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Preface

It was a pleasure and an honor to organize the IberSPEECH 2012: Joint VII
“Jornadas en Tecnoloǵıa del Habla” and III Iberian SLTech Workshop, that took
place during November 21–23 in Madrid, Spain, hosted by the ATVS Biometric
Research Group, Universidad Autónoma de Madrid.

This conference is the result of the merging of two conferences: the Jor-
nadas en Tecnoloǵıa del Habla (Spanish Speech Technology Workshop) and
the Iberian SLTech Workshop. The first has been organized by the “Red
Temática en Tecnoloǵıa del Habla” (Spanish Speech Technology Thematic Net-
work, http://www.rthabla.es) since 2000. This network was created in 1999 and
currently includes over 200 researchers and 30 research groups in speech technol-
ogy in Spain. The first Iberian SLTech Workshop was organized in Porto Salvo,
Portugal, in 2009, by the Special Interest Group on Iberian Languages (SIG-IL,
http://www.il-sig.org/) of the International Speech Communication Association
(ISCA, http://www.isca-speech.org) and has been organized in conjunction with
the “Jornadas en Tecnoloǵıa del Habla” since 2010.

As a result, the IberSPEECH: Joint “Jornadas en Tecnoloǵıa del Habla” and
Iberian SLTech Workshop is one of the most important research meetings in the
field of speech and language processing focusing on Iberian languages, attracting
many researchers (about 120 in last edition), mainly from Spain and Portugal,
and is also a natural meeting for researchers from Latin America. However,
although the main focus is on Iberian languages and the Iberian region, the
conference is not restricted to them. Proof of this are the ALBAYZIN Technology
Competitive Evaluations, organized in conjunction with the conference, which in
this edition attracted the interest of several research groups from all around the
world, including the USA, UK, France, Japan, China, and Switzerland, among
others.

The ALBAYZIN Technology Competitive Evaluations have been organized
alongside with the conference since 2006, promoting the fair and transparent
comparison of technology in different fields related to speech and language tech-
nology. In this edition we had five different evaluations: Language Recognition,
Audio Segmentation, Speech Synthesis, Search on Speech, and Handwriting
Recognition. The organization of each of these evaluations requires preparing
development and test data, providing data along with a clear set of rules to
the participants, and gathering and comparing results from participants. This
organization was carried out by different groups of researchers and was crucial
for the success of the evaluations. Although results from the evaluations cannot
be included in this volume owing to timing restrictions, we would like to express
our gratitude to the organizers and also to the participants in the evaluations.



VI Preface

In this edition we had over 80 articles submitted to the conference, and only
29 were selected for this publication. This selection was based on the scores
and comments provided by our Scientific Review Committee, which includes
over 75 researchers from different institutions mainly from Spain, Portugal, and
Latin America, to which we also would like to express our deepest gratitude.
Each article was reviewed by three different reviewers and the authors had some
time to address the comments before submitting the camera-ready paper. The
articles have been organized, following the oral sessions of the conference, into
six different topics:

– Speaker Characterization and Recognition
– Audio and Speech Segmentation
– Pathology Detection and Speech Characterization
– Dialogue and Multimodal Systems
– Robustness in Automatic Speech Recognition
– Applications of Speech and Language Technologies

Besides the excellent research articles included in this volume, the conference had
the pleasure of having three extraordinary keynote speakers: Jan “Honza” Cer-
nocky (Brno University of Technology, BUT, Czech Republic), Philip Rose (Aus-
tralian National University, Australia), and Pedro Moreno (Google Research,
NY, USA).

The conference was mainly organized and supported by the Spanish Thematic
Network on Speech Technology (“Red Temática en Tecnoloǵıa del Habla”) and
the ISCA Special Interest Group on Iberian Languages (SIG-IL). Besides this,
we also received support from the Universidad Autónoma de Madrid (UAM) and
the Campus Internacional Excelencia UAM+CSIC, which not only provided a
fantastic venue for organizing the conference (the Escuela Politécnica Superior),
but also financial support. Also, several companies provided financial support
for the conference, including Google, Microsoft, and Telefónica (through Cát-
edra UAM-Telefónica). Last but not least, we had financial support from the
MA2VICMR consortium. Without the financial support of all of them this con-
ference would simply have not been possible.

We would also like to thank Springer, and in particular Alfred Hoffmann and
Leonie Kunz, for the possibility of publishing this volume and their help and
great work in preparing it. This will help increase the international impact of
this conference.

Finally, we would like to thank all the people that have been putting their
efforts in organizing this conference, and in particular the Organizing Commit-
tee and the local Organizing Committee, as well as all the authors that have
presented their articles at the conference.

Doroteo Torre Toledano
Alfonso Ortega Giménez

António Teixeira
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Koldo Gojenola Galletebeitia Euskal Herriko Unibertsitatea
Pedro Gómez Vilda Universidad Politécnica de Madrid
Javier González Domı́nguez Universidad Autónoma de Madrid
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Maŕıa Teresa López Soto Universidad de Sevilla
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Nicolás Morales Mombiela Nuance
Asunción Moreno Bilbao Universitat Politècnica de Catalunya
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Ana Montero Benavides, José Luis Blanco, Alejandra Fernández,
Rubén Fernandez Pozo, Doroteo Torre Toledano, and
Luis Hernández Gómez
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Automatic Speech Recognition Based on Ultrasonic Doppler Sensing
for European Portuguese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

João Freitas, António Teixeira, Francisco Vaz, and Miguel Sales Dias

Applications of Speech and Language Technologies

Integrating a State-of-the-Art ASR System into the Opencast
Matterhorn Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
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Reliability Estimation of the Speaker

Verification Decisions Using Bayesian Networks
to Combine Information from Multiple Speech

Quality Measures

Jesús Villalba, Eduardo Lleida, Alfonso Ortega,
and Antonio Miguel

Communications Technology Group (GTC),
Aragon Institute for Engineering Research (I3A),

University of Zaragoza, Spain
{villalba,lleida,ortega,amiguel}@unizar.es

Abstract. In some situations the quality of the signals involved in a
speaker verification trial is not as good as needed to take a reliable de-
cision. In this work, we use Bayesian networks to model the relations
between the speaker verification score, a set of speech quality measures
and the trial reliability. We use this model to detect and discard unreli-
able trials. We present results on the NIST SRE2010 dataset artificially
degraded with different types and levels of additive noise and reverbera-
tion. We show that a speaker verification system, that is well calibrated
for clean speech, produces an unacceptable actual DCF on the degraded
dataset. We show how this method can be used to reduce the actual
DCF to values lower than 1. We compare results using different quality
measures and Bayesian network configurations.

Keywords: speaker recognition, Bayesian networks, reliability, quality.

1 Introduction

In some situations, the quality of the signals involved in the speaker verification
process is not as good as needed to take a reliable decision. This causes a dramatic
drop of the system performance. The purpose of this work is finding a method
to estimate the reliability of the speaker verification (SV) decision for each trial.
We intend to discard the unreliable trials in order to be able to assure that the
decisions taken with the trials that we keep produce low error rates. We infer the
trial reliability from a set of measures, that we call quality measures, extracted
from the training and testing segments of the trial.

In the last years, several approaches have been proposed to combine different
sources of information into a global confidence measure [1], [2], [3]. We work on
the approach introduced by Richiardi in [4] and [5]. In these works, a Bayesian
network is used to obtain a probabilistic measure of the reliability of the trial
given the speaker verification score and some quality measures. In case of low
reliability, the system asks the user to utter a new sentence and chooses the

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Villalba et al.

one with higher reliability. In [6], this approach is compared with confidence
measures presented in previous works [7] [8] [9] showing that the probabilistic
approach outperforms previous approaches. In [10], the same technique is used
to detect the reliability of several biometric modalities in a multimodal identity
verification system. Then, the reliability estimations are used to improve the
fusion of the scores of the different systems.

In this paper, we extend Richiardi’s work introducing other quality measures
and comparing the performance of these measures detecting the trial reliability.
Besides, we introduce and compare other configurations of the Bayesian network.
We use this model to discard unreliable trials on an artificially degraded version
of the NIST SRE10 dataset achieving an important improvement of the actual
DCF.

The rest of the paper is organized as follows: Section 2 describes the quality
measures. Section 3 describes the Bayesian networks used for reliability estima-
tion. Section 4 describes the experimental setup and shows the results. Finally,
Section 5 shows the conclusions.

2 Speech Quality Measures

2.1 Signal/Noise Ratio

Additive noise is known to have a negative impact on speaker verification per-
formance. We measure the SNR using a method that takes advantage of the
periodicity properties of voiced speech intervals. The most part of the energy of
voiced speech is concentrated in multiples of its pitch frequency while additive
noise has a more uniform frequency distribution. This allows to get an estima-
tion of the clean and noise signals separately using the adapted comb filters Hs

and Hn respectively:

Hs(z, t) =
0.5zTp(t) + 1 + 0.5z−Tp(t)

1− αsz−Tp(t)
Hn(z, t) =

−0.5zTp(t) + 1− 0.5z−Tp(t)

1 + αnz−Tp(t)

(1)

where Tp(t) is the pitch period at time t and, αs and αn are coefficients that
modify the bandwidth of the filter. We set αs = 0.25 and αn = 0.7. As the pitch
period changes along the speech segment these are time varying filters. We had
used a pitch estimator based on the RAPT algorithm [11].

The SNR for a frame t is calculated from the power of the clean and noisy
signal estimations. Finally we, average the SNR over all voiced frames.

2.2 Modulation Index

The modulation index at time t is calculated as

Indx(t) =
vmax(t)− vmin(t)

vmax(t) + vmin(t)
. (2)
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where v(t) is the envelope of the signal and vmax(t) and vmin(t) are the local
maximum and minimum of the envelope in the region close to time t. The en-
velope is approximated by the absolute value of the signal s(t) down sampled
to 60 Hz as in [12]. The envelope of a recording with noise or reverberation
should have higher local minimums and, therefore, a lower modulation index.
We average the index over all speech frames.

2.3 Spectral Entropy

Entropy is a measure related to the peakiness or flatness of a probability dis-
tribution. The spectral entropy is computed over the values of the short-term
power spectrum, where the spectral values are normalized to sum 1 and thus,
forming a pdf. Thus, the entropy for a frame t is calculated as follows:

H(t) = −
∑
ω

|X(ω, t)|2∑
ω′ |X(ω′, t)|2

log
|X(ω, t)|2∑
ω′ |X(ω′, t)|2

(3)

where |X(ω, t)|2 is the power spectrum of the signal. The use of the entropy relies
in the assumption that a clean signal should have a more organized spectrum,
while a noisy signal should have a flatter spectrum. We average the entropy over
all speech frames.

2.4 UBM Likelihood

The Universal Background Model (UBM) is a GMM that represents the prob-
ability distribution of the speech features of the development database, that is
usually a good quality database. Speaker models are adapted from this UBM.
Degraded signals are more likely to differ from the UBM than non-degraded ones.
Therefore, they will produce a worse estimation of the speaker models. Thus, the
likelihood of the utterance given the UBM can be used as a measure of speech
degradation. This measure was first used in [13] with some good results.

3 Bayesian Networks for Reliability Estimation

In order to estimate a global measure of the trial reliability from the quality
measures we have adopted an approach similar to that used in [4] and [5]. These
works use a Bayesian network (BN) to model the relationships between the
random variables involved in the verification process. A Bayesian network is a
directed graphical model [14] that describes the dependencies of a set of random
variables. Figure 1 shows the Bayesian Network that describes our problem.
Empty nodes denote hidden variables, shaded nodes denote observed variables
and small solid nodes denote deterministic parameters. A node or group of nodes
surrounded by a box, called a plate, labelled with N indicates that there are N
nodes of that kind (for example N trials). The arcs between the nodes point from
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θi

si

θ̂i

Ri

Qi

πθ

πR

N

Fig. 1. BN for reliability estimation based on score and quality measures

the parent variables to their children variables. They represent the conditional
dependencies between parents and children.

Following, we introduce the variables included in the graph. s is the SV score.
Q are the quality measures related to one trial. θ ∈ {T ,N} is the label of the
trial, where T is the hypothesis that the training and test segments belong to the
same speaker and N to different speakers. θ̂ is the SV decision after applying
a threshold ξθ to s. R ∈ {R,U} is the reliability of the trial, where R is the
hypothesis that the decision is reliable and U unreliable. πθ = (PT , PN ) is the
hypothesis prior where PT is the target prior and PN = 1 − PT the non-target
prior. Finally, πR = (PR, PU ) is the reliability prior.

The BN allows to write the joint probability distribution of the variables as
a product of conditional distributions:

P
(
s,Q, R, θ, θ̂|πθ, πR

)
= P (s|R, θ)P (Q|R, θ)P

(
θ̂|θ,R

)
P (θ|πθ)P (R|πR) .

(4)

Using (4) we can write the posterior distribution of R given the observable
variables as

P
(
R|s,Q, θ̂, πθ, πR

)
=

∑
θ∈{T ,N} P

(
s,Q, R, θ, θ̂|πθ, πR

)
∑

R

∑
θ∈{T ,N} P

(
s,Q, R, θ, θ̂|πθ, πR

) (5)
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The distributions P
(
s|R, θ, θ̂

)
are modelled by Gaussians and P (Q|R, θ) by

GMM. P
(
θ̂|θ,R

)
is a discrete distribution that is 1 if θ̂ = θ and R = R or if

θ̂ �= θ and R = U and it is 0 otherwise.
Our Bayesian network differs from that in [5] in which ours adds a link from θ

to Q. In this manner, we suppose that the speech degradation affects differently
to targets and non-target trials. In Section 4, we show results comparing both
BN configurations.

The previous model estimates the reliability based on the score and quality
measures. However, We would like to assess the ability of the quality measures
to estimate the reliability on their own without using the score. For that, we
remove s from the network. The joint distribution of this other network is the
same as in equation (4) without the term P (s|R, θ).

4 Experiments

4.1 Database

We take the telephone part of NIST SRE08 and SRE10 databases assuming
that they are quite clean. Then, we have created a synthetic database degrading
NIST with different noise levels and reverberation times.

Dataset with Additive Noise. The dataset with additive noise has been
created with a similar protocol than the Aurora2 dataset [15]. We have added
different Aurora2 noises to enrollment and test:

– Enrollment: suburban train, babble, car and exhibition hall.
– Test: restaurant, street, airport and train station.

The noises are previously filtered by the ITU MIR telephone frequency response
to simulate that they have pass through a telephone channel. The noise for each
file is selected randomly.

We have used the open source FaNT Tool [16] for adding noise to the signals.
We have signal-to-noise ratios of 20dB, 15dB, 10dB, 5dB and 0dB.

Dataset with Reverberation. In order to create the reverberant dataset we
have used a free Matlab package based on [17]. This package includes two tools:

– RIR: calculates the impulse response of a rectangular room given the room
dimensions, the reflection coefficients of the walls and the speaker and mi-
crophone locations.

– FCONV: used to convolve the room impulse response (RIR) with the clean
signal.

We created random room impulse responses with the following criteria:
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– 8 sizes of room, from small room to basketball court.
– Add a random number to the room size to change it ±50%.
– 8 different materials for the walls: rubber, granite, clay, concrete, steel, alu-

minium, brick and glass.
– Random speaker position inside the room.
– Random mic position in a square with 4m. of side around the speaker.

For each RIR we compute the reverberation time (RT) as the time that the filter
energy takes to fall 60dB. We assign each RIR to one of 8 groups by the nearest
reverberation time among 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75 and 1 second.
Each RIR is used only to degrade one file. The RIR for each file is selected
randomly.

4.2 Experimental Setup

We trained the Bayesian network with trials from the SRE08 dataset and tested
on SRE10. The training set includes all trials that can be done scoring all SRE08
telephone training segments versus all SRE08 telephone test segments for all SNR
and RT pairs. This dataset has 1269 target trials (424 male, 845 female) and
766605 non-target trials (176090 male, 590515 female) per noisy condition.

The test set is the core det5 (phn-phn) condition of SRE10. This dataset has
708 target trials (353 male, 355 female) and 29665 non-target trials (13707 male,
15958 female) per noisy condition.

The SV baseline system is based on i-vectors with two-covariance model. We
have used 400 dimensional i-vectors. They are extracted using 20
short-time Gaussianized MFCC plus deltas and double deltas and a 2048 com-
ponent diagonal covariance UBM. The UBM, the i-vector extractor and the
two-covariance model are gender independent and they were trained using tele-
phone data from SRE04, SRE05 and SRE06. The i-vectors preprocessing includes
centering, whitening and length normalization.

The SV verification scores are calibrated using the Bosaris Toolkit to opti-
mize the old NIST operating point (CMiss = 10, CFA = 1, PT = 0.01). The
calibration is trained with the clean part of the SRE08 dataset. Then, we use
this calibration function on all the conditions of SRE08 and SRE10. We use the
Bayes decision threshold (2.29). Thus, on the clean part of SRE10, we achieve
an EER=2.2%, minDCF=0.14 and actDCF=0.17. When we pool all the noisy
conditions we get minDCF=0.99 and actDCF=4.05. That means that our SV
system is not useful any more. Our goal is to discard the unreliable trials in or-
der to make the actDCF lower than 1.0 keeping the threshold that we set using
only clean trials. Consequently, we show results that compare actDCF versus
the number of trials that we keep. In this context the DCF is defined as

CDCF = CMissPT PMissR̂ + CFA(1 − PT )PFAR̂ (6)

where PMissR̂ and PFAR̂ are computed on the trials that are classified as reliable.

PMissR̂ = NMiss

NR̂T
PFAR̂ = NFA

NR̂N
(7)
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Fig. 2.% trials vs. actDCF in dataset with additive noise for BN with score and quality
measures

4.3 Results with Additive Noise

In this section, we show results training and testing the Bayesian networks with
the datasets with additive noise only. Figure 2 shows the actDCF versus the
number of trials that we keep for the BN that estimates the reliability from
the SV score and the quality measures. To plot this curves we put a varying
threshold on the posterior probability of reliable shown in equation (5). The
lower and steepy the curves are, the better. That means that we remove the
worst trials first.

