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1. Introduction

This is a first draft of one of a series of articles [1, 2]
devoted to exploring the use of corpus based methods in
text-independent GMM-based speaker recognition. Our
purpose is to explain how we built a speaker recognition
system for the NIST 2005 speaker recognition evaluation
using about 1000 hours of speech taken from seven pub-
licly available corpora.

State of the art GMM methods are based on
very simple models of speaker and channel variability:
speaker variability is modeled by assuming that speaker-
dependent GMM supervectors are normally distributed
with a diagonal covariance matrix (the premise of clas-
sical MAP speaker adaptation [3, 4]) and channel effects
are assumed to be discrete [5, 6]. Our view is that statisti-
cal learning methods applied to large corpora such as the
six Switchboard databases should make it possible to de-
velop more powerful models of these types of variability.
Note that these corpora are all publicly available through
the Linguistic Data Consortium (LDC); they contain tens
of thousands of recordings of thousands of speakers; and
the fact that most of them have not been phonetically tran-
scribed is no obstacle to using them to develop models
for text-independent speaker recognition although we are
unaware of any other researchers who have attempted to
exploit them for this purpose.

Our principal effort in this direction has been to de-
velop a model which we refer to as a joint factor analysis
of speaker and channel variability [1]. This is based on
similar assumptions to feature mapping [6] but it treats
channel effects as continuous rather than discrete and
it exploits correlations between Gaussians in modeling
speaker variability. When trained and tested on Switch-
board data we have found that this model gives encourag-
ing results [2]. However it is much more mathematically
and computationally demanding than the standard ap-
proach (namely GMM/UBM speaker adaptation together
with feature mapping) and it seems to require a well bal-
anced training set in which a majority of training speakers
are recorded under a variety of channel conditions that is
sufficiently broad to cover all of the channel variation that
is likely to be encountered at recognition time.

These requirements turn out to be quite difficult to

meet where the NIST 2004 and 2005 test sets [7, 8] are
concerned. These test sets are taken from the Mixer cor-
pus [9] and they manifest a far greater degree of vari-
ability than previous test sets (which were taken from
the Switchboard corpora where speakers were recorded
either over landline or cellphone channels but not both).
Speakers in the 2004 and 2005 test sets were recorded us-
ing different types of microphone (speaker phone, head
mounted and ear bud as well as regular and cellphone
handsets) and transmission channel (cordless, landline
and cellular). Switchboard data is poorly suited to model-
ing this type of variability and the only data of Mixer type
which is publicly available is the NIST 2004 evaluation
data, a relatively small set (310 target speakers).

So in building a system for the 2005 evaluation we
were confronted with the problem of how to use the 2004
data to best advantage in conjunction with the LDC cor-
pora. We felt that a joint factor analysis of speaker and
channel variability carried out on all of these corpora
might not be a successful strategy because the shortage of
speakers recorded over both landline and cellular chan-
nels would mislead the model into believing that some
speakers are ‘landline speakers’ and others are ‘cellular
speakers’. So, in order to avoid the need for a balanced
training set in which speakers are typically recorded un-
der a wide variety of channel conditions, we decided
to divorce speaker modeling and channel modeling al-
together and experiment with models of utterance and
session variability which are simpler than the joint fac-
tor analysis model in [1].%

In the core condition of the evaluation an ‘utterance’
is a side of a 5 minute telephone conversation so we use
the term ‘utterance variablity’ to refer to the variability
of the population conversation sides. (It is usual to think
of this type of variability as being attributable solely to
speaker effects but if this really were the case the prob-
lem of speaker recognition would have been solved long
ago.) Modeling this type of variability is important be-
cause it gives a probability distribution on GMM super-
vectors which can serve as a prior for estimating speaker
GMM’s by MAP adaptation. In this article we combine

1in the light of the performance of the QUT 2 system, it seems that
this may prove to have been an unfortunate decision.



the priors underlying classical MAP and eigenvoice MAP
[11] for this purpose. This type of model is known in
statistics as factor analysis and the earliest instance in the
literature on speaker recognition is [12]. Our treatment
is different from [12] in that we use a likelihood criterion
similar to that of [11] to estimate the hyperparameters that
specify the prior.

