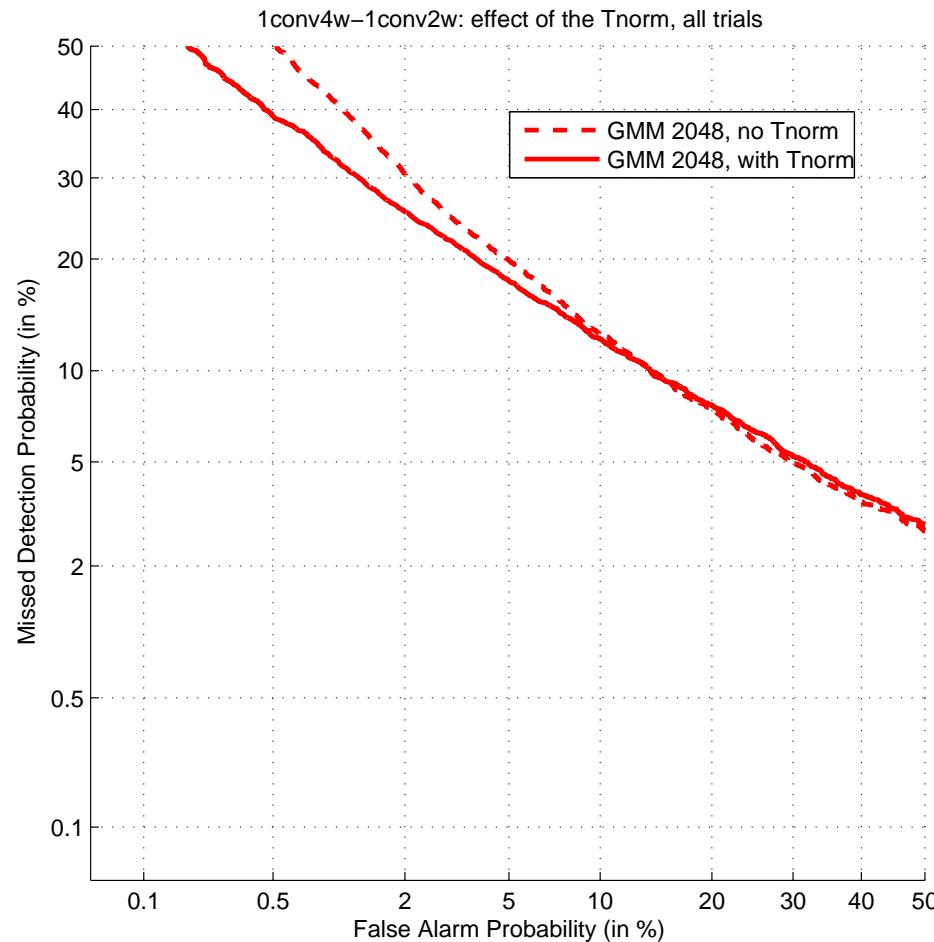
Step 1, segmentation:

- silence detection: energy bi-Gaussian;
- speaker change detection in the speech segments:
Bayesian Information Criterion (BIC) w/ full cov. mono-Gaussian, 24 Mel Filter Banks coeffs. ($\sim 3\%$ misclassified frames in ESTER evaluations.)

Step 2, clustering:

- segment models: GMMs, MAP adapted from a UBM, 1 pass, $r=30$;
- UBM: 64 comp. diagonal GMM, gender independent, 16 MFCC+Energy;
- distance: model space based, approx. of the Kullback-Leibler Distance;
- re-estimate a model on the fused segments at each iteration;
stop when 2 classes, ideally corresponding to the 2 speakers, are left.
($\sim 17\%$ misclassified frames in ESTER evaluations.)
- Very fast.

Summed Channel System (3/3)



Step 3, scoring:

- Independent scoring of the two frame subsets with the core system.
- Final score = max. of both scores.
- T-Norm improves the performance at the DCF point, but not the EER.

Summary and conclusion

Assets of the IRISA systems:

- *simpler normalization* of the scores in the *model space*;
(Towards channel compensation in the model space ?)
- *faster/lighter scoring* for important amounts of data, both with
the *model-space scoring* and the *piecewise linear score
approximation*;
- application to *fast speaker segmentation*.

THANK YOU FOR YOUR ATTENTION.