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1. Introduction: ATVS 04/05 Submissions

2004 2005
1conv/1conv | 8conv/1conv | 1conv/1conv | 8conv/1conv
KL-SVM KL-SVM
(LIRC’B-I\G/IMM) KL-GMM KL-GMM
Prosodic
Phone3gram
SVM Fusion
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‘ Development Set

= One Development Set:
o NIST SRE 2004 Corpus

= Two background and auxiliary data sets
o NIST SRE 2004 corpus (top matching with DevSet)
o Switchboard-l and past NIST SREs (mismatch with DevSet)

= All development trials: NIST SRE 2004 trial lists
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2. Acoustic Systems

KIL-GMM and KIL.-SVM




'2.1. GMM System Evolution
= Mothball 2004 vs. 2005 = Improvements due to:

o KL-TNorm

P ..... ....... .......... é....:!gmmiostmmaje = Automatic cohort

N> T selection method for
R R S TNorm
A R AR o Database matching
R R RN G conditions (UBM,
B i TNorm)

000 T O T T I = 2004: Swb-| and past
1 8 A T ——— NIST SREs

"""""""""""""""""""""""""""" = 2005: MIXER data
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‘ GMM Baseline System

= Feature Extractor:
o 19 MFCC + delta = 38 features
2 CMN + Rasta + Feature Warping

= Model parameters

0 1024 mixtures
2 MAP-UBM trained with NIST 2004 (MIXER) data

= TNorm and KL-TNorm
o Cohorts: NIST 2004 target models
o Gender-Dependent

FIAT/S ,

-
=
=
=
= .,
=
=
=




‘ 2.2. SVM Baseline System

= GLDS-SVM with 2" order explicit polynomial expansion

= “P” matrix channel compensation

o null space of 3 dimensions (one per channel)

= A. Solomonoff, C. Quillen and W.M. Campbell, Channel compensation for SVM
Speaker Recognition, Proceedings Odyssey'04.

= EXxplicit normalized two degree polynomial expansion

= V. Wan, W.M. Campbell, Support vector machines for speaker verification and
identification, Proceedings 2000 IEEE Signal Processing Society workshop.

s Decomposed GLDS Kernel

s W.M. Campbell, Generalized linear discriminant sequence kernels for speaker
recognition, Proceedings ICASSP '02.

m The Speaker model is just a explicit W hyperplane
o No need to store Support Vectors
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‘ SVM Baseline System

= KL-TNorm
0 Cohorts: NIST 2004 target models
o Gender-Dependent

s GLDS fully new in Matlab: limited results due to:
= 2nd order pol. exp. forced by Matlab memory limitations
= Strong subsampling required
= High control of the different stages in SVM system
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2.3. KI.-TNorm

= Fast Adaptive TNorm Cohort Selection Method

= Very fast distance computation method based on
an upper-bound for Kullback-Leibler divergence

= M. N. Do, “Fast Aproximation of Kullback-Leibler Distance for
Dependence Trees and Hidden Markov Models”, Signal
Pocessing Letters, Volume 10(4), April 2003, pp:115 - 118

= Valid only for HMM and Dependence Trees
o Distances computed from GMM models and cohorts

o Distances used for cohort selection both in GMM and
SVM systems

0 D. Ramos-Castro et al., “KL-Tnorm: Speaker Verification Using
Kullback Leibler Divergence-based Fast Adaptative Thorm",
Biometrics on the Internet, Third COST 275 Workshop, Hatfield,
UK, 2005 (submitted).
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KI-TNorm

= KL Distance:

" : wa L W, /;
D(Zwifi zw,.fj 1> tog IZ{w,f,-log : :}
i=1 i1 Zw f \ i=1 W, f,
= Zn:wl, log¥+znlj.fi logé Log-Sum
i=1 Wi =l /i i

l Inequality

= KL Distance between 2 d-dimensional Gaussians:

jflogf i{l@giiﬁ ; d+ir(575)+ (u,.—ﬂ,.)iﬁ(ﬂ,.—ﬁ,-)}
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‘ KL-TNorm: DevSet Experiments (I)

= Effect of cohort size (N vs. EER)

EER DET KL-TNorm NIST 2004 DevSet

—&— GWM oomedn-1oomdd —&- BV 1convdw-1comvdw

GMM 1c-1c

SVM 1c-1c

25 =1 75 100 125 150 Total 25 a0 75 100 125 180

Total

—B G Soomadw-1comedwy —&- SWM Sconvdw-1conydw

GMM 8c-1c

SVM 8c-1c

25 =1 75 100 125 150 Total 25 a0 75 100 125 180

Total
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‘ KI-TNorm: DevSet |

= Effect of cohort size (N vs. DCF)

DCF Opt KL-TNorm NIST 2004 DevSet

“xperiments (1I)