We use the term session variability to refer to the vari-
ability exhibited by a given speaker from one recording
session to another. Our approach to this problem is based
on a probabilistic principal components analysis of ses-
sion variability which we introduced in [13]. In that pa-
per we showed how to estimate a prior which could be
used for MAP adaptation of a speaker GMM to the chan-
nel conditions in a test utterance without adapting it to the
speaker in the utterance. The solution we proposed is for-
mally almost identical to eigenvoice MAP so we dubbed
it eigenchannel MAP. Eigenchannel MAP is a compu-
tationally expensive procedure (particularly if there is a
large t-norm cohort) but it was used to good effect by
Spescom DataVoice in the 2004 evaluation. In this article
we use the same type of session variability model with
a simplified decision criterion (similar to that which is
used in [14, 10]) which handles large numbers of t-norm
speakers at very little computational cost.

2. Models of Utterance and Session
Variability

The models of utterance and session variability were de-
veloped using about 1000 hours of speech (exclusive
of silences) consisting of whole conversation sides ex-
tracted from the following databases: the LDC releases
of Switchboard Il, Phases 1, 2 and 3; Switchboard Cel-
lular, Parts 1 and 2; the Fisher English Corpus, Part 1
and the NIST 2004 evaluation data. They are gender-
dependent rather than gender-independent. We will de-
scribe the quantities of data that we used in the female
case; the figures for the male case are similar.

2.1. Featureextraction

Using a 25 ms Hamming window, 12 mel frequency cep-
stral coefficients together with a log energy feature are
calculated every 10 ms. These 13-dimensional feature
vectors are subjected to feature warping [15] using a 3
s sliding window. Delta coefficients are then calculated
using a 5 frame window giving a 26-dimensional feature
vector.

Where available, ASR transcripts containing time
stamps (such as the ctm files provided in the evaluation)
are used to suppress silence intervals. In other cases the
ISIP voice activity detector is used [16].

First and second order Baum-Welch statistics are ex-
tracted from the non-silence portions of the speech signal
using a standard universal background model. We regard

this as a pre-processing step since we use no information
about the speech signal other than that which is encoded
in these statistics.

We used 5719 conversation sides (278 hours of data
after removing silences) from as many speakers to train
a female GMM with 2048 mixture components and di-
agonal covariance matrices which serves as a universal
background model. Let C' denote the number of mixture
components in the GMM and F' the dimensionality of the
acoustic feature vectors (so that C' = 2048 and F' = 26).

2.2. Factor analysis of utterance variability

We assume that if M isthe C'F'x 1 speaker- and channel-
dependent supervector for a randomly chosen conversa-
tion side then

M = m+wvy+dz @

where m is the speaker- and channel-independent su-
pervector, v is a matrix of dimension CF x R where
R« CF,disaCF x CF diagonal matrix and y and =
are random vectors having standard normal distributions.
This is a factor analysis in the sense of [17] but since ut-
terance variability conflates speaker and channel effects
it is a much simpler model than the joint factor analysis
of speaker and channel variability in [1].

In the terminology of [18], the elements of y are
‘common factors’ (because each of them serves to ac-
count for the variance in all of the elements of M) and the
elements of z are ‘specific factors’. In the absence of the
specific factors, (1) implies that all supervectors are con-
tained in the linear span of m and the columns of v. This
is almost the same as the basic assumption of eigenvoice
modeling. (Almost but not quite because in this case we
are treating different utterances by a given speaker as be-
ing statistically independent. This why we use the term
‘utterance variability’ rather than ‘speaker variability’ in
the title of this section but it is convenient to use eigen-
voice terminology even though this is not strictly speak-
ing correct.) In practice, the common factors account for
most of the variance in the data and the term dz serves as
a residual to compensate for the fact that the eigenvoice
assumption may be unrealistic and it may be difficult to
find enough training data to estimate v reliably.

The role of this model is to provide a prior distribu-
tion for MAP estimation of GMM supervectors for target
speakers. This type of MAP estimation combines classi-
cal MAP [4] and eigenvoice MAP [11] whose strengths
and weaknesses complement each other. Classical MAP
estimation of GMM’s requires large amounts of enroll-
ment data and because the matrix d is of full rank it is
guaranteed to be asymptotically equivalent to speaker-
dependent training; because v is of low rank there is no
such guarantee for eigenvoice MAP but, by the same to-
ken, eigenvoice MAP can use small amounts of enroll-
ment data to good advantage.



