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Overview

 SRI shared resources
 ASR
 Development data
 Cepstral GMM

 ICSI’s individual sub-systems
 Keyword conditional HMM (WordHMM)
 Phone n-grams
 Sequential Non-Parametric (SNP)

 System combination
 LNKnet combination of the sub-systems
 Combining English & nonEnglish scores

 Ongoing/future work
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Shared Resources Acknowledgment

 ASR:
 Our three systems relied on word or phone

recognition from SRI

 Background data:
 Used subset of SWBII and Fisher, as defined by SRI

in the previous talk

 Cepstral GMM system:
 We’re grateful to SRI for sharing their cepstral GMM

system with us

… and, of course, many thanks for ongoing advice and
support!
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Keyword Conditional HMM (WordHMM) [1/3]

 Main idea:
 Capitalize on advantages of text-dependent systems in a text-

independent domain
 Use frequent keywords that are rich with speaker characteristic

cues (total of 19):
 Discourse markers: {actually, anyway, like, see, well, now,

you_know, you_see, i_think, i_mean}
 Filled pauses: {um, uh}
 Backchannels: {yeah, yep, okay, uhhuh, right, i_see, i_know }

 Use whole-word HMMs, instead of GMMs, to model the
evolution of speech in time

 This system was our only entry in SRE04
 For more details, see: K. Boakye & B. Peskin, “Text-Constrained

Speaker Recognition on a Text-Independent Task”, Odyssey 2004
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Keyword Conditional HMM (WordHMM) [2/3]

 Models:
 HMMs with self loops, no skips
 8 Gaussians/state
 #states/word = min(#phones*3,

median #frames/4)

 C0-C19 plus deltas
 UBM trained on 1,128 Fisher and

425 SWBII conversation sides
 Speaker models MAP adapted from

UBM
 SRI’s ASR used for finding word

alignments
 HTK used for training and scoring
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Keyword Conditional HMM (WordHMM) [3/3]

 New this year:
 Major infrastructure changes,

resulting in better alignments
 Use of improved SRI ASR
 Speed enhancements
 Addition of TNORM
 8, instead of 4, Gaussians/state
 Fisher, in addition to SWBII

data, for UBM training

0.21154.96%0.31137.73%GMM

0.1672
(21%)

4.08%
(18%)

0.2721
(13%)

7.59%
(2%)

WordHMM+GMM

0.22446.27%0.399011.38%WordHMM

DCFEERDCFEER

8-side training1-side trainingAll English trials of
Eval04

0.3067.06%0.44512.98%SRE04 post-eval

0.2246.27%0.39911.38%SRE05 system

0.3828.85%0.52613.06%SRE04 system

DCFEERDCFEER

8-side training1-side trainingWordHMM on all
English trials of
Eval04

Values in () are % improvements relative to GMM sys alone.
“DCF” is short for “Min DCF” in tables throughout.

SRE04 UBM was trained entirely on SWBII, whereas SRE04 post-eval
was trained entirely on Fisher.  SRE05 UBM was trained on subsets of
both.
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SVM-based Phone N-gram System [1/2]

phone
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 Main idea:
 To compute relative frequency of phone n-grams, use lattice

open-loop phone decoding, instead of 1-best
  Utilize SVMs for modeling

 Relative frequencies of phone n-grams used as feature vectors
 One feature vector for every conversation side
 Target model’s conversation(s): positive example(s)
 Background model’s conversations: negative examples
 Use kernelized form of LLR [Campbell et al., NIPS 2003]

 The System:
  Used a vocabulary of 46 phone units
  Used only phone bigrams and the top 8500 phone trigrams
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SVM-based Phone N-gram System [2/2]

 For more information, see: A. O. Hatch, B. Peskin, A. Stolcke,
“Improved Phonetic Speaker Recognition Using Lattice Decoding”,
ICASSP 2005

0.21154.96%0.31137.73%GMM

0.1443
(32%)

3.64%
(27%)

0.2767
(11%)

6.47%
(16%)

PhoneNg+GMM

0.23584.96%0.540812.09%Phone N-grams

DCFEERDCFEER

8-side training1-side trainingAll English trials of
Eval04
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Sequential Non-Parametric (SNP) System [1/2]

 Main Idea:

 Compare a test segment directly to similar segments in training data

 Non-parametric -- no explicit models built

 New scoring method -- capture primarily positive evidence (“hit score”)

Test Data

k_a_t

Training Data

k_a_t (1)

k_a_t (2)

k_a_t (3)

distance: 22

distance: 21

distance: 19

Frame
normalized
Euclidean
distance

 The system:
 C0-C19 plus deltas
 60 SWBII and 40 Fisher conversation

sides for background

 Phone trigram sequences

 DTW to align frames

 Euclidean distance between aligned
frames

 Calculate the best “Hit Score”