0.05 T T T 0.07a8 T T T
—2= G 1 comedw-1oonds | | —=— SV 1convdw-1comsdw
0.0495+ E oo7sl
0.049
0.074 ¢
n.04ss} SVM 1c-1c
GMM 1c-1c ool
004z
0.07
0.0475 ¢
0.047 | 0.068
0.0485 . : . . 0.066 . : . .
25 75 100 125 180 Total 25 50 75 100 125 180 Total
0.032 T T T 0.0615
—H- G Scomedw-1conydn —H- SWM Boonvdw-1comsdw
nostaf 0081 ]
: 0.0605 -
0.0316¢
008k
noanaf SVM 8c-1c
GMM 8c-1c posser
0.0312 ¢+
0.059¢
DHEEdl 00585}
0.03028 . . . . 0.058 1 1 1 . .
25 75 100 125 150 Total 25 &0 7h 100 125 180 Total
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KI-TNorm: NIST 2005 Performance

Miss probability (in %)

= GMM system (N=75)

GMM System KL-Tnorm NIST 2005 "All Trials"

20

= SVM system (N=75)

NIST 2005 'All Trials'

20
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3. ATVS High-Level Systems

Phonetic & Prosodic
Speaker Recognition




3.1, Phonetic Speaker Recognition
Acoustic-Phonetic Decoders

= 2 Languages:
o English: TIMIT (8 kHz), 39 phones.
o Spanish: ALBAYZIN (8 kHz), 23 phones.

= Advanced Distributed Speech Recognition Standard Front-End
o ETSIES 202 050: noise and channel robust, MFCC.

= Context, speaker & gender independent HMM phone models (HTK)
o 3-state, left-to-right with no skips
o 1 to 20 Gaussians/state

= N-gram (2/3/4) modeling and scoring
o 1 UBPM per language (eng/sp), SRE’04 training data
o 1 SPM per target (8conv), trained from scratch/adapted from UBPM

1 ( P(X | SPM,) J
—log
N \ P(X|UBPM)

Score, =
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‘Gaussians per State in Phone HMMs

[o<]
a

Phone
Recognition
Precision

% Corr_Eng

- = = .%Acc_Eng
% Corr_Sp
- = = .%Acc_Sp

%Correct %Accuracy

Speaker
Recognition
Precision
(Bigram)
(NIST2004
SRE 8s-1s)

% EER

—— English

—— Spanish

Number of Gaussians per HMM state

= HMM complexity and speaker recognition precision not clearly related
o Very simple (and error-prone) phonetic decoders may be useful for SR

= English: 3 Gauss/state; Spanish: 15 Gauss/state
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‘ Bigrams, Trigrams or 4-grams

Fhonetic Speaker Recognition

Fhonetic Speaker Recognition
80 ; : 80 : : ' : ;
60
— _ 40
£ £
£ 1=
£ £
=] =]
[i] [i]
8 | 20
a a
0 0
= =
10
5
—— English Bigrams, EER= 23.27% —— Spanish Bigrams, EER = 22.59%
2 = English Trigrams, EER= 21.25% 2 —— Spanish Trigrams, EER = 20.18%
f— English 4-grams, I_EER= 22.79% f— Spanish 4-grams._EER =22.18%
-1 1 1 L L 1 L -1 't 1 L L 1 L
1 2 5 10 20 40 &0 2 5 10 20 40 &0 80

False Alarm probability {in %)

= SPM training method:

False Alarm probability {in %)

Q

a

Bigrams: SPMs trained from scratch
Trigrams and 4-grams: SPMs adapted from UBPMs

4-grams perform worse than trigrams and similar to bigrams
BEST MODELS: Trigrams adapted from the UBPM
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English, Spanish or Sum

80

Phonetic Speaker Recognition

Spanish phonetic decoding
o Better EER than English

o Worse for | False Alarm

Sum fusion
4o r o BestEER
g o Similar to English for | False Alarm
2" | We use only English decodings
é 10 ~
2 FINAL PHONETIC SPEAKER
) RECOGNITION SYSTEM:
1 : : o English phonetic decodings
05 1| = spama e =20 0% 2 HMMs with 3 Gaussians/state
ot I A — o Trigram adapted from UBPM
orezos oz Aamprobabiity (n%) ” o Weight of UBPM: 0.7
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Miss probability {in %)

Phonetic Results: Dev’04 vs. Eval’05

80

Phonetic Speaker Recognition
T T T

= UBPM trained on NIST’ 04
data

m System tested on NIST'04
and NIST'05 data

= Final results are:

o Slightly better for NIST05
data
= No degradation dev - eval

o Similar to NIST’ 04 state of

2 [ = NIST 2005 Resu
— NIST 2004 Resul

Ités: EER=2061% | i o | the art phonetiC speaker

Its: EER = 21.25% L
' recognition subsystems

| |
1 2 S

1 Il I Il
10 20 40 80 80
False Alarm probability (in %)
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3.2, Prosodic Speaker Recognition
Four-Level Delta-based Tokenization*