In the case where d = 0 and m is given (the UBM
supervector is a natural choice), v can be estimated by
the algorithm described in Proposition 3 of [11] which
is a version of probabilistic principal components anal-
ysis designed to work with Baum-Welch statistics rather
than with point estimates of utterance supervectors as in
conventional probabilistic principal components analysis
[19]. (But note that in order to model utterance variability
rather than speaker variability, the algorithm has to be im-
plemented in such a way that in situations where there are
more than one utterance for a given training speaker, the
Baum-Welch statistics are not pooled across utterances.)

The algorithms that we use to estimate m, v and d
in the general case are described in Theorems 4, 5 and
6 of [1] (take w = 0 in the statement of each theorem).
For the system we submitted, we trained a factor analy-
sis model for each gender with R = 25. In the female
case the training set consisted of 9291 conversation sides
(393 hours of speech exclusive of silences). The eigen-
values corresponding to the non-zero eigenvectors of vv*
(the eigenvoices) are shown in Fig. 1 where they are seen
to decrease exponentially. The relative importance of the
special and common factors can be measured by compar-
ing the expected values of ||vy||? and ||dz||?. Since y
and z have standard normal distributions, these expected
values are given by the following matrix traces

tr (d®) = 77.26 @3]
tr (vv™*) 730.48. 3)

We note in passing that in our experience setting v = 0
and estimating d by a maximum likelihood criterion does
not give a better estimate than the empirical method in
[4]. This is consistent with the observation in [4] that the
effectiveness of relevance MAP is insensitive to the value
of the relevance factor.

2.3. Principal components analysis of session vari-
ability

Our approach to speaker recognition is GMM-based in
that we estimate a GMM supervector for each target
speaker but we use these supervectors for making speaker
verification decisions in a non-traditional way. The issue
here is how we attempt to compensate for inter-session
variability and for channel mismatches between enroll-
ment and test conditions in particular. By way of intro-
duction we will briefly sketch the model-adaptation tech-
niques that have been developed to tackle the problem of
channel compensation in GMM-based speaker recogni-
tion.

2.3.1. Background

The most widely used method of GMM adaptation is fea-
ture mapping [6]. Although this is usually thought of as
a front-end compensation scheme it can equally well be
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Figure 1: Eigenvalues obtained by fitting a factor analy-
sis model of utterance variability with 25 eigenvoices to
female data. Female data. Compare with Fig. 4.

viewed as a model adaptation technique if it is assumed
that GMM supervectors can be decomposed into speaker-
and channel-dependent parts as illustrated in Fig. 2.
Specifically, the assumptions are (i) that for each speaker
there is a speaker-dependent supervector S such that if
M is the supervector corresponding to a given recording
of the speaker then

M=5+C 4)

where C depends only on the channel effects in the
recording and (ii) that channel effects can be treated as
discrete and identified in a pre-processing step (so that
there is one channel supervector C for carbon-button
handsets, another for GSM cellular transmissions and so
forth). Given an enrollment utterance for a target speaker,
the speaker supervector S can be estimated by subtract-
ing the channel supervector for the enrollment utterance
from the data; adding the channel supervector for a given
test utterance to S gives a channel-adapted supervector
which can be used to test the hypothesis that the speaker
in the test utterance is the target speaker.

The factor analysis model also takes (4) as its start-
ing point but it treats channel supervectors as continu-
ous rather than discrete and does away with the need for
channel detection in a pre-processing step. Disentangling
speaker and channel effects in (4) is more difficult but
still manageable provided that a large training database
is available in which speakers are recorded under a vari-
ety of channel conditions. The ideal situation is that the
recordings for a typical training speaker are sufficiently
numerous and diverse that channel effects can be aver-
aged out as this enables reliable inferences concerning
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Figure 2: Feature mapping and joint factor analysis of
speaker and channel variability are based on a decompo-
sition of the form M = S + C. M is the speaker- and
channel-dependent supervector for a given recording, S
depends only on the speaker and C' depends only on the
channel.

the speaker supervector S in (4) to be made. However,
for the purposes of developing a system to be tested on
a dataset such as the NIST 2004 or NIST 2005 test sets
this turns out to be a difficult requirement to meet because
these test sets were specifically designed to evaluate the
robustness of speaker recognition systems to gross chan-
nel mismatches and there are no publicly available speech
corpora that are really suitable for modeling these chan-
nel effects. As a rule, each speaker in the Switchboard
collections was recorded over either landline channels or
cellular channels but not both. Only a small fraction of
the speakers in the Fisher database were recorded more
than once. So it is hard to get hold of speakers who
have been recorded under a variety of channel conditions.
There is little hope of averaging out channel effects under
these conditions so despite the investment we have made
in developing the factor analysis model we decided not to
use this approach in the NIST 2005 evaluation.