The distributions of the quality measures are mixtures of diagonal or full
covariance Gaussians. We tried different number of mixture components and
found that 4 components is enough.

The curves show that the system removes easily the first 30% of bad trials.
These trials are the ones with the lowest SNR pairs. We get a dramatic improve-
ment of actDCF from 2.96 to 0.75. All quality measures perform similarly in this
range. From this point, we go on removing trials that are not so noisy but that
are still causing verification errors. The best quality measures working alone are
SNR and modulation index. With these measures we can get an actDCF=0.5
removing 50% of the trials. After that, the actDCF grows again. In a perfect
reliability estimation system, the actDCF should always decrease, when we re-
move trials. However, in practice, there is a certain amount of reliable trials with
low reliability estimations and vice verse. Then, if we remove a reliable trial and
compute the error rates with equations (7), the denominator decreases and the
numerator remains constant. Therefore, the error rate and the actDCF grow.
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Fig. 3. % trials vs. actDCF in dataset with additive noise for BN with quality measures

In a good reliability estimation system the actDCF should decrease fast as we
prune trials and it should not grow again unless most of the bad trials have
been removed. We get the lowest actDCF=0.36, using all the quality measures
together modeled by diagonal Gaussians and keeping only the 30% of the trials.

All curves but the last one (green dotted line), use a BN that assumes de-
pendence between the quality measures and the trials labeling. We get better
results assuming dependence. That confirms our belief that degradations affect
differently to target and non-target trials.

Figure 3 shows the actDCF versus the number of trials for the BN that es-
timates the reliability from the quality measures only. Here, we have more dif-
ference between curves than in the previous figure. For the first 30% of trials
removed, it performs similarly to the previous case. After, that results are worse.
That indicates that the SV score is an important help for the reliability estima-
tion. SNR is the best measure followed by Entropy, modulation index and, finally,
UBM likelihood. When we combine all the quality measures we can achieve act-
DCF=0.21 removing 90% of the trials. Here, as in the previous figure, the results
assuming that the quality measures depend on the trial labelling are better than
assuming independence.

4.4 Results with Additive and Convolutional Noise

In this section, we show results training and testing the Bayesian network with
the datasets with additive noise and reverberation. Figure 4 shows the actDCF
versus the number of trials for the BN with SV score and quality measures. We
pool all combinations of additive noise and reverberation.
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We have worse results than for the dataset with additive noise only. If we use
only one quality measure the system only allows to remove 40% of the trials
and get actDCF=0.79. That means that our measures are not as good detecting
reverberation as detecting noise. However, combining measures improves the
results, especially if we add the UBM likelihood to the other three measures. In
the best case, we can get actDCF=0.5 pruning 50% of the trials or actDCF=0.13
pruning 90% of the trials.

5 Conclusions

In this paper, we presented a method to detect bad classified trials in a speaker
verification system. The method is based on modeling speech quality measures
with Bayesian networks. We revisited previous works on Bayesian networks and
compare different quality measures and network configurations. We have shown
experiments on an artificially degraded database including noise and reverber-
ation. In this experiments, we take a speaker verification system trained and
calibrated with clean speech. Using this system on the degraded dataset we get
an unacceptable performance. Then, we used our system to remove unreliable
trials achieving a dramatic improvement of the actual detection cost function.

Acknowledgment. This work has been supported by the Spanish Government
through national projects TIN2011-28169-C05-02 and INNPACTO IPT-2011-
1696-390000.
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Abstract. This paper explores the use of state-of-the-art acoustic sys-
tems, namely Total Variability and Probabilistic Linear Discriminant
Analysis for speaker verification on short utterances. While the recent
advances in the field dealing with the session variability problem have
proved to greatly outperform speaker verification systems on typical sce-
narios where a reasonable amount of speech is available, this performance
rapidly degrades at the presence of limited data in both enrolment and
verification stages. This paper studies the behaviour of TV and PLDA
on those scenarios where a scarce amount of speech (∼10s) is available
to train and testing a speaker identity. The analysis has been carried
out on the well defined and standard 10s-10s task belonging to the NIST
Speaker Recognition Evaluation 2010 (NIST SRE10) and it explores the
multiple parameters, which define TV and PLDA in order to give some
insight about their relevance in this specific scenario.

Keywords: i-vectors, Total variability, PLDA, short utterances.

1 Introduction

The remarkable advances dealing with the session variability problem accom-
plished during last years, have led to highly reliable speaker verification systems
at the presence of a reasonable amount of speech.

In this context, techniques based on Factor Analysis such as Joint Factor
Analysis (JFA) [1] [2], Total Variability (TV) [3] or more recently Probabilistic
Linear Discriminant Analysis (PLDA) [4] have demonstrated an outstanding
behavior even when facing vast and challenging evaluation scenarios such as the
NIST Speaker Recognition Evaluation, NIST SRE10 [5].

Unfortunately those excellent results rapidly degrade as long as the available
amount of enrolment and verification speech decreases [6] [7]. This fact made
critical the design and use of the speaker verification systems in real applica-
tions such as access control or forensics while penalizing its application in other
everyday applications.

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 11–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The purpose of this paper is to evaluate and analyse the state-of-the-art acous-
tic systems TV and PLDA on those scenarios where just a very limited amount
of speech (∼10s) is available for both, enrolment and verification. This analysis
is driven through the different design parameters of TV and PLDA, with the aim
of discovering which of them have a greater impact dealing with scarce amount
of data. This last point is of particular interest, as often, systems are presented
adjusted to typical scenarios, overshadowing the actual relevance of the different
design parameters in specific tasks.

The rest of this work is organized as follows. A description of the Total Vari-
ability and Probabilistic Linear Discriminant Analysis based system is given in
Section 2. Section 3 is devoted to present the experimental set-up and obtained
results. Finally, main conclusions and future work lines are summarized in Sec-
tion 4 and Section 5 respectively.

2 Systems Description

2.1 Total Variability

Total Variability [3] represents a step further on the use of Joint Factor Analysis
[1] [2] where a single subspace is trained to jointly model both session and speaker
variability. This subspace, the so-called total variability subspace, T , aims to
constraint in a low dimensional space both the session and the speaker variability.
Mathematically, this generative latent variable model can be formulated as

μ′
s = μ′

UBM + Tw . (1)

where μs and μUBM are the speaker and the Universal Background Model
(UBM) model supervector respectively, T is the total variability matrix and
w are the the latent factors of the mode, also called total vectors or i-vectors.

Since T constrains all the variability, speaker and session, and it is shared
for all the speakers models/excerpts, the i-vectors, w, can be considered enough
to represent the set of differences between one excerpt to each other. Now, the
disentangling phase between the speaker information and non-desired informa-
tion can be accomplished at the i-vectors domain. This phase is typically carried
out via classical Linear Discriminant Analysis (LDA) and Within Class Covari-
ance Normalization (WCCN) [8]. The use of those techniques is now guaranteed
as the dimensional reduction performed allows obtaining a non-singular within-
class covariance matrix. Hereafter, we refer the Total Variability system followed
by the classical LDA and WCCN as simply Total Variability or TV.

Finally, in order to obtain an score, a straightforward cosine distance between
the i-vector coming from the speaker modeling w1 and a test excerpt i-vector w2

is computed as

Sw1,w2 =
(Atw1)W

−1(Atw2)√
(Atw1)W−1(Atw1)

√
(Atw2)W−1(Atw2)

. (2)

where A is the LDA matrix and W is the within class covariance matrix corre-
sponding to WCCN.
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Θ = {μ, F, G, Σ} 
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 h 

 k 

 w 

S 

Fig. 1. Probabilistic Linear Discriminant Analysis graphical model representation for
S speakers and I utterances. The observed variable w (i-vector), is explained through
the identity latent factor h, the session variability hidden variable k and the set of
hyperparameters Θ.

2.2 Probabilistic Linear Discriminant Analysis

As stated in the above section, the total variability framework has the main
advantage of reducing a given speech utterance to a low-dimensional fixed length
representation: the i-vector. From this point, i-vectors can be directly used for
classification opening the door to classical methods such as Linear Discriminant
Analysis (LDA) to accomplish the disentangling phase between speaker and
session variability.

Probabilistic Linear Discriminant analysis (PLDA) is a generative latent vari-
able model that has been recently used to successfully modelling i-vectors [4].
PLDA can be seen as a probabilistic version of classical LDA [9], where a specific
i-vector i of a given speaker s is assumed to be decomposed as

wsi = μ+ Fhs +Gki + εi . (3)

where F and G represents the new speaker and session variability subspaces
respectively, hs and ki their respective latent variables associated and εi is a
residual noisy term assumed to be normal distributed with zero mean and di-
agonal covariance matrix Σ. Figure 1 shows the PLDA probabilistic graphical
model.

From above equation 3 the analogy between classical stated JFA and PLDA
modelling approaches turns out evident. Nonetheless, two mayor important dif-
ferences, in the context of speaker verification, must be taken into account

– JFA acts over speaker supervectors (high-dimensionality) while PLDA acts
over i-vectors (low-dimensionality).

– JFA assumes speaker supervectors as generated by a mixture of multivariate
Gaussians, while PLDA assumes i-vectors generated by a single multivariate
Gaussian.
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Following the PLDA model the similarity measure or score Sw1,w2 between two
given i-vectors, w1 and w2, can be computed as the ratio of the two alternative
hyphotesis: H0, both w1 and w2 belongs to a same identity (same hs) and H1, w1

and w2 belongs to different identities (different hs). This ratio can be expressed
as

Sw1,w2 =
p(w1, w2|H0)

p(w1|H1)p(w2|H1)
=

∫
p(w1, w2|h)p(h)dh∫

p(w1|h1)p(h1)dh1

∫
p(w2|h2)p(h2)dh2

. (4)

Assuming Gaussian priors for the latent variables in the model, it can be seen
that integrals involved in above equation 4 turn out tractable and therefore the
score, Sw1,w2 , can be easily derived in a closed-form solution. Further details can
be found in [9] [10].

3 Experiments

3.1 Experimental Setup

Experiments has been carried out on the telephone male part of the 10s-10s
NIST SRE10 task, where just ∼10s over a telephone channel are provided for
both enrolment and verification stages. Specifically, a total number of 10858
trials has been evaluated belonging from 264 and 290 different models and tests
segments respectively. The performance was assessed following the NIST SRE10
protocol [11] and results are presented in function of the Equal Error Rate (EER)
and the minimum decision cost function (DCF).

Development data for training different Universal BackgroundModels (UBMs)
and system hyperparameters belonging to SWBI, SWBII and past NIST SRE
evaluations (SRE04, SRE06 and SRE08). Utterances used with this purpose be-
longs to 1conv/short2 SRE tasks and therefore contains around 2.5m of speech.
Specifically a total number of 5638 files from 823 speakers were used to train T ,
F and Σ 1; LDA matrix was trained via 5214 files from 611 speakers while 4705
files belonging to 466 speakers were used to estimate the corresponding within
class covariance matrix of WCCN method.

Symmetric score normalization (SNorm) [12] was used to finally normalize
raw scores generated from the systems. A cohort of a 1000 files from the same
development dataset was used for this purpose. Also, the length normalization
method proposed in [10] was applied before PLDA modelling.

Regarding the feature extraction configuration, it consists of 38 MFCC coef-
ficients (19 + Δ) extracted by using a sliding Hamming window of 20ms and a
50% of overlapping. MEL filters were scaled between 300 and 3000Hz to focus
as much as possible to speech voice.

1 Given the intrinsic low-dimensionality of the i-vectors and the amount of speech
for training the PLDA model available, we opted by grouping the noisy terms in
equation 3 into a full-covariance matrix Σ.
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Table 1. EER/DCF for Total variability and Probabilistic Linear Discriminant Anal-
sysis systems depending on the number of Gaussians used (male SRE10 10s-10s)

# Gaussians
System 64 128 256 512 1024
TV-LDA 21.08/0.8202 21.40/0.0785 18.41/0.0710 17.53/0.0698 16.22/0.0687
PLDA 18.79/0.0766 17.27/0.0699 16.00/0.0674 16.22/0.0647 15.36/0.0614

Fig. 2. DCF of TV and PLDA systems as a function of the number of Gaussians

3.2 Results

As the starting point of this analysis, the performance obtained for both TV and
PLDA systems was evaluated. Table 1 shows the results of both systems in func-
tion of the number of Gaussians used to build the Universal Background Model,
and therefore of the i-vector extractor 2. At a first glance, two observations can
be done. First, PLDA method outperforms the LDA followed by WCCN method
proposed originally to separate speaker and session variability on i-vectors. This
result reinforces, on short utterances, the conclusions extracted in [4] [7], and
highlights the mayor ability of the probabilistic framework followed in PLDA
to manage uncertainty versus non-probabilistic frameworks. Second, as it can
be better observed in Figure 2, increasing the number of Gaussians used in the
i-vector extractor turns out in performance gains. The fact of obtaining better
performance by doing the system heavier (much more free parameters to be
trained) beside the nature of the faced problem where just an small amount of
speech is available could seem contradictory. However, note that the inherent
advantage of using the i-vector framework is that finally, regardless the size of
the i-vector extractor, classification is done in a low-dimensional space. This

2 As a reference performance on longer utterances, the same 1024 Gaussians PLDA
system achieves a 2.64/0.0149 of EER and DFC on SRE10 task condition 5 (male
part only).
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Fig. 3. DCF of TV and PLDA systems as a function of the number of kept dimensions
in the LDA supspace and sepaker variability subspace F respectively

last point allows to work with heavier and more robust systems at the develop-
ment time to finally performing classification in a much lower-dimensional space
without suffering a performance degradation.

Fig. 4. DCF of TV and PLDA systems as a function of the i-vector dimension

Another aspect explored in this study was the relevance of the LDA and
the speaker variability subspace F dimensions in TV and PLDA systems respec-
tively. Figure 3 shows a comparison of both systems by moving those dimensions
from 50 to the maximum i-vector dimension used, 400. Here, it can be seen that
while the DCF in LDA kept mostly constant from 150 dimensions, PLDA find
the minimum DCF at 200 dimension to slightly degrade when using higher di-
mensions. This result confirms, on short utterances, the studies performed for
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Table 2. EER/DCF for Total Variability system in function of the number of Gaussians
and LDA dimensions (male SRE10 10s-10s)

# Gaussians
LDA dim. 64 128 256 512 1024

50 23.37/0.0837 22.23/0.0797 19.17/0.0753 18.96/0.0756 17.61/0.0731
100 22.61/0.0835 21.03/0.0774 18.89/0.0711 17.75/0.0726 16.12/0.0697
150 21.56/0.0825 21.08/0.0769 18.79/0.0698 17.52/0.0698 16.12/0.0688
200 21.08/0.820 21.40/0.0785 18.41/0.0710 17.53/0.0698 16.22/0.0687
250 21.47/0.0834 20.04/0.0773 18.26/0.0712 16.72/0.0720 16.31/0.0680
300 21.56/0.0810 20.05/0.0768 18.55/0.0726 17.27/0.0692 16.12/0.0677
350 21.47/0.0819 20.42/0.0768 18.70/0.0723 17.53/0.0697 16.22/0.0673
400 21.47/0.0827 20.27/0.0773 17.64/0.0716 17.23/0.0701 16.82/0.0675

Table 3. EER/DCF for Probabilistic Linear Discriminant Analysis system in function
of the number of Gaussians and F subspace dimension (male SRE10 10s-10s)

# Gaussians
F dim. 64 128 256 512 1024

50 20,04/0.0824 17,27/0,0813 17,00/0,0751 16,50/0,0747 16,87/0.0695
100 19,17/0,0797 17,27/0,0729 16,89/0,0670 16,12/0,0664 15,36/0.0653
150 19,10/0,0781 16,89/0,0711 16,30/0,0664 16,12/0,0658 16,12/0.0640
200 18,79/0.0766 17.27/0.0699 16.00/0.0674 16.22/0.0647 15.36/0.0614
250 19,28/0,0781 16,50/0,0710 16,11/0,0656 16,50/0,0655 15,74/0.0620
300 19,28/0,0774 16,72/0,0715 14,97/0,0657 15,84/0,0657 15,74/0.0633
350 19,01/0,0763 16,50/0,0720 15,54/0,0655 16,12/0,0669 15,36/0.0634
400 18,41/0,0776 16,50/0,0717 15,84/0,0667 15,97/0,0665 15,26/0,0638

longer durations, where the optimum size of the PLDA speaker variability sub-
space use to be lower than the i-vector space [13]. Tables 2 and 3 complete in
detail the above described results for both systems, exploring different number
of Gaussians and LDA, F subspaces dimensions.

Finally the i-vector dimension used in both systems was also analysed. Figure
4 summarizes the results obtained in terms of DCF by increasing the i-vector
dimension from 50 to the standard 400 dimensions. As it can be observed, a
minimum at the 300 and 200 dimensions is found for the TV and PLDA systems
respectively. These results suggest again that for the short utterances problem
i-vector size under 400 dimensions might fit better the problem. Moreover, it
encourages the use of PLDA rather than TV followed by LDA and WCCN when
using lower dimensional i-vectors; note that a relative improvement of 14% in
DCF is achieved by using PLDA instead of TV.

4 Conclusions

A wide analysis on the use of state-of-the art acoustic approaches for speaker
verification on short utterances has been carried out in this work. While Total



18 J.G. Domı́nguez, R. Zazo, and J. González-Rodŕıguez

Variability and Probabilistic Linear Discriminant Analysis methods have demon-
strated to achieve outstanding results at the presence of a reasonable amount of
data, this performance rapidly decrease when just short utterances are available
for both enrolment and verification stages. This work has explored the limits of
those systems when dealing with short durations. To this aim a leave-one-out
analysis of the main configuration parameters of TV and PLDA system has been
performed. On one hand, results show that due to the final low-dimensionality
dimension of the i-vector, systems designed with complex or heavy i-vector ex-
tractors (high number of Gaussians, i-vector dimension) are able to obtain gains
over lighter ones. On the other hand, the probabilistic framework followed by
PLDA has demonstrated to better manage the implicit uncertainty of the task
than the classical LDA and WCCN methods.