1.
2
3.
4

Generate new segments using the detected points

Compute the delta features (50 ms) for FO and energy contours
. Detect the changes in the dynamics based on the delta features

. Four-level quantization of each segment based on the slopes
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+F +S *

+F=Fast-rising; +S=Slow-rising; -F=Fast-falling; -S=Slow-falling; UV=Unvoiced
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*Adapted from: Adami, A. “Modeling Prosodic Differences for Speaker and Language Recognition ”, Ph.D Thesis, OGI 2004
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N-gram Modeling and Score

Gender-dependent UBMs trained using HTK LM tools
o Data from NIST 2004 Extended-data task

= Speaker models created by interpolation:

o Spk_model=0.2 UBM + 0.8 Spk_data_model

o Speaker models include the “general knowledge” of the UBM and
the “specific knowledge” of the speaker data

= Scores: conventional log-likelihood ratio test

= No score normalization techniques applied

AT S 22 ! ‘-I'.Ik%éﬁ-l\.'llll.
[N




‘ Quantization selection

N-gram Prosodic System

Miss probability (in %)
o

05 |
02| . [— 2LevelDelta Bigrams + Duration EER: 22.95%
: : | = 4 Level-Delta Bigrams EER: 20.23%

0_1_..;...: .............. e RN SRS S, S—

i i I i I i i
01 02 05 1 2 5 10 20 30 40
False Alarm probability (in %)

= Much better performance for the 4 Level-Delta tokenization

= Over-segmentation of the contours affects the duration information
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Bigrams, Trigrams or 4-grams

M-gram Prosodic System

40

30 r

20

10

Miss probability (in %)
(4]

05 oo

— Bigrams EER: 20.23% |
02 —— Trigrams EER: 18.86%
01 —— 4-Grams EER: 19.56% |

0102 05 1 2 5 10 20 30 40
False Alarm probability {in %)

= Speaker model training method:
o Bigrams: Speaker models trained from scratch
o Trigrams and 4-grams: Speaker models adapted from UBMs
= Trigrams slightly better than 4-grams and bigrams
= BEST MODELS: Trigrams adapted from the UBM
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‘ Prosodic Results: Dev’04 vs. Eval’05

Miss probability (in %)

N-gram Prosodic System
T

40 -

30 ~

20 r

10 -

05 -

02 Lo — IBSides—1side SRE 2004 Development (EER: 18.86%) |.... |

1

1 1 1 1 1
2 5 10 20 30 40
False Alarm probability (in %)

Final results are similar for
NIST' 04 and NIST’05 data

o No degradation dev - eval
Also similar to NIST'04 state

of the art prosodic speaker
recognition subsystems
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4. System Fusion

8conv4dw-1convdw task




'4.1. SVM Fusion
SVM configuration

= Linear kernel:
o FR errors 10 times more costly than FA
o Compensate for the amount of target and impostor trials

= Fusion of four systems
o (KL-GMM, KL-SVM, Prosodic Trigram, Phone Trigram)

= Threshold selection based on NIST 2004
development data
o 3-fold cross validation from 8sides-1side task (male trials)

AT S 27 ! \Iﬂlk%ﬁll\.'lllk
[N




'Dev’04 and Eval’05 Results

Development 2-fold cross validation MIST 2004 (male scores) MNIST 2005 Beconvdw-1convdw All trials
T T T T T T T T T T T T T T T

40 | 40 |
0+ 30 -
20 - 20 -

10 10 }

Miss probability (in %)
o

Miss probability {in %)
w

— GMM EER: (8.08%)
0s | ~—— SVM EER: (15.75%)
. —— Prosodic EER: (19.16%)

—— SWM EER: 15.08%

= Prosodic EER: 18.95%

05 - — GMM EER: 7.306%
—— Phonetic EER: (20.81%)

02} —— Phenetic EER: 22.16% 02 — Linear SVM Fusion EER: (6.91%)
= S\/M Linear Fusion EER: 6.60% : ;
0.1} : . 01+
01 02 05 1 2 5 10 20 30 40 01 02 05 1 2 5 10 20 30 40
False Alarm probability (in %) False Alarm probability (in %)

= Overall system performance dominated by the GMM system
= Consistency between Development and Evaluation data
= Need to improve High-level systems performance to increase their contribution
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Conclusion




‘ Conclusions

= GLDS-SVM system: from scratch in Matlab

o Good process control but memory limitations
o Submitted system: just 2nd order feature expansion
o Now porting Matlab-based GLDS-SVM to ATVS C++ core

= KL-Tnorm excellent performance (GMM & SVM):

o Accuracy and speed
o Specially in 8conv-1conv task

= Phonetic and prosodic performed excellent

= Succesful submission of three ATVS brand-new
core technologies (SVM, Phonetic and Prosodic)

AT S 30 ! ‘-I'.I.k%%ﬁ- AU R
[N