The assumptions underlying speaker model synthesis
[5] are slightly different from those in feature mapping
[6]. As in feature mapping, channel effects are assumed
to be discrete and channel detection is performed in a pre-
processing step. Suppose we are given an enrollment ut-
terance and a test utterance and it is hypothesized that
they are uttered by the same speaker. Denote the cor-
responding speaker- and channel-dependent supervectors
by M and M’. The basic assumption is that M’ can be
synthesized from M by adding a supervector C' which
depends only on the enrollment and test channel assump-
tions (and not on the speaker) as in Fig. 3.

The eigenchannel model in [13] is a continuous ver-
sion of speaker model synthesis which dispenses with the
need for channel detection. The idea is that just as most
speaker variability is low dimensional (the premise of
eigenvoice modeling) the same is probably true of chan-

Figure 3: In speaker model synthesis and eigenchan-
nel modeling it is assumed that if M and M’ are the
speaker- and channel-dependent supervectors for two
recordings of a given speaker and C = M’ — M then C
depends only on channel effects.

nel variability so that similar methods can be brought to
bear on modeling both types of variability. (The idea of
using eigenvoice methods to model channel effects seems
to have been first mooted in [20].) Suppose we are given
an enrollment utterance for a speaker and we used it to
estimate a supervector M (using, say, classical MAP
or factor analysis MAP). Given a test utterance we can
synthesize a supervector M’ for the same speaker under
the test channel conditions by a type of MAP adaptation
(dubbed eigenchannel MAP in [13]) which operates in a
similar way to eigenvoice MAP. Similar types of model
synthesis were used in the systems submitted by Spescom
DataVoice in the 2004 evaluation and also in [21].

Note that in this brief discussion we have only
touched on model-based methods for channel compensa-
tion of GMM’s and not on score or feature normalization
methods or the parallel developments in SVM speaker
recognition [22]. It is interesting to note that although
the approach in SVM speaker recognition is discrimina-
tive rather than generative and it is concerned with find-
ing feature representations which are immune to chan-
nel variability rather than modeling this type of variabity,
the key algorithm in “nuisance attribute projection’ is also
formulated as an eigenvalue problem.

2.3.2. Eigenchannel estimation

Suppose that we have a pair of conversation sides for a
given speaker. Let M and M’ denote the correspond-
ing speaker- and channel-dependent supervectors. The
assumption in eigenchannel modeling is that

M = M+ ux (5)

where w is a rectangular matrix of low rank and « has a
standard normal distribution. In other words, the assump-
tion is that all of the channel compensation supervectors



in Fig. 4 can be expressed as linear combinations of the
columns of w; in the terminology of [13], the non zero
eigenvectors of uwu™* are the eigenchannels.

Given a training set consisting of a suitably large col-
lection of pairs of utterances by different speakers, the
algorithms used to estimate the factor analysis model in
Section 2.2 can easily be modified to estimate u. The
idea here is that we can use one of the utterances in each
pair (we chose the longer of the two) to calculate a point
estimate M of the supervector M appearing in the right
hand side of (5), namely the MAP estimate of M cal-
culated using the prior (1) and the Baum-Welch statistics
extracted from the utterance. If M is replaced by M in
(5) and d is set to zero in (1), then (1) and (5) have the
same form so u can be estimated by the same method as
v. However, the problem of estimating « does differ from
that of estimating v in one important respect, namely that
it is much easier to gather a large training set of utterance
pairs so that even with a relatively large number of eigen-
channels u can probably be estimated more reliably than
v.

For the system that we submitted, we fitted an eigen-
channel model of rank 50 for each gender. In the female
case the training set consisted of 27,399 utterance pairs.
(The training set for the factor analysis model in Section
2.2 was obtained by choosing the longer utterance in each
of these pairs.) Fig. 4 shows the eigenvalues sorted in
decreasing order. The fact that the decrease is approx-
imately exponential means that only a small fraction of
the channel variability will be lost if channel supervec-
tors are expressed in terms of the eigenchannels and the
expansion is cut off after a finite number of terms. This
provides empirical justification for the assumption that
channel variability is intrinsically low dimensional. It
is interesting to compare Figs. 1 and 4: utterance and
session variability have essentially the same magnitude.
(Session variability can be quantified as tr (uu*) which
turns out to be 741.85; utterance variability can be quan-
tified as tr (d2 + vv*) whose value is given by (2) and
).