5 Future Work

Although the use of the i-vector framework achieves acceptable results on the
challenging short utterances problem, specially by using PLDA as a modelling
technique, some aspects should be explored. On one hand, a deep analysis of the
differences among i-vectors extracted from different utterances durations has to
be carried out. This study could give some insight, as well as turn out into a
better treatment, of the duration utterance effect in speaker verification. Using
development short utterances similar to the evaluation conditions, as performed
in Joint Factor Analysis [6], could be a possible line in this context.

On the other hand, note that into the Total Variability framework presented,
i-vectors are computed as MAP point estimates of the latent factor w. However,
it is well known that the use of limited amount of data in order to get point
estimates could derive in non reliable i-vectors. In this sense, alternatives as
fully Bayesian frameworks as used in [14] for Joint Factor Analysis could be a
more appropriate way of facing the short durations problem.

Acknowledgments. This research has been supported by the Ministerio de
Ciencia e Innovacion under the proyect TEC2009-14719-C02-01 and Catedra
UAM-Telefonica.
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Abstract. In this paper, the contributions of different linguistic units to the 
speaker recognition task are explored by means of temporal trajectories of their 
MFCC features. Inspired by successful work in forensic speaker identification, 
we extend the approach based on temporal contours of formant frequencies in 
linguistic units to design a fully automatic system that puts together both foren-
sic and automatic speaker recognition worlds. The combination of MFCC fea-
tures and unit-dependent trajectories provides a powerful tool to extract indivi-
dualizing information. At a fine-grained level, we provide a calibrated likelih-
ood ratio per linguistic unit under analysis (extremely useful in applications 
such as forensics), and at a coarse-grained level, we combine the individual 
contributions of the different units to obtain a highly discriminative single sys-
tem. This approach has been tested with NIST SRE 2006 datasets and proto-
cols, consisting of 9,720 trials from 219 male speakers for the 1side-1side Eng-
lish-only task, and development data being extracted from 367 male speakers 
from 1,808 conversations from NIST SRE 2004 and 2005 datasets. 

Keywords: automatic speaker recognition, forensic speaker identification,  
temporal contours, linguistic units, cepstral trajectories. 

1 Introduction 

Automatic speaker recognition has focused in the last decade on two concurrent prob-
lems: the compensation of session variability effects, mainly through high-
dimensional supervectors and latent variable analysis [2] [7] [8], and the production 
of an application-independent calibrated likelihood ratio per speaker recognition trial 
[1], able to elicit useful speaker identity information to the final user with any given 
application prior. The results are highly efficient text-independent systems in con-
trolled conditions, as NIST SRE evaluations, where lots of data from hundreds of 
speakers in similar conditions are available. Thus, all the speech available in every 
trial is used to produce detection performances difficult to imagine a decade ago.  
                                                           
* Supported by MEC grant PR-2010-123, MICINN project TEC09-14179, ForBayes project 

CCG10-UAM/TIC-5792 and Catedra UAM-Telefonica. Thanks to ICSI (Berkeley, CA) for 
hosting the preliminary part of this work. Thanks to SRI for providing Decipher labels for 
SRE datasets. 
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However, in the presence of strong mismatch (as e.g. in forensic conditions, where 
acoustic and noise mismatch, apart from highly different emotional contexts, speaker 
roles or health/intoxication states can be present between the control and questioned 
speech), those acoustic/spectral systems could be unusable as all our knowledge about 
the two speech samples is deposited into a single likelihood ratio, obtained from all 
the available speech in the utterance, that could be strongly miscalibrated (being then 
highly misleading) as the system has been developed under severe database mismatch 
between training and testing data. Moreover, it is difficult (or even impossible) to 
collect enough data to develop a system robust to every combination of mismatch 
factors present in actual case data, an important problem in real applications. 

A usual procedure in forensic laboratories is that a speech expert, typically a lin-
guist/phonetician, can isolate or mark segments of compatible/comparable speech 
between both samples, segments being from seconds long to just some short phonetic 
events in given articulatory contexts. The number and types of comparable units for 
analysis is always a case-dependent subject, and therefore flexible strategies for anal-
ysis and combination are needed. 

The proposed approach gives an answer to this application framework, providing 
informative calibrated likelihood ratios for every linguistic unit under analysis. More-
over, the combination of the different units yields good discrimination capabilities 
allowing to obtain speaker detection performance levels similar to equivalent acous-
tic/spectral systems when enough usable units are available. 

The remainder of the paper is organized as follows. In Sections 2 and 3 we present, 
respectively, our proposed front-end for feature extraction over linguistic units and 
the system in use. Section 4 describes the databases and the experimental protocol 
used for testing the system. Section 5 shows results for the different linguistic units 
individually and for several combination methods, to finally conclude in Section 6 
summarizing the main contributions and future extensions of this work. 

2 Cepstral Trajectories Extraction from Linguistic Units 

Many attempts have been made to incorporate the temporal dynamics of speech into 
features, from the simplest use of the velocity (delta) and acceleration (delta-delta) 
derivative coefficients to modulation spectrograms, frequency modulation features or 
even TDCT (temporal DCT) features (see [9] for a review). However, to the best of 
our knowledge none of the previous approaches, with the exception of SNERFs [4] 
and [12] for prosodic information, take advantage of the linguistic knowledge pro-
vided by an automatic speech recognizer (ASR) to extract non-uniform-length se-
quences of spectral vectors to be converted into constant-size feature vectors characte-
rizing the spectro-temporal information in a given linguistic unit. In our proposed 
front-end, we obtain a constant-size feature vector from non-uniform-length MFCC 
features sequence within a phone unit. 
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2.1 ASR Region Conditioning 

In this work, both phone and diphone units have been used for defining time intervals 
in order to extract the temporal contours over the MFCC features. For this purpose, 
the phonetic transcription labels produced by SRI’s Decipher conversational tele-
phone speech recognition system [6] were used first. For this system, trained on Eng-
lish data, the Word Error Rate (WER) of native and nonnative speakers on transcribed 
parts of the Mixer corpus, similar to NIST SRE databases used for this work, was 
23.0% and 36.1% respectively. These labels define both phonetic content and time 
interval of speech regions containing the phone units to be segmented. For this work, 
41 phone units from an English lexicon were used, represented by the Arpabet pho-
netic transcription code [13]. Diphone units are defined by the combination of any 
two consecutive phone units, although only a subset of 98 diphones of the possible 
combinations was used (those presenting higher frequency of occurrence). 

2.2 Cepstral Trajectories Parameterization 

By means of SRI’s Decipher phone labels, trajectories (i.e., the temporal evolution of 
each MFCC vector dimension) of 19 static MFCC are extracted from phone and di-
phone units, yielding a MFCC matrix of 19 coefficients x #frames/unit for each lin-
guistic unit. This variable-length segment is duration equalized to a number of frames 
equivalent to 250 ms. Finally, those trajectories are coded by means of a fifth order 
discrete cosine transform (DCT), yielding our final 19 x 5 fixed-dimension feature 
vector for each linguistic unit. 

3 System Description 

3.1 Unit-Dependent Acoustic Systems 

Proposed systems are based on the well known GMM-UBM framework [11], using 
duration-equalized DCT-coded MFCC trajectories per linguistic unit as feature vec-
tors. The GMM-UBM systems have been the state-of-the-art in the text-independent 
speaker recognition field for many years until the emergence of JFA [7] and total 
variability [2] techniques, which have outperformed the former ones through accu-
rately modeling the existing variability in the supervector feature space. For this 
work, GMM-UBM systems have been chosen for two main reasons: i) as we are using 
a new type of features, we need first to find the optimal configuration for this GMM-
UBM new-framework, which is the basis of supervector-based systems; and ii) be-
cause we aim to model speakers in a unit-dependent way, a much smaller amount of 
data is available for training purposes, so probably not enough data would be availa-
ble to capture the existing variability in each unit domain (also having into account 
that we only have ASR labels from the SRE04, SRE05 and SRE06 datasets). 

Three different unit-dependent GMM-UBM configurations were tested previously 
to perform experiments reported in this paper:  
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1. UBM and speaker models trained on unit-independent data; evaluation trials per-
formed on unit-dependent test data (as we did in our first approach [5]). 

2. UBM trained on unit-independent data; speaker models adapted from unit-
dependent training data; evaluation trials performed on unit-dependent test data. 

3. UBM and speaker models trained on unit-dependent data; evaluation trials per-
formed on unit-dependent test data (fully unit-dependent). 

For each configuration, different numbers of mixtures were tested, ranging from 2 up 
to 1024 mixtures increasing in powers of 2. It was found out that best results were 
obtained for the fully unit-dependent configuration, using 8 mixtures in the case of 
phone units and 4 mixtures in the case of diphone units. These configurations are 
those used to obtain the individual linguistic unit results reported in this paper. 

3.2 Fusion Schemes and Linguistic Units Combinations 

Both individual unit performance and different unit combinations have been analyzed 
in this paper. On the one hand, individual linguistic-unit systems allow us to report 
useful speaker verification LR’s for very short speech samples where usual state-of-
the-art systems are not directly applicable (as it is the case of forensic applications). 
On the other hand, when more data is available, individual units can be combined to 
achieve better discriminative capabilities. 

In addiction to obtaining test results for each linguistic unit, these individual sys-
tems were combined in both intra- and inter-unit manners, i.e. fusing phone/diphone 
units between them and fusing phone and diphone units together. Two different fusion 
techniques were used: sum fusion and logistic regression fusion. The former one was 
performed after linear logistic regression calibration, while the latter one was per-
formed in a single calibration/fusion step. 

Another issue is what should be the selected units to be fused. Two strategies have 
been used in this work. The first of them is to select the n-best performing units by 
setting a threshold for the EER of the units to be fused, leaving out those performing 
worse. However, this procedure do not guaranty that the best fused system will be 
achieved because some units with lower performance by itself could contribute to the 
fused system if its LR’s are sufficiently low correlated with those produced by the 
other units to be fused. On the other hand, testing all of the possible combinations 
would be a very complex task, so we used a unit selection algorithm (similar to that 
used in [3]) based on the following steps: 

1. Take the best performing unit in terms of EER as the initial units set. 
2. Take the next best performing unit and fuse with the previous set. If the fusion im-

proves the performance of the previous set, this unit is added to the units set, oth-
erwise rejected. 

3. The previous step is repeated for all the units in increasing EER order. 

This procedure allows us to find complementarities between units that otherwise 
would not have been revealed, but avoiding the complex task of testing each possible 
combination. 
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4 Datasets and Experimental Setup 

NIST SRE datasets and protocols have been used to develop and test our proposed 
system, in particular those of years 2004, 2005 and 2006. As region conditioning for 
linguistic units definition and extraction rely on SRI’s Decipher ASR system (trained 
on English data), English-only subsets of the NIST SRE datasets have been used. SRE 
2004 and 2005 datasets were used as the background dataset for UBM training, con-
sisting of 367 male speakers from 1,808 conversations (only male speakers were used 
for this work). English-only male 1side-1side task from SRE 2006 was used for test-
ing purposes. This dataset and evaluation protocol comprises both native and nonna-
tive speakers across 9,720 same-sex different-telephone-number trials from 298 male 
speakers. SRE 2005 evaluation set was also used to obtain scores in order to train the 
calibration rule (linear logistic regression). 

Performance evaluation metrics used are the Equal Error Rate (EER) and the De-
tection Cost Function (DCF) as defined in the NIST SRE 2006 evaluation plan [10]. 
Cllr and minCllr [1] (and its difference, calibration loss) are also used to evaluate the 
goodness of the different detectors after the calibration process. 

5 Results 

5.1 Reference System Performance 

As we are using the GMM-UBM framework to model unit-dependent systems, our 
baseline reference system is also a GMM-UBM system based on MFCC features. A 
classical configuration with 1024 mixtures and diagonal covariance matrices was 
used, and MFCC features include 19 static coefficients plus first order derivatives, 
cepstral mean normalization, RASTA filtering and feature warping. The performance 
of this system in the English-only male 1side-1side task from SRE 2006 is 
EER=10.26% and minDCF=0.0457. This system does not include any type of score 
normalization.  

5.2 Phone Units: Individual and Combined Systems Performances 

Table 1 shows individual performance of phone units for the NIST SRE 2006 Eng-
lish-only male 1side-1side task. It can be seen that, although most of the phones have 
high EER and minDCF values, almost all of them are well calibrated (low difference 
between Cllr and minCllr). This allows us to obtain informative calibrated likelihood 
ratios from very short speech samples (as low as some phone units), as we can see in 
the tippet plot in Figure 1 for the best performing phone unit (‘N’). Moreover, there 
are lots of units that can be combined, and despite their lower individual performance 
(around 60% worse than the reference system for the best performing phone), com-
bined system can outperform reference system by means of sum or logistic regression 
fusion, as it can be seen in Figure 2. This is due to the highly complementarity of 
acoustic systems coming from different linguistic content.  
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Table 1. EER (%), minDCF, Cllr and minCllr for phone units in the NIST SRE 2006 English-
only male 1side-1side task 

Phone unit EER (%) minDCF Cllr minCllr 
AA 32.20 0.0983 0.8633 0.8452 
AE 18.98 0.0813 0.6087 0.5832 
AH 29.39 0.0969 0.8235 0.7967 
AO 34.36 0.0992 0.9065 0.8838 
AW 36.99 0.0991 0.9241 0.9111 
AX 27.08 0.0947 0.7882 0.7512 
AY 21.68 0.0869 0.6822 0.6428 
B 34.50 0.0986 0.8922 0.8778 

CH 42.59 0.1000 0.9686 0.9538 
D 32.07 0.0965 0.8661 0.8500 

DH 28.43 0.0934 0.8403 0.7857 
DX 40.44 0.0998 0.9670 0.9484 
EH 31.69 0.0975 0.8574 0.8283 
ER 35.18 0.0987 0.9107 0.8901 
EY 26.40 0.0925 0.7713 0.7515 
F 39.63 0.0993 0.9561 0.9397 
G 35.71 0.1000 0.9291 0.9040 

HH 39.80 0.0992 0.9527 0.9414 
IH 26.95 0.0948 0.7964 0.7495 
IY 23.32 0.0923 0.7453 0.7002 
JH 39.69 0.0997 0.9487 0.9339 
K 27.76 0.0961 0.8219 0.7832 
L 26.51 0.0935 0.7789 0.7451 
M 22.28 0.0857 0.6824 0.6583 
N 15.92 0.0713 0.5520 0.5082 

NG 29.37 0.0934 0.9977 0.7958 
OW 24.65 0.0987 0.7917 0.7396 

P 39.50 0.0988 0.9466 0.9335 
PUH 24.18 0.0908 0.7359 0.7149 
PUM 34.15 0.0953 0.8644 0.8419 

R 24.65 0.0887 0.7295 0.7116 
S 30.04 0.0973 0.8451 0.8059 

SH 39.36 0.0996 1.0546 0.9294 
T 27.89 0.0921 0.8256 0.7647 

TH 38.37 0.1000 1.1207 0.9298 
UH 41.53 0.1000 0.9717 0.9593 
UW 24.79 0.0898 0.7391 0.7198 
V 35.86 0.0990 0.9093 0.8932 
W 35.82 0.0993 0.9167 0.8966 
Y 24.00 0.0906 0.7313 0.7062 
Z 32.07 0.0968 0.8487 0.8312 
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It should be noted that results equivalent to that of the reference system can be 
achieved by combining only 4 phone units (‘AE’, ‘AY’, ‘M’, ‘N’). Also, it can be 
seen that the unit selection algorithm used can achieve better fusion results than simp-
ly setting a threshold for the EER of the units to be fused, both for sum and logistic 
regression fusions. Furthermore, it is worth noting that some of the phone units se-
lected to be fused have very low performance (‘CH’ in the sum fusion, ‘AO’ in both 
sum and logistic regression fusions). 

 

Fig. 1. Tippet plot for the best performing phone unit (‘N’) in the NIST SRE 2006 English-only 
male 1side-1side task 

 

Fig. 2. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 
male 1side-1side task for different phone selection schemes 
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5.3 Diphone Units: Individual and Combined Systems Performances 

Table 2 shows individual performance for the ten best performing diphone units for 
the NIST SRE 2006 English-only male 1side-1side task. As it can be seen, diphone 
units have much lower performance than phone units. This may be due to the fact 
that, while diphones cover a longer time span that can present more complex trajecto-
ries, we are still using a 5 order DCT to code these trajectories. However, as it can be 
seen in Figures 3, diphone fusions can achieve as good performance as the phones 
unit fusions, although more units are needed to be fused.  

Table 2. EER (%), minDCF, Cllr and minCllr for the 10 best performing diphone units in the 
NIST SRE 2006 English-only male 1side-1side task 

Diphone unit EER (%) minDCF Cllr minCllr 
AEN 30.72 0.0993 0.8479 0.823 
AET 31.89 0.0969 0.872 0.8526 
AXN 23.84 0.0899 0.7583 0.7097 
AYK 32.45 0.0970 0.8494 0.8356 
LAY 29.11 0.0972 0.8156 0.7955 
ND 24.92 0.0876 0.7563 0.7037 

NOW 30.86 0.0995 0.8455 0.8185 
UWN 32.20 0.0953 0.8417 0.8188 
YAE 29.78 0.0976 0.8383 0.8094 
YUW 27.18 0.0960 0.8223 0.7812 

 

Fig. 3. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 
male 1side-1side task for different diphone selection schemes 

5.4 Inter-unit Combined System Performance 

In the previous paragraphs we have seen how well combine different units from each 
type (i.e., different phones between them and different diphones between them), but it 
is also interesting to see how can be combined units from different types between 
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them. For this purpose, same fusion techniques and combination schemes have been 
used putting together both phones and diphones, yielding results show in Figure 4. 