 Divide HS by background HS

Calc
Hit

Score

Normalize
with 

background
Final Score

€ 

HS =
number of matched frames in i

k dist[i]
i∈test tokens
∑
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Sequential Non-Parametric (SNP) System [2/2]

 Includes Znorm

 But no TNORM, for lack of computational resources

 For more information, see: D. Gillick, S. Stafford, B. Peskin,
“Speaker Detection Without Models”, ICASSP 2005

0.21154.96%0.31137.73%GMM

0.1777
(16%)

4.37%
(12%)

0.2943
(6%)

7.10%
(8%)

SNP+GMM

0.31696.12%0.517712.65%SNP

DCFEERDCFEER

8-side training1-side trainingAll English trials of
Eval04

 This system was inspired by
Dragon’s SRE98 submission
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Combination of Systems -- 1-side

1-side training results on all English trials of Eval05

 Used LNKnet neural network package
 No hidden layer
 Sigmoid output nonlinearity
 Combination weights trained on Eval04 to optimize DCF

(1): Each system
alone

 (2): Each system
+ GMM

(3): Leave-one-out: the 
ensemble w/o each system

(4): The ensemble of all four systems

Color legend:
W WordHMM
P Phone N-gram
S SNP
G GMM

Observations:

 All systems
contributed

 Excluding
GMM hurt
most in 1-side
case
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Combination of Systems -- 8-side

8-side training results on all English trials of Eval05

(1): Each system
alone

 (2): Each system
+ GMM

(3): Leave-one-out: the 
ensemble w/o each system

(4): The ensemble of all four systems

Color legend:
W WordHMM
P Phone N-gram
S SNP
G GMM

Observations:

 All systems contributed in 8-side training condition, as well

 Excluding GMM
did not hurt as
much, relatively,
as in the 1-side
training
condition
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Appending NonEnglish and English Scores

 English scores calculated on
combination of all four systems

 NonEnglish scores calculated on
combination of GMM and phone-Ngram
systems only

 For each set of scores (English and
nonEnglish) independently:

1. Optimize LNKnet weights using Eval04

2. Remove sigmoidal non-linearity

3. Z-normalize scores using Eval04 stats

4. Calculate score threshold for min DCF

5. Subtract threshold from scores

 Append two sets of scores from step 5

 Because of the strong sigmoidal
non linearity in LNKnet, ignoring
steps 2 & 3 can result in DET
displaying flat regions (as in our
official submission for 8-side)

0.10994.10%0.20286.83%Corrected

0.11638.02%0.20096.85%Original submission

DCFEERDCFEER

8-side training1-side trainingAll trials of Eval05
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Comparing Individual Systems:
1-side vs. 8-side Training

 Phone N-gram
system (black DET)
improves the most
with increase of
training data

 Other systems
preserve their
relative order

 GMM remains the
best in both training
conditions

 But, the gap is
closing for 8-side
training
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Ongoing/Future Work

 Addition of prosodic features to WordHMM
system

 Development of inhouse GMMs using Torch
toolkit

 Use of discriminant long-term (calculated over
500 ms) features in GMMs

 Study and experimentation with cross-channel
data for robustness to channel variation

 Sequential GMM
 Assignment of optimal weights to feature sets

combined via SVMs
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Sequential GMM (SGMM) System

…

Feature
Extractor

Phone
Recognizer

...
Frame

Sequence
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Frame
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…

…

/aa/
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/zh/
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…

/aa/
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/zh/

/aa/ /zh/

…… …

GMM…GMM

Neural Net

Scores

0.05751.14%SGMM

0.05090.90%GMM

0.01800.57%SGMM+GMM

DCFEERSWB I

 Main Idea:
 Use concatenated phoneme-length feature vectors, one “stacked frame”

for each phone token
 Build a separate GMM system for each phone (46)
 Combine resulting scores using a neural net

 Results:
  Combines well with GMM

  Can take advantage of the
ubiquity of GMM

See: S. Stafford, “The Sequential GMM…” , Masters thesis, UC Berkeley, May 2005.
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Optimal Weights for SVM Features

€ 

K(A,B) = µiKi(A,B)
i
∑ ,

 Main idea:
  When combining different feature sets with SVMs,

automatically learn optimal weights to minimize the EER
for a given set of  SVM-based speaker models

 Optimize:

 where A and B are conversation sides, µi are a set of positive
weights, and Κι(Α,Β) represents a kernel for a particular set of
features (e.g. phone n-grams).

 Preliminary results:
 Trained relative weights for the 8 feature sets in SRI’s MLLR-

SVM system
 Relative improvements:

 6.8% on SWBII
 4.2% on Eval04
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As Kermit the frog said,