Note that there is no difficulty in modifying the esti-
mation algorithms to accommodate a residual term in the
model (5) analogous to the term dz in (1) but our expe-
rience has been that this hurts performance. This is to be
expected because including such a term would result in
a covariance matrix for channel supervectors which is of
full rank and this would imply that any speaker could be
made to sound like any other by varying the channel con-
ditions. This seems unreasonable to us or, at any rate, we
hope that it is not the case since it would seem to make
a complete solution to the speaker recognition problem
impossible in principle.

The eigenchannel approach to channel compensa-
tion is weaker than the factor analysis model in that it
only compensates for channel effects in test utterances
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Figure 4: Eigenvalues corresponding to 50 eigenchan-
nels. Female data.

whereas the factor analysis model handles enroliment ut-
terances as well. (The same remark applies to speaker
model synthesis vis-a-vis feature mapping.) Eigenchan-
nel modeling is simpler mathematically than joint factor
analysis and it does not require as well balanced a training
set; all that is required is that for any given pair of channel
conditions there should be at least some training speakers
recorded under both conditions. Speaker and channel ef-
fects do not have to be disentangled in enrolling a speaker
but by the same token the variance of the channel super-
vectors in Fig. 3 will be twice as great as the variance of
the channel supervectors in Fig. 2 and this is obviously
undesirable.

3. Building a Speaker Verification System

In this section we explain how we use the models of utter-
ance and session variability that we have just described to
construct a speaker verification system. We will describe
how we estimate a model for each target speaker, how we
evaluate the likelihood of a test utterance using a target
speaker model and how we normalize likelihoods calcu-
lated in this way so that a common decision threshold can
be used in all speaker verification trials.

3.1. Enrolling atarget speaker

Given Baum-Welch statistics extracted from an enroll-
ment utterance, we use the prior distribution (1) to calcu-
late the posterior distribution of the speaker- and channel-
dependent supervector M. We denote the posterior mean
by E [M] and the diagonal of the posterior covariance
matrix by Cov (M, M).

In the case d = 0, the calculation is described in



Proposition 1 of [11]; a modification is needed to handle
the general case (see Section 111 3 of [1]).

3.2. Thelikelihood function

In our early experiments with eigenchannel MAP [13]
we proceeded in the same way as speaker model syn-
thesis, synthesizing a new model for each speaker when-
ever a new test utterance was encountered and evaluat-
ing that model with the standard GMM likelihood func-
tion. This seems to be quite an effective way to proceed
but it has the disadvantage of being very computation-
ally expensive (particularly if there is a large number of
t-norm speakers). It is also a rather dubious procedure
from a purely mathematical point of view, since adapting
a model to data and then evaluating the likelihood of data
with the adapted model results in a ‘likelihood function’
which integrates to something bigger than 1.

On the other hand there is a natural likelihood func-
tion which serves as the objective function for estimating
eigenchannels (similar to that for eigenvoices [11]) and
although it is not related to the GMM likelihood function
it can serve as a basis for constructing a decision criterion
for speaker verification. Since it is generally a good idea
to use the same objective function in training and testing
no matter what the task is, this is the decision criterion
that we decided to use. This approach can accommodate
large numbers of t-norm speakers at little computational
cost.

Suppose we are given two utterances and we wish to
test the null hypothesis that they were uttered by different
speakers against the alternative hypothesis that they were
both uttered by the same speaker. We designate one of
the utterances (the longer of the two in our implementa-
tion) as the enrollment utterance and the other as the test
utterance. Denote the test utterance by X" and let M and
M’ be the speaker- and channel-dependent supervectors
for the enrollment and test utterances respectively.

If we assume to begin with that M is known the like-
lihood of X under the alternative hypothesis — let us de-
note it by P(X| M) — can be calculated by the methods
in [11]. By (5) there is a random vector « such that

M' = M + ux. (6)

If 2 was known, we would know the supervector M’
so it would be straightforward matter to calculate the
conditional (Gaussian) likelihood of the test utterance,
P(X|M,x), using the Baum-Welch statistics extracted
from the utterance (Lemma 1 in [11]). So, since x is as-
sumed to have a standard normal distribution, P(X'| M)
is given by

P(XIM) = /P(X|M,w)N(:c|0,I)dm (7

where N (-|0, I) is the standard Gaussian kernel. Propo-
sition 2 in [11] explains how to derive a closed form ex-

pression for this type of integral so we will simply state
the result here in a form which is appropriate for t-norm
score normalization.