 

Fig. 4. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 
male 1side-1side task for different phone-diphone selection schemes. 

It can be seen that better results can be achieve by combining phones and diphones 
units than working in a intra-unit manner, taking advantage of different linguistic 
levels. This way, it is possible to achieve improvements around 35% in terms of EER 
over the reference system, as it can be seen in Table 3. 

6 Summary and Conclusions 

In this paper we have presented an analysis of the contributions of individual linguis-
tic units to automatic speaker recognition by means of their cepstral trajectories, 
showing that some of them can be used to obtain informative likelihood ratios very 
useful in forensic applications, with the advantage of being a completely automatic 
system and using parameters similar to those used by linguists or phoneticians. This 
way it is possible to deal with uncontrolled scenarios where only some short segments 
are available to be compared, making it possible to infer a conclusion about the 
speaker identity in the speech sample. This procedure cannot be done by the usual 
automatic speaker recognition systems because they use all available speech data as a  
 

Table 3. Performance comparison between the reference system and unit-based fused systems 
in the NIST SRE 2006 English-only male 1side-1side task 

System # fused units EER (%) minDCF 
Reference - 10.26 0.0457 
Phones – best fused system (sum) 17 7.11 0.0420 
Diphones – best fused system (log. reg.) 31 8.05 0.0473 
Phones+diphones – best fused system (sum) 22 6.57 0.0366 
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whole, and usually they are tuned to work with fixed-length training and testing seg-
ments. Furthermore, when more testing data is available, individual units can be com-
bined to improve the discrimination capabilities of the resulting system, having shown 
that these combinations, both at intra- and inter-unit levels, can outperform the results 
obtained with the same system framework based on MFCC features.  

References 

1. Brummer, N., et al.: Application-independent evaluation of speaker detection. Comp. 
Speech Lang. (20), 230–275 (2006) 

2. Dehak, N., et al.: Front-End Factor Analysis for Speaker Verification. IEEE Trans. on Au-
dio, Speech and Lang. Proc. 19(4), 788–798 (2011) 

3. de Castro, A., Ramos, D., Gonzalez-Rodriguez, J.: Forensic speaker recognition using tra-
ditional features comparing automatic and human-in-the-loop formant tracking. In: Pro-
ceedings of Interspeech 2009, pp. 2343–2346 (September 2009) 

4. Ferrer, L.: Statistical modeling of heterogeneous features for speech processing tasks. 
Ph.D. dissertation, Stanford Univ. (2009),  
http://www.speech.sri.com/people/lferrer/thesis.html 

5. Franco-Pedroso, J., Gonzalez-Rodriguez, J., Gonzalez-Dominguez, J., Ramos, D.: Fine-
grained automatic speaker recognition using cepstral trajectories in pone units. In: Pro-
ceedings of IAFPA 2012, Santander, Spain (2012) 

6. Kajarekar, S., et al.: The SRI NIST 2008 Speaker Recognition Evaluation System. In: 
Proc. IEEE ICASSP 2009, Taipei, pp. 4205–4209 (2009) 

7. Kenny, P., et al.: A Study of Inter-speaker Variability in Speaker Verification. IEEE Trans. 
on Audio, Speech and Lang. Proc. 16(5), 980–988 (2008) 

8. Kenny, P.: Bayesian speaker verification with heavy tailed priors. Keynote Presentation at 
Odyssey 2010, Brno (2010) 

9. Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: from features 
to supervectors. Speech Communication 52, 12–40 (2010) 

10. NIST SRE 2006 Evaluation Plan (2006), 
http://www.itl.nist.gov/iad/mig/tests/sre/2006/ 
sre-06_evalplan-v9.pdf 

11. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian 
mixture models. Digital Signal Processing 10, 19–41 (2000) 

12. Shriberg, E.: Modeling prosodic feature sequences for speaker recognition. Speech Com-
munication 46(3-4), 455–472 (2005) 

13. Wikipedia contributors. Arpabet. Wikipedia, The Free Encyclopedia (July 19, 2012), 
http://en.wikipedia.org/wiki/Arpabet 



D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 30–39, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Improving the Quality of Standard GMM-Based Voice 
Conversion Systems by Considering Physically Motivated 

Linear Transformations 

Tudor-Cătălin Zorilă1,2, Daniel Erro2, and Inma Hernaez2 

1 POLITEHNICA University of Bucharest (UPB), Bucharest, Romania 
ztudorc@gmail.com 

2 AHOLAB, University of the Basque Country (UPV/EHU), Bilbao, Spain 
{derro,inma}@aholab.ehu.es 

Abstract. This paper presents a new method to train traditional voice conver-
sion functions based on Gaussian mixture models, linear transforms and cep-
stral parameterization. Instead of using statistical criteria, this method calculates 
a set of linear transforms that represent physically meaningful spectral modifi-
cations such as frequency warping and amplitude scaling. Our experiments in-
dicate that the proposed training method leads to significant improvements in 
the average quality of the converted speech with respect to traditional statistical 
methods. This is achieved without modifying the input/output parameters or the 
shape of the conversion function. 

Keywords: voice conversion, Gaussian mixture models, dynamic frequency 
warping, amplitude scaling, linear transformation.  

1 Introduction 

Voice conversion (VC) has acquired a lot of attention from speech technologies re-
searchers during the last two decades [1–13], being a subject still far from conclusion. 
VC can be understood as the process by which the voice characteristics of a speaker 
(source speaker) are replaced by those of another speaker (target speaker) so that the 
modified speech signal will sound as if it had been produced by the target speaker. 
VC can be applied to a full range of applications. It can provide an almost costless 
source of voice variability in text-to-speech (TTS) synthesis, where re-recording new 
voices is an expensive process and not always possible. This technique can also be 
applied for voice modifications in movie, music and computer game industries or can 
be used to repair pathological voices. 

VC systems operate in two different modes: training and conversion. During the 
training phase, given speech recordings from the two involved speakers, the VC sys-
tems learn a function to transform the source speaker's acoustic space into that of the 
target speaker. During the conversion phase, this function is applied to transform new 
input utterances from the source speaker. Various types of VC techniques have been 
studied in the literature: vector quantization and mapping codebooks [1], more  
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sophisticated solutions based on fuzzy vector quantization [2], frequency warping 
transformations [3, 4], artificial neural networks [5], hidden Markov models [6], clas-
sification and regression trees [6], etc. However, another technique, namely statistical 
parametric VC based on Gaussian mixture models (GMM), has prevailed over them. 

GMM-based VC systems [7, 8] use statistical principles to partition the acoustic 
space into a finite number of overlapping classes. Then, a linear transformation is 
learnt for each class. The function applied during the conversion stage is a statistically 
weighted combination of these linear transforms. The main problem associated with 
this well known technique is referred to as oversmoothing. This phenomenon is a 
consequence of the limited capability of this specific statistical conversion function to 
capture the correspondence between source and target features in all its variability. As 
a result of it, the converted speech will sound excesively smoothed and not very natu-
ral in terms of subjective quality. Existing methods to alleviate oversmoothing either 
oversimplify the conversion function [9] or apply sophisticated transformations in-
volving utterance-level features such as the global variance of the converted parame-
ters [10], thus losing the capability of performing frame-by-frame VC in real-time 
applications. 

This paper follows the line of previous works in which frequency warping (FW) 
based transformations were combined with traditional GMM-based systems [11–13]. 
FW functions map the frequency axis of the source speaker's spectrum into that of the 
target speaker. Since they do not remove any detail of the source spectrum, they yield 
high-quality converted speech judged as quite natural by listeners. However, the con-
version accuracy they achieve is moderate because the FW procedure does not modify 
the relative amplitude of meaningful parts of the spectrum. For this reason, FW was 
combined with traditional GMM-based systems in several ways [11–13]. In all of 
these systems, the shape of the VC function had to be modified and more sophisti-
cated signal models and vocoders had to be used to make this combination possible. 

In this paper we propose an alternative way of training the set of linear transforma-
tions to be applied by a traditional GMM-based VC system. In this new training  
method, the matrices and vectors of the transformation are calculated according to 
physical criteria: the matrices are forced to correspond to a FW operation, and the 
vectors play the role of corrective filters. During conversion, the system operates in 
the same way as a traditional one and uses the same input/output parameters, i.e. Mel-
cepstral coefficients. Despite this, its performance is significantly enhanced in terms 
of subjective quality, because the degree of oversmoothing is effectively reduced and 
the converted voice sounds more natural. 

The remainder of the paper is structured as follows. Section 2 contains a brief de-
scription of the fundamentals of GMM-based voice conversion, including a mathe-
matical interpretation of the oversmoothing effect. In section 3 we show the details of 
one of the most popular FW training methods. In section 4 we explain the novel train-
ing method in which FW-based transformations are integrated into the traditional 
statistical framework. The effectiveness of this method is experimentally shown in 
section 5. Finally, the conclusions of this work are summarized in section 6. 
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2 Traditional GMM-Based VC 

The conversion function applied by traditional GMM-based VC systems [7, 8] is a 
probabilistic combination of m linear transforms: 
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where m is the number of Gaussian mixtures of the model θ, μi
(x) and Σi

(xx) are the 
mean vector and covariance matrix that characterize the ith Gaussian mixture of θ, and 
pi

(θ)(x) is the probability that x belongs to that specific mixture. Alternatively, the VC 
function can be expressed as 
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Given a training set of paired vectors contained acoustic parameters (Mel-cepstral 
coefficients in this case), the unknown vectors and matrices of this VC function, {νi} 
and {Γi}, can be obtained either by least squares based minimization of the conver-
sion error [7] or by joint density modeling of the concatenated pairs of vectors [8]. In 
both cases, the resulting converted speech will be perceived by listeners as over-
smoothed. Previous investigations on the reasons why oversmoothing appears [9] 
showed that most of the elements of the matrices {Ai} yielded by traditional training 
methods were very close to zero due to the limited capability of the GMMs to model 
the source-target correspondence. In these conditions, the transformation given by 
expression (1) can be approximated by a simple weighted combination of m vectors 
{νi}, which explains the observed oversmoothing phenomenon. 

In the next section we will show that alternative training methods based on physi-
cal principles can provide the traditional linear VC function with matrices and vectors 
that make it less prone to oversmoothing. 

3 Fundamentals of Dynamic Frequency Warping 

Dynamic FW (DFW) [3] is a procedure that calculates the FW function that should be 
applied to a set of (N+1)-point log-amplitude semispectra, {Xt}, to make them max-
imally close to their paired counterparts, {Yt}. It is based on a cost function D(i, j) 
which indicates the accumulated log-spectral distortion that would be obtained if the 
ith bin of the source spectra were mapped into the jth bin of the target spectra following 
the “best” path from (0, 0) to (i, j). D(i, j) can be expressed mathematically as follows: 
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where w, 1 ≤ w < 2, is an adjustable weighting coefficient that controls the relative 
penalty of vertical and horizontal paths (w ≈ 2 means no penalty for them, while w ≈ 1 
means strong penalty), and d(i, j) is a local distortion measure involving exclusively 
the ith source bin and the jth target bin. In our implementation, d(i, j) is calculated si-
multaneously from all the available training vectors to globally optimize the warping 
procedure: 
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The frequency warping path P is given by a sequence of points, 

 { }),(,),,(),,(),0,0( 2211 KK jijijiP =  , (6) 

such that the presence of (i, j) in P indicates that the ith bin of the source spectrum 
should be mapped into the jth bin of the target spectrum for an optimal warping in 
terms of log-spectral distortion. In this work, iK and jK are forced to be equal to N, so 
the remaining points of P are backtracked from (N, N) following the minimal-
distortion path in inverse order. Note that this path is determined by the recursion in 
expression (4). 

4 Physically Motivated Linear Transforms 

DFW is not trainable directly in the parametric domain. Therefore, the first step in the 
training procedure is translating pth-order cepstral vectors into (N+1)-point discrete 
log-amplitude semispectra. By definition, this can by done by multiplying the cepstral 
vectors by the following matrix: 
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where g( ) is an optional perceptual frequency scale. Note that g( ) is directly related 
to the frequency scale assumed during the cepstral analysis. 

Similarly, the pth-order cepstral representation of a discrete log-amplitude spectrum 
can be recovered through the technique known as regularized discrete cepstrum [14], 
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which is equivalent to multiplying the (N+1)-point discrete log-amplitude semispec-
trum in vector form by 

 ( ) T1T SRSSC
−+= λ  (8) 

where S is given by (7), R is a regularization matrix that imposes smoothing con-
straints to the cepstral envelope, 

 { }2222  ,2 ,1 ,08 pdiagR ⋅= π  , (9) 

and λ is an empirical constant typically equal to 2·10-4 [14]. In practice, since the 0th 
cepstral coefficient (the one carrying the energy) is not considered in voice transfor-
mation tasks, we use modified versions of these matrices, Ŝ and Ĉ, where Ŝ results 
from removing the first column of S and Ĉ results from removing the first row of C. 

After the training vectors are converted into spectra using matrix Ŝ, an optimal 
warping path P is obtained via the DTW training procedure in section 3. Then, we can 
define the following matrix containing the source-target correspondence: 
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The multiplication of a source semispectrum by MT would yield a warped version of 
the same semispectrum if there were no one-to-many mappings between target and 
source bins. However, one-to-many mappings are unavoidable according to the struc-
ture of P, which is conditioned by the recursion in (4). Therefore, we define the fol-
lowing warping matrix W in which multiple source bins paired with the same target 
bin are just averaged: 
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Once W has been determined, the matrix that converts a pth-order cepstral vector into 
another cepstral vector representing the warped version of the original spectrum can 
be easily obtained as 

 SWCA ˆˆ~ ⋅⋅=  (12) 

Since the frequency response of a corrective filter can be seen as an additive term in 
the cepstral domain, the cepstral correction vector that is necessary to compensate for 
the differences between frequency-warped source vectors and target vectors is 

 avgavg xAyb
~~ −=  (13) 

where xavg and yavg are computed simply by averaging the source and target cepstral 
vectors over the training dataset. As a result of this training procedure, we get the 
following physically motivated linear transformation: 
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We suggest applying this linear transformation in a traditional statistical framework: 
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The matrices and vectors of the transformation can be trained independently for each 
class of the GMM using exclusively the vectors in that class. For a hard classification, 
we can assume that x belongs to the ith class of model θ when pi

(θ)(x) > pj
(θ)(x) for 

j = 1…m, j ≠ i. Although such a hard partition of the acoustic space during training is 
inconsistent with the soft partition used during conversion (15), this does not have any 
remarkable perceptual consequence according to our listening tests. 

5 Experiments and Discussion 

The speech data used in the evaluation experiments were taken from the CMU 
ARCTIC database [15]. Four speakers were selected from this database: two female 
speakers, slt and clb, and two male speakers, bdl and rms. From now on, for the sake 
of simplicity, they will be referred to as f1, f2, m1 and m2, respectively. 50 parallel 
training sentences per speaker were randomly selected for training and a different set 
of 50 sentences was separated for testing purposes. The remaining sentences of the 
database were simply discarded. The sampling frequency of the signals is 16 kHz. We 
used the vocoder described in [16] to translate the speech signals into Mel-cepstral 
coefficients and to reconstruct the waveforms from the converted vectors. The order 
of the cepstral analysis was 24 (plus the 0th coefficient containing the energy, which 
does not take part in the conversion). The frame shift was set to 8ms. During conver-
sion, the mean and variance of the source speaker’s log f0 distribution were replaced 
by those of the target speaker by means of a linear transformation. In order to find the 
correspondence between the source and target cepstral vectors extracted from the 
parallel training utterances, we calculated a piecewise linear time warping function 
from the phoneme boundaries given by the available segmentation. The GMMs used 
in all the experiments had 32 mixtures with full-covariance matrices. Such a number 
of mixtures was chosen according to phonetic criteria, objective scores measured on 
separate validation sets, and informal listening tests. During DTW-related computa-
tions, N was set to 512. 

In the first experiment, different configurations of the proposed method are com-
pared in terms of average Mel-cepstral distortion (MCD) between converted and tar-
get vectors. Three specific aspects of the method are studied: 

─ The influence of the perceptual frequency scale applied when resampling the cep-
stral envelopes in expression (7). We consider Mel and linear frequency scale. 
These two configurations will be labeled as “mel” and “lin” respectively. 

─ The effect of removing the glottal source spectrum from {Xt} and {Yt} before train-
ing the DFW paths, as suggested in earlier works [3]. In our implementation, we 
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assume that the glottal spectrum is mainly related with the 1st cepstral coefficient. 
According to this, we remove the glottal spectrum by settin c1 = 0. This configura-
tion with will be labelled as “c1=0”. 

─ The effect of considering just one representative vector for each class in expression 
(5), i.e. the average vector, instead of considering all the vectors simultaneously 
during DFW training. We use labels “avg” and “all” for these configurations. 