First some notation. For each mixture component ¢,
let X, be the corresponding £ x F' covariance matrix; we
take this to be diagonal and assume that it is speaker- and
channel independent. Let X be the CF' x C'F covariance
matrix whose diagonal blocksare . (c=1,...,C). Let
N, be the total number of observation vectors in X for
the given mixture component and set

> X (8)
diag (Z XtXt*> (9)

where the sum extends over all observations X, aligned
with the given mixture component, and diag () sets off-
diagonal entries to 0. (As we have written them these
are Viterbi statistics but we use Baum-Welch statistics in
practice.) Let N be the CF x C'F diagonal matrix whose
diagonal blocksare N.I (forc = 1,...,C) where I isthe
F x F identity matrix. Let F' be the CF x 1 vector ob-
tained by concatenating F. (forc =1,...,C). Similarly,
let S be the CF x CF diagonal matrix whose diagonal
blocks are S, (for ¢ = 1,...,().2 We denote the first
and second order moments of X" around M by F'»s and
Snr so that

Fe

Se

Fy = F—-NM
Sy = S—2diag(FM™)+ diag(NMM™).
(10)

Finally, let
I = I+u'Y 'Nu, (11)
and let /2 be an upper triangular matrix such that
o= A (12)

(that is, the Cholesky decomposition of 7). Then the like-
lihood function is given by

log P(X|M) ZN log o SFRTEE F/2|2 7
—ltr(E_l.S' )——log|l|
2 M)

1
+ §||l—1/2u*2—1FMH2
(13)

provided that M is known. In practice M has to be es-
timated from the enrollment data for the hypothesized

2|t is convenient to use S to stand for ‘second order statistics’ rather
than for ‘speaker’ aswedid in (4).



speaker so we replace F'p; and Sps by their posterior
expectations, F [F'ps] and E [S ], which are given by

E[Fm]
E[Sm]

F - NE[M)]

S —2diag (FM™)

+ diag (N (E [M] E [M*]

+ Cov (M, M))) (14)

(in accordance with the notation introduced in Section
3.1). The term Cov (M, M) will be non-negligble if the
amount of enrollment data for the hypothesized speaker
is small. Because the term tr (X7 'S p) enters into (13)
with a negative sign, its effect is to diminish the value
of the likelihood function by an amount which is propor-
tional to the uncertainty in the point estimate £ [M] of
M. Thus it provides a mechanism for penalizing hypoth-
esized speakers with small amounts of enrollment data.

The most interesting thing to note about (13) is
that the likelihood function depends on the hypothesized
speaker only through the computations in (14) and the
cost of these computations is negligeable (since F [M]
and Cov (M, M) are calculated at enrollment time).
The principal computation is the evaluation of -2 (the
value of the determinant |7| is a by-product) and this only
needs to be done once (independently of the number of
speakers hypothesized and the number of t-norm speak-
ers).

The likelihood function in [10] differs from ours in
just two respects: it does not take account of the term
Cov (M, M) and it uses the MAP estimate of z instead
of integrating with respect to « as in (8). The value of
the integral is actually very closely related to the MAP
estimate of x (see Proposition 2 in [1]) so that the ap-
proach in [10] enjoys the same computational advantages
as ours.

3.3. Likelihood normalization

In our first experiments we used only t-norm for score
normalization but we learned from [10] that zt-norm (that
is, z-norm followed by t-norm and not the other way
round) could be very effective for the type of model un-
der consideration at least if the number of eigenvoices is
set to 0. Unlike t-norm, z-norm requires a way of evaluat-
ing the likelihood of a test utterance under the assumption
that the actual speaker is somebody other than the hypoth-
esized speaker — the ‘unknown speaker’ as it were. The
solution proposed in [10] is to take the speaker in the cen-
ter of the acoustic space as the unknown speaker. That is,
the likelihood of a test utterance for the unknown speaker
is evaluated in the same way as for a target speaker by
taking

Q
Q
2
S
=
=)

(15)

However, since our likelihood function takes account of
the uncertainty in the point estimate of a target speaker’s
supervector produced by the enrollment procedure, it is
more natural for us to take the speaker for whom no en-
rollment data is available as the unknown speaker. This
is tantamount to setting

EM] = m
Cov(M,M) = diag(d®+vv*). (16)

We will refer these two versions of z-norm as ‘z-norm
without uncertainty’ and ‘z-norm with uncertainty’ re-
spectively.

4. Experiments

The system we submitted for the evaluation used a UBM
with 2048 Gaussians, 25 eigenvoices, 50 eigenchannels
and t-norm score normalization. Taking all trials of the
core condition as the test bed [8], it resulted in an equal
error rate (EER) of 11.7% and a DCF of 0.042. These
results were not as good as we expected so we conducted
a series of experiments after the evaluation to see how our
system might be improved.

Unlike most participants in the evaluation we used
the time stamps provided by NIST to suppress silences
in the enrollment and test utterances. This gave us about
25% more speech data to work with than a conventional
silence detector. To evaluate the effect of this decision
we re-ran our system using the ISIP silence detector and
found that we obtained poorer results (an EER of 12.3%
and a DCF of 0.045). Thus we did not use the silence
detector in our subsequent experiments.

Our first series of experiments we designed to evalu-
ate the effect of modifying the configurations of the utter-
ance and session models. The results are summarized in
Table 1 which shows that our best results were obtained
with a configuration of 5 eigenvoices and 25 eigenchan-
nels. It is apparent that care is needed to avoid over fit-
ting the utterance and session models in spite the large
amounts of training data that we used. The benefit of
adding eigenvoice MAP to classical MAP is not great
(compare the last two lines of Table 1) but this is perhaps
not surprising since eigenvoice methods were developed
to deal with situations where very little data is available
for model adaptation (far less data than a whole conver-
sation side).

The experiments reported in Table 1 were conducted
using only t-norm score normalization. We tested the
other types of normalization strategies described in Sec-
tion 3.3 on two model configurations: 5 eigenvoices and
25 eigenchannels (the best configuration according to Ta-
ble 1) and 0 eigenvoices and 25 eigenchannels (the con-
figuration most similar to [10]). The results are summa-
rized in Tables 2 and 3. For each configuration the best
results are obtained with zt-norm, confirming the results



[EV ] EC | EER | DCF |
25 | 50 | 11.7% | 0.042
5 | 50 | 11.7% | 0.036
5 | 25 [ 10.2% | 0.036
0 | 25 [ 11.7% | 0.038

Table 1: Effect of different utterance and session model
configurations. All trials, core condition. T-norm score
normalization.

in [10]. In each case z-norm with uncertainty gives better
results than z-norm without uncertainty in implementing
zt-norm, as one might expect. Curiously, zt-norm seems
to be much less effective in the case of 5 eigenvoices than
in the case of 0 eigenvoices. Thus it turns out that our best
result, namely an EER of 8.7% and a DCF of 0.029, is ob-
tained without using any eigenvoices contrary to what the
results in Table 1 might suggest.

| normalization | EER | DCF |
t-norm 10.2% | 0.036
z1-norm 13.8% | 0.047
Zo-NOrm 12.9% | 0.056
z1t-norm 95% | 0.034
Zot-norm 10.9% | 0.040

Table 2: Effect of different types of score normalization.
All trials, core condition. 5 eigenvoices, 25 eigenchan-
nels. z; indicates z-norm with uncertainty, zs z-norm
without uncertainty.

| normalization | EER | DCF |
t-norm 11.7% | 0.038
z1-norm 9.9% | 0.034
Zo-NOrm 12.1% | 0.055
z1t-norm 8.7% | 0.029
zot-norm 9.5% | 0.034

Table 3: Effect of different types of score normalization.
All trials, core condition. 0 eigenvoices, 25 eigenchan-
nels. z; indicates z-norm with uncertainty, zo z-norm
without uncertainty.

5. Discussion

The approach to the problem of speaker verification de-
scribed in this article is very similar to that of [10] al-
though our results are not as good as those obtained by
the QUT_2 system in the evaluation. The differences in
the way we make verification decisions are very minor
(we have opted to integrate over hidden variables such
as speaker and channel factors rather than use point esti-

mates of them) but our method of estimating eigenchan-
nels is different to that of [10] (which more closely resem-
bles the factor analysis model). We will have to investi-
gate this question before we can draw any conclusions
from our results.
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