The MCD scores in Fig. 1, which have been obtained by calculating global scores 
over all possible combinations of voices, reveal that: (i) considering all the training 
vectors instead of their average is significantly advantageous; (ii) removing the glottal 
spectrum is mandatory when only average representative vectors are considered, but it 
is not crucial when all the vectors are considered during DFW training; (iii) no signif-
icant differences can be seen between Mel- and linear-frequency resampling of cep-
stral envelopes. These observations hold for individual conversion directions. 
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Fig. 1. Average MCD scores and 95% confidence intervals for different configurations of the 
system and for all combinations of voices 

Table 1. Objective comparison between traditional and proposed GMM-based VC systems 

 No conversion Traditional GMM Proposed GMM 

MCD (dB) 7.05 ± 0.03 4.78 ± 0.03 5.50 ± 0.03 

Table 1 indicates that a traditional GMM-based system based on joint-density 
modeling [8] gives significantly better MCD scores than the proposed system regard-
less of its configuration. Similar observations were made in previous related works 
[12], where it was also shown that objective distortion measures do not necessary 
correlate well with subjective measures when the nature of the methods under com-
parison is heterogeneous. Therefore, we conducted a perceptual mean opinion score 
(MOS) test to compare the best configuration of the proposed system in terms of 
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MCD (the one labeled as “all, c1=0, lin”) with a traditional GMM-based VC system. 
In this test, 18 volunteer evaluators listened to reference utterances from the target 
speakers (previously parameterized and reconstructed with the same vocoder as the 
converted speech) followed by converted utterances. The listeners were asked to rate 
the similarity between converted and target voices and the quality of the converted 
voices in a 5-point scale. As usual, 5 points was the best score and 1 point was the 
worst. Comparisons were made for 4 different conversion directions: m1-f1, f1-f2, f2-
m2, and m2-m1. The results of the test are shown in Fig. 2. On average, the proposed 
method significantly outperforms the traditional system in terms of quality while 
achieving comparable scores in terms of similarity. A more detailed case-by-case 
analysis reveals that the proposed system is relatively less successful in cross-gender 
cases. In fact, there is one conversion direction, namely “f2-m2”, in which no quality 
improvements are achieved. Further analyses indicated that this can be due to the 
particularities of this specific pair of voices and to some possibly inaccurate decis-
sions regarding the manually adjustable weights and permitted paths in expression 
(4). These issues will be tackled in future works. 
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Fig. 2. Mean opinion scores and 95% confidence intervals: a) similarity; b) quality 

6 Conclusions 

This paper has shown that the performance of traditional voice conversion systems 
based on Gaussian mixture models and linear transforms can be improved by  
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imposing some physically meaningful constraints to the matrices and vectors of the 
transformation. The resulting system is applicable in the same circumstances as the 
traditional one. Subjective listening tests indicate that on average the proposed me-
thod produces evident and statistically significant improvements in quality. Future 
works will aim at finding the optimal configuration of the system for it to be more 
robust against the particularities of some specific voice pairs. 
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Abstract. In this work we present the experimental evaluation of a new
beam-search formant tracking algorithm under noisy conditions and com-
pare its performance with three formant tracking methods. The proposed
formant tracking algorithm makes use of the roots of the polynomial of
a Linear Predictive Coding (LPC) as formant candidates. The best com-
bination of formant candidates respect to a defined cost function are
selected applying a beam-search algorithm. The cost function makes use
of information about local and neighbor frames using trajectory func-
tions in order to preserve the dynamics of the frequency of formants.
Experiments were carried out with a subset of the TIMIT database,
contaminated with various types and levels of noises. The results show
that the beam-search formant tracker have a robust behavior in noisy
environments and it is clearly more precise than the rest of compared
methods.

Keywords: formant tracking, beam-search algorithm, noisy environ-
ments.

1 Introduction

The resonance frequencies of the vocal tract, known as formants, carry useful in-
formation to identify the phonetic content and articulatory information of speech
as well as speaker and emotion discriminative information That is why formant
tracking methods are widely used in automatic speech processing applications
like speech synthesis, speaker identification, speech and emotions recognition.
Those methods have to deal with the problem of the variability of the amount of
formants depending on phoneme and the merging and demerging of neighboring
formants over time, very common with F2 and F3. This is why, formant tracking
is a hard task to face [1].

For decades, a number of works have been dedicated to designing formant
tracking methods. Formant trackers usually consists of two stages: firstly the
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speech is represented and analyzed for obtaining some formant frequency candi-
dates and secondly the selection of those candidates is done, taking into account
some constraints. Those constraints are related with the acoustical features of
the formant frequencies, the continuity of formant trajectory, etc.

One of the most extended methods of spectral analysis for formant tracking
consists of extracting the roots of the polynomial of LPC, that has been shown
to be effective in detecting the peaks of the spectrum [2]. In [3], a Gamma-
tone filterbank followed by a difference of gaussians spectral filtering shown to
enhance the formant structure. In [4], a method to segment the spectrum as
a tuple of order-2 resonators was proposed. The method produces smooth for-
mant frequencies in a frame by frame basis without any temporal information.
However, it has the drawback of not representing well frames with more than 4
formants.

There has been considerable effort in the speech community to propose meth-
ods in the stage of formant selection. Probabilistic methods for estimating for-
mant trajectories have been used successfully in recent years. Within this group
are methods based on the Bayesian filtering like Kalman Filters [5] and particle
filters [3] or Hidden Markov Models (HMM) [6]. Previous algorithms based on
continuity constraints made use of dynamic programming and the Viterbi algo-
rithm [7][8][9]. However, Viterbi based algorithms have the limitation that the
cost function of a hypothesis only depends on the current observation, and the
last state. In [10] we proposed a beam-search algorithm for formant tracking,
that is able to incorporate trajectory information to the cost function, overcom-
ing the limitation of the Viterbi search. In this paper we evaluate this algorithm
in several noisy environments and we compare its performance with three for-
mant tracking methods.

2 The Proposal: Beam-Searching Algorithm

The proposed formant detector can be decomposed in two main stages: The first
is the formant frequency candidate extractor, where a set of frequencies and
their bandwidths are chosen as possible formants. The roots of the polynomial
of the LPC coding were used as formant candidates [7][9].

The second stage is a beam-search algorithm for finding the best sequence
of formants, given the frequency candidates. A mapping as proposed in [7][9] of
frequency candidates to all possible combinations of formants is chosen. For this
purpose, ht = {F1;B1;F2;B2;F3;B3;F4;B4} is a possible formant tuple at
frame t, obtained by means of a mapping from frequency candidates and formed
by frequency (F ) and bandwidth (B) information. The algorithm tries to find
the best sequence of mappings, by applying a cost function that makes use of
both local and global information. Its main advantage is to make no Markovian
assumptions about the problem, i.e the evaluation of hypothesis in a frame takes
into account the hypothesis defined in all previous frames unlike the Viterbi
search [7, 9] which only uses previous state information. This feature allows to
incorporate efficiently trajectory functions in the algorithm for representing the
formant frequency dynamics.
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The set of M active hypotheses in a frame t is represented by the group
Pt = {pt,1, pt,2, ...pt,x....pt,M}, where a hypotheses pt,x is composed of an accu-
mulated cost accx,t and a history of mappings zt = h1, h2...ht. For obtaining the
hypotheses Pt set in frame t, the set is propagated through all possible com-
binations of formant candidates ot = {ht,1...., ht,w, ...htU} where U is the total
number of possible frequency mappings at frame t. This gives the extended group
PEt = {pt,1,1, pt,x,w...pt,M,U}, and the accumulated cost of each new hypotheses
pt,x,w is:

accx,w,t = accx,t−1 + c(pt,x,w, hw) (1)

The set PEt is sorted according to the accumulated cost accx,w,t, and it produces
the new group of M active hypotheses Pt+1, where the hypotheses with higher
accumulated cost are maintained. This process is repeated for each frame until
the end of the stream is detected, and the history of formants of the best hy-
pothesis is selected as the final result. This search algorithm is illustrated in Fig.
1, where the M value represents a compromise between accuracy and execution
speed.

Fig. 1. Diagram of beam-search algorithm
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2.1 The Cost Function

The cost function is defined as:

c(pt,x,w, hw) = cfrequency + cbandwidth+ ctrajectory + cmapping (2)

It uses both local and global observations for choosing the best sequence of
formants. The part of the cost function that makes use of local information
(that is, the current frame) contains the terms cfrequency, cbandwidth (defined
as in [7]) and cmapping:

cfrequency = α
∑
i

|(Fi − normi)/normi| (3)

cbandwidth = β
∑
i

(Bi) (4)

where normi = 500, 1500, 2500, 3500 and i = {1, ..., 4} is the formant number.

cmappingi =

{
0 if BWmini > THR
THR−BWmini

γi
if BWmini < THR

(5)

cmapping =
∑
i

cmappingi (6)

where BWmini is the minimum bandwidth of the frequency candidates that
are discarded and that would be valid for the formant i in this mapping; γi and
THR are constants. The part of the cost function that employs global informa-
tion assumes that the frequency of each formant follows a smooth trajectory.
This term is intended to take into account when a mapping is discarding some
frequency peak with a low bandwidth.

ctrajectory = θ

√∑
i,w

Fi,w − Fi,ŵ

Bi
(7)

Where w = {0, ...,W − 1} and W is the order of the trajectory function and

F̂i,t−w is the estimated value of formant i, at frame t − w, assuming that
Fi,t, ..., Fi,t−(W−1) is approximated by a known function; 1/Bi is the weighted
term of the trajectory, in order to give more importance to frames that have
lower bandwidth; α, β and θ are constant for representing the weight of the
terms. In the experiments, linear and quadratic functions were used, approxi-
mated with the least squares method. However, we assume that there is room
for improvement in the modeling of such trajectory.

The trajectory term that makes use of several past frames justifies the use
of the tree beam-search algorithm in place of the Viterbi decoding algorithm.
One of the main benefits of this trajectory model is that it allows to recover
observation errors in frames between obstruent and vowel, thanks to contiguous
frame evidences.
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An advantage of this continuity constraint compared with previous works is
that this function does not increment costs when a change in the value of two
consecutive frequencies occurs, as considered in [7][9]. In addition, this global
function will help the algorithm to correct errors in difficult frames where the
frequency candidates do not give clear evidences. Within this group are frames
between obstruent and vowel and frames corrupted by noise.

3 Experiments and Results

For comparison purpose three formant tracking methods were selected: Mustafa’s
proposal [11], Welling and Ney’s algorithm [4] and Wavesurfer’s method from
Snack toolkit [12]. The performance of the formant tracking methods evalu-
ated were measured carrying a quantitative evaluation using the VTR-Formant
database [13]. This database contains the formant labels of a representative sub-
set of the TIMIT corpus with respect to speaker, gender, dialect and phonetic
context. In these experiments, 420 signals from VTR database were processed
and the mean absolute error (MAE) between formants estimated for all formant
tracking methods and VTR database were computed. All speech material used
was digitized at 16 bits, at 10000 Hz sampling rate. The pitch ESPS algorithm
from Snack toolkit was used, for obtaining the MAE only taking into account
voiced frames.

Figure 2 shows the formant estimation achieved in a selected speech signal
of TIMIT database, with the method proposed and the three methods used for
comparison, besides the reference computed with VTR database. This qualita-
tive view of the formant trackers obtained with each method allows to see the
benefits of our tracking algorithm. In the figure it can be seen how Welling and
Ney’s algorithm achieve formant tracking lines quite accurate, however some-
times it has a poor performance, mainly in the tracking of F1. Wavesurfer’s ob-
tained tracking lines very similar to the reference, however the method proposed
sometimes outperforms it, for example in the tracking of F3 and F4 between
0,5 and 1 second. Mustafa’s algorithm achieved the worst performance of all the
methods used.

Table 1. MAE (Hz) for formant estimations obtained with LPC beam-search algo-
rithm, Wavesurfer, Welling and Ney and Mustafa’s algorithms

Methods F1(Hz) F2(Hz) F3(Hz) F4(Hz)
LPC-beam-search 18.39 27.96 35.26 69.01
Wavesurfer 29.95 57.66 76.53 76.44
Welling-Ney 37.53 47.33 52.53 67.32
Mustafa 28.11 80.22 82.54 75.63

The Table 1 shows the performance of the four methods evaluated in clean
speech. It can be observed how the proposed tracking algorithm outperforms con-
sistently all the formant extractor in most cases. Notice that the order of accuracy
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in the methods evaluated is: LPC-beam-search, Welling-Ney, Wavesurfer and fi-
nally Mustafa, however in F1, Mustafa outperforms Welling-Ney. Wavesurfer is
better than Welling-Ney in the tracking of F1, however for F2 and F3 its per-
formance decrease, taking into account that these are the harder resonances to
follow. The F4 performance has less importance because this formant in VTR-
database is not manually labeled.
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Fig. 2. Example results of a signal of TIMIT database with all the methods evaluated

Additional tests were carried out in noisy environments. The corrupted speech
signals come from four different noise environments:

– stationary white noise
– pseudostationary street noise, which is a mixture of different noises
– music from Guns and Roses band, highly harmonic and non-stationary noise
– babble noise, special case of non-stationary noise, is the voice of other speak-

ers

All those types of noise were added electronically to test speech signals at dif-
ferent SNR levels, from 0 to 20 dB in 5 dB steps.

Figure 3 shows the MAE in the noisy environments evaluated. For each type of
noise the behavior of the methods is quite different. Notice that stationary white
noise is the most challenge type of noise, given by the worst MAE of formant
trackers shown in the corresponding plot. On the other hand, for all methods
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in street, music and babble noise, from SNR = 10 dB, F1 has a behavior quite
stable, besides F2 and F3 have a slight decrease of the slope of the MAE curves.
This fact gives an idea of the robustness of formant trackers over SNR = 10 dB.
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Fig. 3. MAE of formant estimation with LPC-beam search algorithm, Welling-Ney
(WNey) algorithm and Wavesurfer(WS) algorithm vs VTR database in noisy environ-
ments

Figure 3 shows that the proposed method in noisy environments outperforms
the other methods in most conditions evaluated. Nevertheless, Welling-Ney al-
gorithm obtains the most precise F3 in music and street noise for SNR below
10 dB, and also is the best method in F2 for street noise in SNR below 10 dB.
Concluding that the Welling-Ney method is more robust to narrow band noise
(music and street noise) than the methods based on LPC (Wavesurfer and LPC
beam-search). The spectral segmentation performed in the Welling-Ney method
based on the searching of the 4 best spectral regions with dynamic programming,
makes this method robust against this kind of noise, unlike LPC based methods
that use as formant candidates 5 or 6 peaks. A narrow band noise is a good
candidate to be confused with a formant and to be selected, because frequently
it has lower bandwidth than a speech formant.

In white noise Welling-Ney and Wavesurfer’s algorithms performs very inac-
curate, with MAE near 200 Hz. However for babble noise Welling-Ney achieved
very low errors, even in F2 and F3, for low values of SNR, it outperforms LPC
beam-search method.
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Figure 4 shows the formant tracking obtained with three of the methods eval-
uated and the reference over a spectrogram of the same speech signal used in
Fig. 2 corrupted by babble noise with SNR = 10dB. Notice that the proposed
method achieves soft formant curves, thanks to the trajectory functions com-
bined with the beam-search algorithm. The other methods generate curves with
a lot of spikes, which are due to the uncertainty introduced by the noise, that
could mask the spectral features for detecting the formant candidates. So, if
poor continuity constraints are incorporated, the formant trackers become very
unstable and tend to have fast changes in the detected formants, in noisy envi-
ronments. This is the case of the Wavesurfer formant tracker. On the other side
the Welling-Ney formant tracker does not include any continuity constraint, and
this is why it has this behavior.
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Fig. 4. Example results of a signal of TIMIT database corrupted by babble noise with
SNR = 10dB with all the methods evaluated

4 Conclusions

In this paper we present an evaluation of the LPC-beam searching method in
noisy environments and a comparison with three formant tracking algorithms. In
spite of the proposed method not being designed with specific techniques noise
compensation, it presents a very robust performance for all the types of noises
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evaluated. In fact, results show that in most cases LPC beam-search method
proposed performs better than Wavesurfer’s, Mustafa’s and Welling-Ney for-
mant tracking algorithm. Furthermore, a feature that makes the beam-search
algorithm attractive is that it produces smooth formant trajectories even in
corrupted signals, while the other methods are very spiky in presence of noise.
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Abstract. An automatic speech recognition (ASR) system needs a pre-
vious segmentation stage that differentiates between speech and non-
speech. Other information such as “who spoke when” can be propor-
tioned to the ASR system, allowing it to perform speaker adaptation.
This paper studies the influence of automatic speech segmentation and
speaker clustering on ASR performance, in order to detect the weak
points of the diarization system by analyzing what causes the different
types of recognition errors: insertions, suppressions and substitutions.
Experiments are run on the Galician broadcast news database Transcri-
gal, and results show that the speaker diarization system presented in
this work is suitable as a previous step to ASR, as the performance is
almost the same as the obtained when using manual segmentation and
clustering.

Keywords: automatic segmentation, automatic speech recognition.

1 Introduction

Automatic speech recognition (ASR) is a task in which a computer has to identify
the words that are spoken by a human in order to generate a transcription of their
speech. Nowadays it has a huge range of applications in different fields: online
or offline transcription of TV programs [9], with the aim of adapting television
to disabled people by generating subtitles automatically or just transcribing
and storing the programs in databases for searching in multimedia contents;
automatic translation of spoken documents, obtaining a transcription or speech
spoken in the target language by means of a text-to-speech system; recognition of
speech for natural language question answering [15]; communication with devices
such as mobile phones or GPS navigators while driving [12]; and so forth.

The data input of an ASR system should be speech only, because other types
of audio information such as music or noise will cause the recognizer to unsuc-
cessfully try to recognize these data. Thus, everything that is not speech has to
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be removed before recognition. ASR systems commonly use a voice activity de-
tector (VAD) to discriminate between speech and non-speech, but no additional
information is proportioned, such as speaker turns. Therefore, another approach
should be applied in order to enhance the performance of the ASR system, such
as a speaker diarization system.

Speaker diarization is the task consisting in, given an audio stream, decid-
ing “who spoke when”, which embraces different tasks: discrimination between
speech and non-speech, detection of speaker change-points in the audio stream,
and labeling of the speech segments by speaker. In other words, speaker diariza-
tion includes two tasks: audio segmentation and speaker clustering. ASR can
obtain huge benefits from speaker diarization; for example, only speech segments
will be addressed to the ASR system for their recognition. Moreover, splitting
the speech parts obtaining segments where there is only speech from one speaker
makes it easier to detect the beginning or the end of the sentences, which facili-
tates the task of the language models and, therefore, of the ASR system. Also,
when performing speaker clustering, it is known which segments include speech
from the same speaker; thus, this data can be used to train a specific model for
each speaker, which helps to improve the performance of ASR [5]. On the other
hand, when the accuracy of the speaker diarization task is poor, the contrary
effect might be produced on the ASR stage; for example, non-speech segments
may be addressed to the ASR, or sentences may be split creating two sentences
that make no sense for the language model. Thus, diarization is important in
speech recognition when a good diarization is obtained. Two types of errors can
be found when performing speech/non-speech detection: missed speech (speech
segments are labeled as non-speech) and false alarm speech (non-speech seg-
ments are labeled as speech). In the same way, two types of errors can be found
in speaker segmentation: insertions (detecting change-points that are not actual
speaker change-points) and deletions (actual speaker change-points that are not
detected). Also, in speaker clustering, speech from a speaker can be assigned to
an incorrect speaker. All these types of errors might affect ASR performance.

This paper studies the influence of speaker diarization on ASR by compar-
ing the recognition results obtained with automatic segmentation and clustering
of the audio stream and with manual segmentation and clustering. A segmen-
tation algorithm based on the Bayesian information criterion (BIC) approach
is used, and it features a probabilistic approach that models the occurrence of
false alarms by means of a Poisson process [7]. For speaker clustering an agglom-
erative hierarchical clustering (AHC) strategy is used. A database in Galician
language is used to assess the performance of the whole system, the Transcrigal
broadcast news database [4]. This database features spontaneous and planned
speech; performance on both types of speech is also assessed.

The rest of the paper is organized as follows: Sects. 2 and 3 describe the
speaker diarization and the ASR systems, respectively; Sect. 4 describes the
experimental framework; Sect. 5 presents the results obtained; a discussion of
the results is presented in Sect. 6; and Sect. 7 describes some future work.
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2 Automatic Speaker Diarization System

2.1 Speaker Segmentation and Speech/Non-Speech Classification

The segmentation strategy used in this paper is fully described in [7], but a brief
description is given here. As shown in Fig. 1, it is a four stage segmentation
strategy:

– Change detection: a coarse segmentation is done by means of the distance
changing trend segmentation (DCTS) algorithm [14].

– Change refinement: anytime the DCTS algorithm detects a change-point, it
is refined by using the BIC algorithm. The value of ΔBIC is observed [11];
there are three possibilities at this stage:
• ΔBIC < 0 ⇒ the change-point is discarded and the system returns to
the change detection stage.

• ΔBIC > Θ the change-point is accepted and the system goes to the
next stage.

• 0 < ΔBIC < Θ the change-point is accepted with probability p.
Θ is a threshold for ΔBIC, because if ΔBIC is high the change-point is
more likely to be a real change-point, while if ΔBIC is too low it is possible
that the change-point is not a real change-point. The probability p is a
discard probability, and it increases following a Poisson cumulative density
function. The mean of this Poisson distribution is the expected number of
change-points μ. This approach is fully explained in [7].

– Segment classification: the accepted change-point and the previous one form
a segment of data. The likelihood of this data with Gaussian Mixture Models
(GMM) trained with speech, non-speech and music is computed, assigning
the type corresponding to the GMM that achieves the highest likelihood.

– Adjacent segments merger: when there are two speech segments in a row and
they are both labeled as “male” or “female”, it is possible that the change-
point in the middle of them is a false alarm. Thus, the cross likelihood ratio
(CLR) of the two segments is computed: if this value exceeds a threshold,
the segments are too similar to each other and the change-point between
them is discarded.

The output of the speech segmentation algorithm is a set of segments labeled
as speech or non-speech. The non-speech segments are discarded and the speech
ones are addressed to the ASR system in order to transcribe them.

Fig. 1. Speaker segmentation system
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2.2 Speaker Clustering

In the speaker clustering strategy developed for this system, each speech segment
is modeled as in a common approach for speaker recognition [10]: a universal
background model (UBM) is trained, and this UBM is adapted to each speech
segment by using the Maximum a Posteriori (MAP) technique. Given the set
of speech segments S = (S1, . . . , Sn) (where n is the number of segments), ob-
tained as described in Sect. 2.1, the UBM is adapted to each of them obtaining
a set Θ = (Θ1, . . . , Θn), where Θi ∈ �M×N (M is the number of Gaussian mix-
tures and N is the size of the feature vectors) are the normalized means of the
adapted Gaussian components. These means (rows) are concatenated in order to
obtain a set of supervectors V = (V1, . . . , Vn) [1]. A matrix M ∈ �n×MN is con-
structed, where rows i are the supervectors Vi. Thus, the whole set of segments
is represented by means of matrix M .

OnceM is obtained, AHC is performed by using the general purpose clustering
toolkit CLUTO [3]. In this implementation, the most similar pair of clusters is
merged according to the group average-link algorithm, using the cosine distance
as similarity measure. The desired number of clusters, which is not calculated by
CLUTO, is computed after applying AHC: the number of clusters that obtains
a trade-off between the intra-cluster and extra-cluster similarities is chosen. The
aim is to minimize the intra-cluster similarity and maximize the extra-cluster
similarity, obtaining a set of clusters with similar elements in each cluster and
non-similar elements in different clusters.

Figure 2 summarizes the whole clustering procedure.

Fig. 2. Speaker clustering system

3 Automatic Speech Recognition System

A large vocabulary continuous speech recognition module is used in this work for
generating the automatic transcription of the audio files [2]. The basic decoder
has two stages, a Viterbi algorithm working in a synchronous way with a beam
search and an A∗ algorithm to obtain the N-best hypothesis. The transcription
of each audio document is obtained in two passes. The first pass is as follows:

– First, acoustic model selection is performed by applying a phonetic recog-
nizer to the 10 first seconds of a speech segment. The models that achieve
the best acoustic score are selected.
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– A VAD based on energy thresholds and a simple state machine is then applied
to further divide the segment in smaller chunks. This procedure provides an
important reduction of the computation effort, with a minor degradation of
the recognition results.

– Lastly, the decoder is applied to the VAD segments using a 3-gram based
language model (LM) and the selected models, obtaining a first transcription.

The second pass is basically an acoustic-model adaptation stage plus a new
recognition pass:

– Using the results provided by the first pass, a phone-level transcription is
obtained.

– This transcription is used to perform a maximum likelihood linear regres-
sion+maximum a posteriori (MLLR+MAP) adaptation of the acoustic mod-
els.

– A second recognition pass using the new acoustic models is then performed.

Usually the acoustic model adaptation is applied sequentially to each segment
provided by the speaker segmentation module. However, when the speaker clus-
tering information is available, the first pass is applied to the whole audio docu-
ment, and then the acoustic model adaptation is performed grouping all segments
belonging to the same speaker.

This whole procedure is represented in Fig. 3.

Fig. 3. Speech recognition system

4 Experimental Framework

4.1 Description of the Database

Performance of the ASR system when using manual and automatic segmenta-
tions is assessed by running some experiments on Transcrigal-DB [4], a database
featuring broadcast news shows in Galician language. As it is usual in this kind
of programs, there are several habitual speakers, who usually speak planned
speech, and there are also other speakers speaking spontaneous speech. Differ-
ent accents and dialectal varieties of the Galician language appear, specially in
the case of the non-habitual speakers.
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The database has been manually segmented, labeled and transcribed, so there
is a reference for the diarization and for the transcription. Three datasets were
defined: a train set (25 hours) for training the GMMs of speech, music and non-
speech; a development set (2 hours) for tuning the parameters of the automatic
segmentation system; and a test set (13 hours) to assess the performance of the
segmentation and the transcription.

4.2 Metrics

A popular metric used to measure the performance in the ASR stage is the word
error rate (WER):

WER =
S +D + I

W
(1)

The WER is the average number of word errors taking into account three differ-
ent types of error: word substitutions (S), word deletions (D) and word insertions
(I). WER is defined as the addition of these three types of error divided by the
number of reference words W. When the automatic transcription is identical to
the reference transcription, WER is equal to zero.

The amount of speech that is lost in the segmentation stage (missed speech,
MS) and the amount of non-speech that is labeled as speech (false alarm speech,
FA) are measured in order to analyze the performance of the segmentation sys-
tem and to try to find out if there is any relationship between the WER and these
segmentation and classification errors. The accuracy of the speaker diarization
stage is measured by means of the speaker error (SPKE), which is the percent-
age of speech assigned to an incorrect speaker. The combination of these three
metrics, which measures the performance of the whole diarization procedure, is
known as diarization error rate (DER) [13].

These performance measures are computed by using the speech recognition
scoring toolkit [8] developed by NIST for the Rich Transcription Evaluation
campaigns [13]. Concretely, the tools md-eval and SCLITE are used to assess
the diarization and the transcription, respectively.

4.3 Description of the Experiments

The aim of this paper is to analyze the influence of automatic speaker segmenta-
tion and clustering on the ASR task. To do so, two experiments are performed:
in the fist one, the test set of the database described in Sect. 4.1 is automatically
segmented and transcribed; and in the second one, the test set is automatically
segmented and clustered, and then it is transcribed. It has to be noticed that
in the first experiment, only the first pass of ASR is performed, while in the
second experiment two passes plus speaker model adaptation are performed, as
described in Sect. 3.

Some reference results are necessary in order to study the impact of the au-
tomatic diarization on the transcription; hence, the manual segmentation of the
test dataset is also transcribed by the ASR system; this will be considered as the



On the Influence of Automatic Segmentation 55

baseline of the whole system, because the best diarization that can be obtained
by the automatic diarization system is ideally equal to the manual one. Both
diarization and recognition results are presented.

As commented in Sect. 4.1, there are habitual speakers speaking planned
speech, and other speakers speaking spontaneous or quasi-spontaneous speech. In
order to assess the performance of the recognizer in these two cases, ASR results
for all the speakers, habitual speakers only and other speakers are presented.

5 Experimental Results

5.1 Features

In this work, the acoustic features extracted from the speech utterances are
12 Mel-frequency Cepstral Coefficients (MFCC), extracted using a 25ms Ham-
ming window at a rate of 10ms per frame, and augmented with the normalized
log-energy and their delta and acceleration coefficients. In the segmentation al-
gorithm only 13 features are used (12MFCC and log-energy), while in the clas-
sification task with GMMs, the clustering stage and the recognition stage the 39
features are used.

5.2 Results

The test dataset of Transcrigal-DB is automatically segmented and the segments
are classified as speech/non-speech as described in Sect. 2. The free parameters of
the system were previously tuned on the development dataset: the parameter λ
of the BIC algorithm [11], the threshold Θ and the number of expected change-
points μ. The tuned values are λ = 2.7, Θ = 500.0 and μ = 20. The GMMs

Table 1. ASR results on Transcrigal database with speaker segmentation

Speakers Substitutions Deletions Insertions WER

Manual
segmentation

All 14.9% 4.9% 4.4% (24.2 ± 3.82)%

Habitual 12.1% 3.4% 4.6% (18.3 ± 4.55)%

Others 18.2% 5.9% 4.3% (28.4 ± 2.1)%

Automatic
segmentation

All 14.9% 6.5% 3.6% (25.0 ± 4.61)%

Habitual 10.6% 4.5% 3.6% (18.7 ± 5.53)%

Others 17.9% 7.8% 3.7% (29.4 ± 2.3)%

Automatic
segmentation
and clustering

All 13.7% 6.2% 3.3% (23.1 ± 4.5)%

Habitual 9.9% 4.3% 3.3% (17.6 ± 5.2)%

Others 16.4% 7.5% 3.3% (27.2 ± 2.3)%
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Table 2. Diarization results on Transcrigal database

MS FA SPKE DER

5.6% 5.3% 19.5% 30.41%

used to classify the segments in speech, music or non-speech have 64 Gaussian
mixtures.

Table 1 shows the ASR results obtained both with manual and automatic
segmentations. The WER is represented with the 95% confidence interval.

6 Discussion

Results in Table 1 show the performance of the ASR system when using manual
segmentation, automatic segmentation and automatic segmentation followed by
clustering (with adaptation of the speaker models in the ASR stage). It can
be seen that manual and automatic segmentation achieve the same number of
substitutions, but automatic segmentation has more deletions and manual seg-
mentation has more insertions. Thus, what makes the difference between the
two segmentations are the segment boundaries: the automatic segmentation has
more tight boundaries, which causes the initial phoneme of the sentences to be
cut in some occasions, making the ASR system to get lost and generating sup-
pressions; on the other hand, the manual segmentation usually has non-speech
frames at the beginning and the end of speech segments, leading to insertions
when the recognizer tries to recognize audio parts that are not speech. This last
type of error may be due to the fact that the ASR system has models for speech,
silence and music, but it does not have a model for noise; thus, noise may be
confused with speech and, therefore, recognized as vocabulary words. Table 1
also shows that when performing a second pass in the recognition stage adapt-
ing the speech segments to the speaker models as indicated by the automatic
clustering, a general improvement is obtained. The WER in this case is even
lower than with the manual segmentation.

As expected, the habitual speakers obtain lower error rates than the other
speakers. This is due to the fact that in general the habitual speakers speak
planned speech and the others speak in a more spontaneous way, and also be-
cause the habitual speakers have their own speaker models. In both cases WER
improves when performing speaker adaptation, obtaining better results than
with the manual segmentation.

There are other details that have been extracted from a thorough examination
of the recognition results. For example, some segments of the habitual speakers
showed a WER much higher than expected. Sometimes the automatic segmen-
tation includes non-speech at the beginning of the sentences (false alarm speech
error) and, as the acoustic model selection is performed on the ten first seconds
of the segment, if the segment starts with non-speech the selection of the model
is incorrect, causing the WER to rise. A similar problem occurs when speaker
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turns are missing: when a speaker segment includes speech from different speak-
ers, the acoustic model that is selected might be good for one of the speakers
but not for the other one, raising the WER.

Table 2 shows the diarization results, which have some influence on the WER.
5.6% of the speech is missing in the automatic segmentation, causing suppres-
sions on the transcription, and 5.3% of non-speech has been labeled as speech,
causing insertions, as the recognizer transcribes data that is not speech.

After commenting the experimental results, it has to be said that the WER
obtained with automatic segmentation and clustering is the lowest one, but
the p-values show that this difference is not meaningful. Thus, the presented
diarization system is perfectly suitable for its integration with an ASR system,
because performance is as good as when using the best possible segmentation.

7 Future Work

As commented in Sect. 6, the automatic diarization system described in Sect.
2 achieves a good performance when compared to a manual diarization. Never-
theless, the influence of the miss-detected speech is noticeable, because it causes
the ASR system to miss the first words of a speech segment in some cases.
Thus, a technique to refine the segment boundaries should be incorporated to
the segmentation system, in order to get rid of this problem.

Although Table 1 shows that the automatic segmentation has less insertions
than the manual segmentation, this percentage can be reduced by improving the
speech/non-speech detection, because labeling non-speech as speech forces the
ASR system to transcribe something that is not speech, generating insertions.

With respect to the ASR task, acoustic speaker adaptation has shown to im-
prove recognition performance. Nevertheless, the strategy to select the acoustic
model should be improved, as it is easily influenced by errors in the speaker seg-
mentation: as commented in Sect. 6, when a speech segment has non-speech at
the beginning, this non-speech is used to select the speaker model, compromising
the model selection. It was also commented that the ASR system used in this
work does not have a model for noise; this causes the system to, in some cases,
treat the non-speech information as speech and generating a transcription for it,
which leads to an increase of the insertions. Thus, a model for noise should be
incorporated. Also, to reduce the influence of noise in the transcription, acous-
tic channel adaptation should be tested in order to overcome the influence of
mismatch conditions (different environmental conditions between train and test
data) in recognition.

Once a suitable diarization strategy for speaker recognition has been obtained,
future work will be focused in developing an online implementation of this au-
tomatic transcription system.
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Abstract. This paper addresses the problem of forced alignment in news and 
songs in order to get the times where every word of the transcriptions begins 
and ends. For this purpose two methods are used. The first one is basically a 
forced alignment process of the audio and text based on pre-existent models. 
The second one is a model-free method in which new models are trained on the 
audio to align producing as a result the aligned text and audio. For analysis of 
the songs, we have considered two versions of the same song: one is an a capel-
la song (only voice with no music) and the other, the full song (with instrumen-
tal music included). Three songs have been selected from different singers and 
different styles. Regarding news, we have analyzed four speakers (2 females 
and 2 males). Analyzing all the results, we observe that news is better aligned 
than songs, as expected. The two methods work similarly in both a capella 
songs and news, but in the case of songs that include the instrumental part, the 
model-free method is much better.  

Keywords: Alignment, Songs and Lyrics, Language Learning, Broadcast 
News.  

1 Introduction 

This paper presents preliminary experiments on alignment of songs and lyrics and 
texts and audio news. One of the purposes of this paper is to analyze the difference in 
the behavior of the forced alignment in songs and broadcast news. To that end, for the 
analysis of the news, we will be using four speakers (two females and two males), and 
for the analysis of the songs, we will consider three English songs from three different 
styles of music: the first one is a very fast-speed song (rap), the second one, a normal-
speed song (pop), and, finally, a very slow-speed song (ballad). Two versions of these 
songs will be considered, one including instrumental music and one a capella. 

Other of the purposes of this paper is to compare two different ways of producing 
the alignments. One way is based on pre-existent Hidden Markov Models (HMMs), 
and another a model-free approach based on training HMM models from scratch us-
ing only the audio to align, or this audio complemented by a set of similar audios. 

Our main goal is the alignment of songs and lyrics to feed new songs and aligned 
lyrics into a web-based system (www.inglesdivino.com) that plays songs and videos 
and shows each word pronounced aligned in real time, among many other possibili-
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ties. This system tries to help students to learn and improve their English in less te-
dious ways. Having songs and lyrics aligned is very useful, for example, for students 
who are beginning to learn a new language, because they normally get lost when they 
try to follow the lyrics as they listen to the audio recordings. With this technology that 
wouldn't happen, since every word will be highlighted as accurately as possible while 
it’s pronounced. All the experiments so far have been done in English, but in the fu-
ture we plan to expand them to more languages. In general, this system will be useful 
for learning any language. 

This problem is closely related to other similar problems that share in common the 
need to have audio and text aligned: TV subtitling, entertainment (i.e. karaoke), de-
sign of games based on synchronized audio, etc. 

The issue of song and lyrics alignment has found some interest in the research 
community in the last years. Good examples are [1] where pre-existent models are 
used, [2] where dynamic programming and a model-free method is used and [3] 
where music and speech try to be first segregated and then pre-existent models are 
adapted to speech with music. On the other hand, the issue of broadcast news subtitl-
ing has been more studied due to its clear application, in particular to allow deaf 
people to access the content of the news. Broadcast news subtitling can be faced in 
two different ways, by using speech recognition and obtaining transcription and 
alignment from audio, as done in [4], or by exploiting knowledge from the news tran-
scription used by the speakers to align text and audio as done in [5]. In this paper we 
will always use the text for the alignment. We will be comparing the problem of 
songs and lyrics and the one of text and news alignment and finally we will compare 
two methods for performing the alignment.  

2 Proposed Methods  

The alignments of text and audio will be performed using two methods: the first one 
is based on pre-existing English phonetic HMM models, and the other one (model-
free method) is based on training HMM models from scratch using the audio to align 
(and possibly some similar complementary audios). In both cases, models will be 
used or trained using HTK [6]. Next subsections explain in more detail these methods. 

2.1 Using Pre-Existing Models 

In this method, we use English phonetic HMM models previously trained with 8 KHz 
English audio (TIMIT corpus [7]). The models have been created for each phone of 
English, with 40 Gaussians per state and 3 states per phone. For these experiments we 
use the models without any modification. In order to obtain our times of interest, we 
perform the following steps: 

1. Prepare input data. In this case we need the audio recording and its transcription (a 
word level transcription). 
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HELLO WORLD 

            Audio recording Transcription 

Fig. 1. Audio recording and its transcription 

2. Parameterize the audio. Here we convert the audio file to MFCCs (Mel Frequency 
Cepstral Coefficients).  

3. Convert the word level transcription into a phone level grammar. For this, we use 
an English phonetic dictionary derived from the CMU pronouncing dictionary [8]. 
This phone level grammar will be used to create a network of HMM phone models. 

 

Fig. 2. Creation of phone-level grammar from word-level transcription and dictionary 

4. Perform the alignment. The alignment is performed by the HVite tool. It will 
match the parameterized audio against the created network of HMMs and output 
the beginning and ending time for each phone and word. 

Once the alignment is performed, we extract the beginning and ending time of each 
word, and then make the comparison with the manual reference. We will show the 
results in Section 3. 

2.2 Model-Free Alignment: Aligning during Training 

This method is based on the model training process. What we do here is to train phone 
models from the data we want to be aligned. In our case this data could be songs or 
news recording. During the training process, HVite and HERest are used for realign-
ing and retraining the models, giving as a result a phone-level alignment of the input 
data. Compared to the previous method, this one has the advantage that it uses acous-
tic models that are completely adapted to the data to process with respect to speaker, 
presence of music, noises, etc. It is well known that the best results in recognition are 
achieved when we try to recognize the data used for training. That is precisely what 
we do in this method. Normally using test data for training is not fair, but in this par-
ticular application it is perfectly valid. We use as input data for model training the 
data (audio and text) we want to align, and then as a result of the training process we 
obtain the alignment. Of course, there are also disadvantages. The main one is that 

HELLO hh ah l ow  
WORLD w ah r l d  
SP sp  
R1 R1  

HELLO 
WORLD

HDMan R1 hh ah l ow sp w ah r l d 
R2
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using only the audio and text to align means using a very limited amount of data. We 
will try to alleviate this by adding other audios and texts from the same speaker and in 
similar conditions (to the extent that it is possible) to improve the training and align-
ment process. The following describes the steps of this method:  

1. Prepare input data as in the previous method. We prepare the audio recording and 
its transcription (a word level transcription). The main novelty here is that we may 
be interested in preparing additional transcriptions and audios with similar features 
(speaker, acoustic conditions, etc.) to help in the training and alignment process by 
adding more data. 

2. Parameterize the audio as in the previous method, converting it to MFCCs.  
3. Convert the word level transcriptions into phone level grammar, as in the previous 

method, using again an English phonetic dictionary derived from the CMU pro-
nouncing dictionary [8]. 

4. With all the necessary data prepared, we proceed to train the acoustic models of 
each phone appearing in the grammar we have previously defined. We start defin-
ing a prototype of a model and creating “flat start” monophones using the HTK 
HCompV tool. Then, these “flat start” monophones are re-estimated using the 
HERest tool. The purpose of this is to load all the “flat start” monophones and re-
estimate them using the MFCC files generated from our training data (audios of 
our songs or broadcast news) and create a set of new models. We do this re-
estimation four times. 

5. In the final step a realignment of the training data is performed using the HVite 
tool. This tool can consider all pronunciations for each word (in the case where a 
word has more than one pronunciation in the grammar), and then output the pro-
nunciation that best matches the acoustic data. HVite gives us a first alignment of 
the data. We use this alignment to re-estimate the models and get more accuracy. 
We re-estimate (with HERest) four more times using the output of the HVite (the 
first alignment). After this process, once all the re-estimation has been done, we 
have the models ready and use them to realign the training data. From the align-
ment obtained in this process, we will extract the final times for comparing with 
the manual reference. 

3 Results 

3.1 Experimental Data 

For the experiments with broadcast news we have chosen four segments from You-
Tube containing four speakers: two females and two males. The duration of the au-
dios is around a minute and a half. Regarding songs, three songs have been selected to 
cover different styles: The first one is a very fast-speed song (rap), the second one is a 
normal-speed song (pop) and the last one a very slow-speed song (ballad). The expe-
riments for the model-free method will be performed with audios with a sampling rate 
of 44100 Hz. Two experiments will be carried out, the first one consists of introduc-
ing as input data only the song or piece of news to be aligned, and the second one 
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consists of adding extra audios to help in the training process that produces the align-
ment. In other words, in the last case, apart from the audio we want to align we intro-
duce more audios from the same speaker or the same singer. These extra audios are 
only used to improve the accuracy of the alignment. 

3.2 Results with the Model-Free Method 

We will first show the results obtained with the model-free method. Results referring 
to the method based on pre-existing models will be shown in Section 3.3.  

Results are presented showing the percentage of words with segmentation errors 
smaller than certain values of tolerances, which were chosen to be 50, 100 and 200 
ms, because the target application is relatively robust to segmentation errors and most 
probably errors of 100 ms could remain unnoticeable. These evaluation metrics are 
similar to those used in [9]. Tables 1 and 2 show a comparison of results obtained on 
the experiments using only a single audio or additional audios for broadcast news 
speakers and singers.  

These results show that, although there are some cases where the model-free 
method works well even with one audio, it is when we have access to other audios 
from the same speaker or from the same singer where the method reaches better per-
formance. To illustrate this improvement when we add more input data in song and 
lyrics alignment, Figure 3 shows an example histogram of the absolute value of the 
errors found in the alignment when no added data is used and when only two addi-
tional audios are used. As it can be seen, the error in the alignment reduces considera-
bly when adding more data. 

It is important to note that there are speakers (speaker 4) and songs (song 3) that 
are particularly problematic for this method. In both cases we found that speech was 
slow, which seems to be particularly problematic for this method. 

Table 1.  Percentage of words (%) in broadcast news with errors smaller than three values of 
tolerance (50, 100 and 200 ms) with only one audio and with additional audios 

 Single Audio  Additional Audios 
Tolerance 50 ms 100 ms 200 ms 50 ms 100 ms 200 ms 

 
SPEAKER 
1 (female) 

(188 words and 1 audio)  (895 words and 4 audios) 
7.45 19.68 19.68  29.79 50.53 93.09 

 
SPEAKER 
2 (female) 

(223 words and 1 audio)  (1181 words and 4 audios) 
24.50 49.67 91.06  28.81 55.30 96.69 

 
SPEAKER 

3 (male) 
(319 words and 1 audio)  (1486 words and 3 audios) 
1.57 3.13 10.97  35.11 57.68 96.87 

 
SPEAKER 

4 (male) 
(318 words and 1 audio)  (950 words and 2 audios) 
2.52 5.03 9.12  3.46 5.35 8.18 
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Table 2.  Percentage of words (%) in songs with errors smaller than three values of tolerance 
(50, 100 and 200 ms) with only one audio and with additional audios 

 Single Audio  Additional Audios 
Tolerance 50 ms 100 ms 200 ms 50 ms 100 ms 200 ms 

 
Singer 1 (fast-
speed song) 

(1 song and 794 words)  (2 songs and 1801 words) 
27.71 56.55 88.54  28.72 59.07 92.44 

 
Singer 2 (normal-

speed song) 
(1 song and 398 words)  (2 songs and 767 words) 

38.94 65.08 80.90  41.96 73.12 92.46 
 

Singer 3 (slow-
speed song) 

(1 song and 172 words) (2 songs and 412 words) 
1.14 1.71 4.00 0.00 0.57 1.71 

 

   

Fig. 3. Comparison of time errors (in seconds) in the cases where there the alignment is per-
formed using only one audio (left), and when two more audios are added as the input data 
(right). 

3.3 Comparison of Methods 

Now we compare the results obtained with the model-free method with the results 
obtained using the method based on pre-existing models. Since the previous results 
have been obtained with audios with a sampling rate of 44100 KHz, and taking into 
account that for the method based on pre-existing models it is necessary to work with 
audios of 8 KHz (due to availability of trained models in our particular case), we need 
to resample our audios to 8000Hz to compare their alignments in a fair way. Now we 
will show the results obtained with the method based on pre-existing models, the 
results obtained with the model-free method with 8000Hz audios, and results obtained 
also with the model-free method, but with a sampling rate of 44100Hz.  
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Table 3.  Comparison of different methods and sampling frequency for broadcast news. Table 
shows percentage of words (%) with errors smaller than three values of  tolerance (50, 100 and 
200 ms). For the model-free method we use always additional audios. 

SPEAKER 1 
(female) 

 

Results
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 28.72 59.57 90.96 
Model-free method (8000Hz) 28.72 48.40 80.32 
Model-free method (44100 Hz) 29.79 50.53 93.09 

 
SPEAKER 2 

(female) 
 

Results
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 30.46 65.23 86.42 
Model-free method (8000 Hz) 26.49 54.30 95.70 
Model-free method (44100 Hz) 28.81 55.30 96.69 

 
SPEAKER 3 

(male) 
 

Results
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 34.80 67.40 94.36 
Model-free method (8000Hz) 34.80 56.43 95.92 
Model-free method (44100 Hz) 35.11 57.68 96.87 

  
SPEAKER 4 

(male) 
 

Results
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 26.73 55.66 88.05 
Model-free method (8000Hz) 0.00 1.26 7.55 
Model-free method (44100 Hz) 3.46 5.35 8.18 

Table 4. Comparison of different methods and sampling frequency in a capella songs. Table 
shows percentage of words (%) with errors smaller than three values of  tolerance (50, 100 and 
200 ms). For the model-free method we use always additional audios. 

Singer 1 Results (a capella) 
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 13.98 33.38 75.57 
Model-free method (44100 Hz) 28.72 59.07 92.44 

 
Singer 2 Results (a capella) 

Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 40.45 61.56 78.14 
Model-free method (44100 Hz) 41.96 73.12 92.46 

 
Singer 3 Results (a capella) 

Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz) 0.57 1.14 1.14 
Model-free method (44100 Hz) 0.00 0.57 1.71 
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The results obtained above for the singers are from a capella songs. We have per-
formed a comparison of a capella songs with those that include instrumental music as 
well for one particular singer.  

Table 5. Comparison of different methods and sampling frequency in songs with music. Table 
shows percentage of words (%) with errors smaller than three values of  tolerance (50, 100 and 
200 ms). For the model-free method we use always additional audios. 

Singer 2 Results (with music and a capella)
Tolerance 50 ms 100 ms 200 ms 
Pre-exising  models (8000 Hz, with music) 7.04 16.33 44.22 
Model-free method (44100 Hz, with music) 27.64 52.01 80.40 
Model-free method (44100 Hz, a capella) 41.96 73.12 92.46 

 
Finally, we perform an analysis on how the number of songs (all with instrumental 

music) used as input data improves the final result. Again we perform this with only 
one song. 

Table 6. Comparison of results using different number of additional audios (songs) for singer 
2. Table shows percentage of words (%) with errors smaller than three values of  tolerance (50, 
100 and 200 ms). 

Singer 2 
(44100 Hz, 
with music)

Tolerance
 
Number of songs 

50 ms 100ms 200ms 

1 25.13 48.99 76.38 
2 27.64 52.01 80.40 
3 26.88 55.03 82.01 
4 28.14 56.28 85.93 
5 30.65 53.77 82.66 
6 29.65 51.76 79.40 
7 32.91 59.80 84.67 
8 31.16 48.47 84.17 

4 Discussion 

As expected, results in broadcast news are better than those obtained in songs. Results 
show also (Table 3) that in the case of broadcast news pre-existing models are quite 
robust even in the case of very slow speech (as in speaker 4). On the other hand, the 
model-free approach completely fails at aligning very slow speech, while its results 
for other speakers are similar as those obtained with the pre-existing models method. 
Therefore it seems that the model-free method is not a good alternative to the pre-
existing models method for broadcast news. We must point out that, in order to make 
the comparison fairer we report results using 8 kHz for both the pre-existing models 
approach and the model-free method. While using 8 kHz is required (due to the mod-
els available in our case) in the pre-existing method, it is not necessary in the  
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model-free method. Table 3 shows that the model-free method can take advantage of 
this extended bandwidth yielding results slightly better than the pre-existing models 
and the model-free methods with limited bandwidth for the three first speakers. We 
can see (in Table 1 and 3) that the results for the speaker 4 are very poor due to the 
slow speech, as mentioned before. In this case, when we add an additional audio, the 
results get even worse. When we analyzed why we found that in the added audio, 
there was a small segment of around 20 seconds in which the voice of a different 
speaker appears. This example points out a real danger that we must deal with in a 
real-life scenario with the model-free method.  

Although our results are still very preliminary, they seem to indicate that, unless 
the speech to align is very slow (as in the cases of speaker 4 and song 3), the model-
free method tends to work better than the method based on pre-existing models in 
songs and particularly when music is included. Results seem to indicate that, the 
faster is a song, the better results we obtain. Songs which are very slow have very bad 
results. In our experiments we have made several experiments with songs: first we 
have performed the alignment of a capella songs, then we have compared with the 
case in which the instrumental music is included, and finally we have studied to what 
extent the introduction of additional songs improves the results on audios with in-
strumental music included. 

With respect to the behaviour with songs with different types of audio (a capella or 
not), in the case of a capella songs, the model-free method performs better, but it is 
when we introduce instrumental music, when the difference is more evident in favour 
of the model-free method. It is logical since the pre-existing models are trained with 
speech only, while in the model-free method the music and environmental conditions 
are naturally incorporated during the training process.  

Table 6 analyzes how much the introduction of additional audios improves results. 
Results show that there is a tendency towards improvement of results, however, this 
tendency is not monotonic and there are maximums and minimums suggesting that 
some audios may help while others actually decrease performance. In this particular 
case we find the first maximum (in 100 an 200ms) with four audios, but in other ex-
periments we have found that maximum with only one additional audio.  

5 Conclusions and Future Work 

One of the main conclusions of the paper is that the use of the model-free method can 
be an alternative for performing alignments to the method using pre-existing models, 
particularly in the case of songs. This method is more robust to audio and speaker 
particularities and could benefit from the possibility of adding more similar data for 
training. This possibility, however, has some risks that have to be dealt with in the 
future such as the risk of including speech from other speaker or including songs from 
the same singer, but very different from the one being aligned. This model-free me-
thod is particularly interesting when instrumental music is present in the song to align. 
One curiosity that we found is that results tended to be better for fast songs than for 
slow songs, which may be counterintuitive. Our results, however, should be taken 
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with cares since they are still preliminary and to be more conclusive more experimen-
tation is required. 

As future work we would like to deepen our analysis, to extend the experiments in-
cluding a larger number of songs and news fragments and to find ways to improve the 
alignment of slow-speed songs and speech in the model free-method. We would also 
like to extend our study of the influence of the number of songs to be included in the 
model-free method. 
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Abstract. In this paper, we describe and analyse the performance of a
simple approach to the alignment of very long speech signals to acous-
tically inaccurate transcriptions, even when two different languages are
employed. The alignment algorithm operates on two phonetic sequences,
the first one automatically extracted from the speech signal by means of
a phone decoder, and the second one obtained from the reference text by
means of a multilingual grapheme-to-phoneme transcriber. The proposed
algorithm is compared to a widely known state-of-the-art alignment pro-
cedure based on word-level speech recognition. We present alignment
accuracy results on two different datasets: (1) the 1997 English Hub4
database; and (2) a set of bilingual (Basque/Spanish) parliamentary ses-
sions. In experiments on the Hub4 dataset, the proposed approach pro-
vided only slightly worse alignments than those reported for the state-of-
the-art alignment procedure, but at a much lower computational cost and
requiring much fewer resources. Moreover, if the resource to be aligned
includes speech in two or more languages and speakers conmute between
them at any time, applying a speech recognizer becomes unfeasible in
practice, whereas our approach can be still applied with very competi-
tive performance at no additional cost.

Keywords: speech-to-text alignment, multilingual speech, automatic
video subtitling.

1 Introduction

The work presented in this paper was motivated by a contract with the Basque
Parliament for subtitling videos of bilingual (Basque/Spanish) plenary sessions.
The task consisted of aligning very long (around 3 hours long) audio tracks
with syntactically correct but acoustically inaccurate transcriptions (since all
the silences, noises, disfluencies, mistakes, etc. had been edited).
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The above described task may have been easily solved by means of forced
alignment at word level, allowing some mismatch between speech and text to
cope with imperfect transcripts or alternative pronunciations [1] [2]. However,
forced alignment cannot be directly performed on long audio tracks, due to
memory bounds. The algorithm proposed in [3] comes to solve this limitation,
by applying a speech recognizer, then looking for anchor phrases (sequences of
words matching part of the text), splitting the text at such points and recursively
applying the same algorithm on the resulting fragments, until their length is
small enough to apply forced alignment.

However, the mix of Basque and Spanish in the parliamentary sessions made
language and lexical models needed by the speech recognizer difficult to inte-
grate. Therefore, an alternative procedure was developed, which started from a
hybrid set of phonetic units covering Basque and Spanish. Acoustic-phonetic
models were estimated and a phone decoder was built based on data from
both languages. The alignment algorithm operated on two sequences of pho-
netic units: the first one produced by the phone decoder and the second one
obtained by means of a grapheme-to-phoneme transcriber mapping ortographic
transcriptions to sequences of hybrid (Basque/Spanish) phonetic units. Finally,
time stamps provided by the phone decoder were mapped to ortographic tran-
scriptions through phonetic alignments. This approach worked pretty well for
the intended application, as shown in [4].

With the aim to compare our approach to that presented in [3], we carried out
a series of experiments on the 1997 English Hub4 dataset (see [5] for details).
Following the evaluation criteria proposed in [3], we found that 96% of the word
alignments were within 0.5 seconds the true alignments, and 99.2% within 2
seconds the true alignments. In the reference approach [3], better figures are
reported (98.5% and 99.75%, respectively) but at a much higher computational
cost, and as we noted above, it could not be easily applied to multilingual speech.
In this paper, we summarize the above described efforts and devote more space
to analyse and discuss the alignment errors, which may light the way to further
improvements.

The rest of the paper is organized as follows. In Section 2, we provide the
key features of our simple speech-to-text alignment approach. The experimental
setup is briefly described in section 3. Results are presented and commented in
Section 4. Finally, conclusions are given in Section 5, along with a discussion on
possible ways of improving the method.

2 The Speech-to-Text Alignment Method

To synchronize speech and text, we map both streams into a common repre-
sentation, then align the resulting sequences and relate positions in the original
sources by mapping back from the common representation. A suitable candidate
for such common representation is the phonetic transcription, which features a
small vocabulary size and a small granularity. We assume that phone decoding
is performed without any language/phonotactic models, so that the alignment
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will be language independent, provided that the set of phonetic units covers all
the languages appearing in the speech stream.

2.1 Phone Inventories

In this paper, we consider two different datasets: (1) Hub4, monolingual (En-
glish), for which a set of 40 phonetic units was defined, based on the TIMIT
database [6]; and (2) plenary sessions of the Basque Parliament, bilingual
(Basque/Spanish), for which a set of 27 phonetic units covering both languages
was defined (see Table 1). Note that Basque and Spanish share most of their
phones, with few differences. We selected 26 units for Basque and 23 units for
Spanish, meaning that just one foreign sound was added to Basque (T in IPA
coding) and four foreign sounds to Spanish (S, ţ, ţ" and s" in IPA coding)1. Also,
though not specified in Table 1, the sounds corresponding to graphemes ’ll’ in
Spanish and ’il’ in Basque are assimilated to IPA dZ.

Phones are represented so that the original ortographic transcriptions can be
fully recovered, which is needed at the end of the process. Internally, articulatory
codes related to the physiology of the production of each phone are used. Ex-
ternally, those codes are mapped to IPA codes. Since Basque/Spanish phonetics
is very close to its orthography, we also use a highly readable single-character
specific coding (GTTS-ASCII, see Table 1).

2.2 From Speech to Phones

Audio streams were converted to PCM, 16 kHz, 16 bit/sample. The acoustic
features consisted of 12 Mel-Frequency Cepstral Coefficients plus the energy
and their first and second order deltas (a common parameterization in speech
recognition tasks). Left-to-right monophone continuous Hidden Markov Models,
with three looped states and 64 Gaussian mixture components per state, were
used as acoustic models.

For the Hub4 experiments, a phone decoder was trained on the TIMIT
database [6] and then re-trained on the Wall Street Journal database [7]. The
phone decoder yielded error rates in the range 40-60%, depending on the acoustic
conditions of the Hub4 subset considered for test (see Figure 1).

Defining a common set of phonetic units covering both Basque and Spanish
allowed us to train a single phone decoder to cope with the mixed use of Spanish
and Basque in the Basque Parliament. The material used to train the phonetic
models was the union of the Albayzin [8] and Aditu [9] databases. Albayzin
consists of 6800 read sentences in Spanish from 204 speakers and Aditu consists
of 8298 sentences in Basque from 233 speakers. The phone decoder trained this
way yielded around 80% phone recognition rate in open-set tests on Albayzin
and Aditu, and only above 60% on the Basque Parliament sessions, probably
due to acoustic mismatch (background noise, speaker variability, etc.) [4].

1 Note, however, that the sound T is pronounced by Basque speakers in words imported
from Spanish, and that sounds considered foreign in the central Castilian Spanish
(such as ţ) are widely used in other Spanish dialects.
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Table 1. Phone inventory for Basque (Euskera) and Spanish, with examples. IPA
codes (Unicode) are shown, as well as a highly readable single-character coding (GTTS-
ASCII). Internally, the grapheme-to-phoneme transcriber uses the articulatory codes
(physio codes) shown in the first column.

2.3 From Text to Phones

In the Hub4 experiments, phonetic transcriptions were extracted from the CMU
English pronouncing dictionary [10]. In the case of Basque parliament sessions,
a multilingual transcriber architecture was defined, including a specific tran-
scription module for each target language. Each transcription module consists
of a dictionary, a set of transcription rules and a number-and-symbols to text
converter (for numbers, currencies, percentages, degrees, abbreviations, etc). In
this work, two modules for Basque and Spanish were used (including their re-
spective dictionaries), and a third auxiliary module was defined, consisting of a
dictionary covering all the words falling out of the vocabulary of both languages.
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Phonetic transcriptions are generated as follows. First, each input word
is searched in the three available dictionaries: Basque, Spanish and out-of-
vocabulary words. If the word appears in a single dictionary, the phonetic tran-
scription provided by that dictionary is output. If the word appears in more
than one dictionary, the transcriber uses the context to determine the language
being used and outputs the phonetic transcription for that language. Finally, if
the word doesn’t appear in any dictionary, the transcriber outputs a rule based
transcription based on the subsystem corresponding to the most likely language.
New transcriptions generated by applying rules are added to the corresponding
dictionary and reported to be supervised. This mechanism makes dictionaries to
grow incrementally and works as a misspelling detector, allowing for the refine-
ment of rules.

2.4 Alignment of Very Long Sequences

A globally optimal solution to the alignment of two symbol sequences is given
by the Needleman-Wunsch algorithm [11]. In this work, we apply a variant of
this algorithm. Let X and Y be two sequences of n and m symbols, respectively.
A n × m matrix C is filled with the minimum accumulated edition cost, also
known as Levenshtein’s distance, using an auxiliary n × m matrix E to store
the edition operations that minimize the cost at each step. Four possible edition
operations are considered: deletions, insertions, substitutions and matches. The
three first operations have cost 1 and matches have cost 0. Note that what we
call best alignment depends on the set of weights assigned to deletions, inser-
tions, substitutions and matches. We use the Levenshtein distance because, after
some experimentation on the set of parliamentary sessions (which is our target
application), it gave the best results. Finally, the path generating the minimum
cost is tracked back from E(n,m) to E(1, 1), which defines the optimal mapping
(i.e. the optimal alignment) between X and Y .

The above described method is prohibitive for very long sequences due to
the matrix memory allocation. However, we can still use a Divide and Conquer
approach known as Hirschberg algorithm [12], where the original problem is
optimally split into two sub-problems with half the size, by doing all the matrix
calculations but storing only one row that goes half matrix forward from the
start, and one row that goes half the matrix backward from the end. This method
is recursively applied until the amount of memory needed to apply the non-
recursive approach can be allocated. This algorithm reduces dramatically the
required memory, increasing less than 2 times the computation time. Besides,
since it can be easily parallelized, it can be run even on a desktop computer (e.g.
less than 1 minute for a 3-hour signal in an 8-thread Intel i7 2600 processor).

3 Experimental Setup

3.1 The 1997 Hub4 Dataset

The 1997 Hub4 dataset consists of about 3 hours of transcribed broadcast audio,
classified into 6 categories according to acoustic conditions, plus a seventh Other
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category and a set of Unclassified segments. The last two subsets (amounting to
8.5% of the phone units) were not considered in this work. The six remaining cat-
egories were defined as follows: F0 (clean speech), F1 (spontaneous speech), F2
(telephone-channel speech), F3 (speech with background music), F4 (degraded
speech), and F5 (speech from non-native speakers). Their proportions are shown
in Figure 1.

3.2 Basque Parliament Plenary Sessions

We started processing plenary sessions of the Basque Parliament by September
2010. The dataset considered in this work consists of 80 sessions, amounting
to 407 hours of video. Due to limitations of video recording media, each video
lasts no more than 3 hours, although sessions are 4-8 hours long. Therefore,
each session consists of two or three (exceptionally up to four) sections. Videos
(originally recorded in high definition using professional media) are converted
to RealMedia format for the Basque Parliament web, the audio stream being
downsampled to 22050 Hz, 16 bit/sample.

The Session Diary is available almost immediately as a single PDF document,
because text transcriptions are produced on the fly by a team of human opera-
tors (who are instructed to exclude non-relevant events such as silences, noises,
disfluencies, etc.). The session diary is made up of blocks related to operator
shifts (approximately 15 minutes per block) with some undefined overlap be-
tween them. Also, after each voting procedure in the Basque Parliament, results
are not transcribed verbatim as read by the president but just tabulated. All
these issues make the synchronization between videos and diaries even more
difficult. To address them, we designed specific (in part heuristic, in part super-
vised) solutions which are out of the scope of this paper.

3.3 Evaluation Measure

Following [3], the alignment accuracy is measured in terms of the deviation of
the starting point of each word from the available ground truth. In the case of
Hub4, the reference positions were obtained by forced alignment (on a sentence
by sentence basis) at the phone level, using acoustic models closely adapted to
the HUB4 dataset. In the case of parliamentary sessions, we manually annotated
the starting point of each word for a continuous fragment containing 876 words.
Finally, to evaluate the alignment accuracy, we provide the percentage of words
whose starting point is within a tolerance interval with regard to the reference
position.

4 Results

4.1 Results on the Hub4 Dataset

Results on the Hub4 dataset are summarized in Figure 1. As in [3], tolerance
intervals of 0.5 and 2 seconds around the reference positions are considered
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to measure alignment accuracy. We found that 4.06% of the words deviated
more than 0.5 seconds from their reference positions, whereas only 0.82% of the
words deviated more than 2 seconds from their reference positions. These figures
are slightly worse than those reported in [3] (1.5% and 0.25%, respectively),
but the computational savings are quite remarkable, both in terms of time and
infrastructure (data, models, etc.).

Fig. 1. Results for the 1997 Hub4 dataset: proportions of data in each category, phone
decoding error rates and alignment accuracy for tolerance intervals of 0.5 and 2 seconds

As shown in Figure 1, the alignment accuracy strongly depends on the acous-
tic condition considered for test. On the other hand, the alignment accuracy for
a given condition is not only related to the phone recognition accuracy. For in-
stance, the highest alignment error rate was found for the F3 condition (speech
with background music), whereas the highest phone recognition error rate was
found for the F2 condition (telephone-channel speech). The large difference be-
tween the alignment accuracies for the F2 and F3 conditions when considering
a 2-second tolerance interval (despite having very similar phone recognition ac-
curacies) is even more significant.
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4.2 Results on the Basque Parliament Sessions

As noted above, the alignment accuracy was measured on a continuous fragment
of a parliamentary session including 876 words. Table 2 shows the alignment
accuracy for different tolerance intervals between 0.1 and 0.5 seconds.

Table 2. Alignment accuracy on a fragment of a session of the Basque Parliament, for
different tolerance intervals (in seconds)

Tolerance (seconds) 0.1 0.2 0.3 0.4 0.5

Alignment accuracy 67.69% 88.58% 92.01% 94.41% 95.43%

Fig. 2. Patterns found in the alignment path. The bottom line (blue) is up for phones
in the text, whereas the middle line (red) is up for phones in the recognized speech.
Lines go down at insertions for the bottom line and at deletions for the middle line.
The top line (green) represents the AND function of the two other lines, so that it is
up for matches and substitutions, and down for insertions and deletions.
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Note that 95% of the words deviated less than 0.5 seconds from the reference
position considered as ground truth, which is enough for the subtitling appli-
cation that motivated this work. After aligning speech and text, and following
a number of rules related to lengths, times and punctuation, the synchronized
text stream is split into small segments suitable for captioning. Only the first
word of each segment is taken into account to synchronize text and speech, so
that errors are perceived by users as these segments being presented with some
advance or delay. Since errors involve both advances and delays in random order,
having a long run of advances or delays is quite unlikely. In any case, a deviation
of 0.5 seconds is not perceived as an error, specially when the caption appears
in advance. For instance, after a long silence, when captions blank, users can
easily accept a caption appearing in advance but not a delayed caption. Based
on this analysis and taking into account that the captioning procedure can be
configured to behave in different ways when there are more than one equivalent
partial alignment, we tuned the application so that the mismatched segments
had a tendency to show captions before the audio.

5 Conclusions and Future Work

In this paper, we have presented a simple and efficient method to align long
speech signals to multilingual transcriptions, taking advantage of a single set of
phonetic units covering the sounds of the target languages. We have compared
the accuracy of the proposed approach to that of a well-known state-of-the-
art alignment procedure, finding a small degradation on the Hub4 dataset, but
remarkable savings in both computation time and the required infrastructure. On
the other hand, the proposed method can deal with multilingual speech, which is
not the case of the state-of-the-art approach used as reference. Alignment results
have been also shown for plenary sessions of the Basque Parliament, for which
a captioning system has been built based on the proposed algorithm.

Possible ways of increasing the alignment accuracy in future developments in-
clude: (1) adapting the acoustic models used in phone decoding to the particular
resources to be aligned; and (2) replacing the kernel in the Needleman-Wunsch al-
gorithm (currently representing a Levenshtein distance) with a more informative
kernel, e.g. by using continuous weights based on phone confusion probabilities.

Also, by analysing the alignment path, we can search for patterns that may
eventually help to automatically reconsider some word synchronizations. Figure
2 represents a section of an alignment path for a Basque parliament session.
Two different halves can be identified: the upper half corresponds to a correct
alignment, whereas the bottom half corresponds to a wrong alignment due to a
missing transcription. In the first half, words are detected at distances that are
basically in accordance to phone lengths (upper dots). In the second half, a long
run of decoded phones (middle line up) matches to few text phones (bottom line
mostly down), meaning that words in the text are sparsely matched to phones
from non-transcribed speech. In the first half, we also find that the insertion
penalty applied by the phone decoder is too high, since there are much more
deletions than insertions in the recognized sequence.
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The relation between matches and substitutions and the time span for each
word provide key information about the probability of having a perfect match.
Places where there is no reference transcription can be detected as long runs
of phone insertions, that is, as words spanning in excess through the alignment
path. The opposite situation (extra text), which rarely appears in manual tran-
scriptions, would generate long runs of phones in the other axis, that is, a high
number of deletions. Both events produce border effects that should be identified
and compensated. The attraction or repulsion that these regions induce on the
recognized sequence of phones will depend on the number of deleted or inserted
words and will be smoothed by the constraint that both sequences match.

This analysis suggests that, given that most of the alignment is right, we
should focus on the problematic areas to isolate the alignment errors and cor-
rect the border effects by means of forced alignment. Curiously, this idea is
complementary to the algorithm proposed in [3].
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Abstract. This paper proposes a study of a Factor Analysis (FA) seg-
mentation and classification system. Our approach is inspired by lan-
guage recognition systems where every input sequence is a language.
Following this idea, a study between the classic segmentation systems
based on HMM/GMM and FA is done over the output of a perfect seg-
mentation system (oracle boundaries). It can be seen how FA improves
the classification results compared to HMM/GMM. Also, the first experi-
ments of an on-building FA segmentation system are reported suggesting
the need to improve the channel compensation over some classes.

Index Terms: Factor Analysis, Channel Compensation, Broadcast News
Segmentation.

1 Introduction

Due to the increase in audio or audiovisual content, it becomes necessary to
use automatic tools for different tasks such as analysis, indexation, search and
retrieval. Given an audio document, the first step is audio segmentation produc-
ing a delineation of a continuous audio stream into acoustically homogeneous
regions. When the audio segmentation is followed by a classification system the
result is a system that is able to divide an audio file into different predefined
classes chosen for a specific task.

Several approaches have been proposed for audio segmentation in different
scenarios. For example, in the task of automatic transcriptions of broadcast
news [1] the data contain clean speech, telephone speech, music segments and
speech overlapped with music and noise so the segmentation generates a bound-
ary for every speaker change and environment/channel condition change with no
explicit cues. In [2] segmentation is based on five different classes: silence, mu-
sic, background sound, pure speech, and non-pure speech. The solution is based
on SVM combination. In [3] the audio stream from broadcast news domain is
segmented into 5 different types including speech, commercials, environmental
sound, physical violence and silence. [4] presents a review of different solutions
and the acoustic features used in each one of them and also a new algorithm for
computing various time-domain and frequency-domain features, for speech and
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music signals separately, and estimating the optimal speech/music thresholds. In
[5], a system of three components (segmentation, clustering and classification) is
used to recognize an entire half hour show with no prior knowledge of acoustic
conditions and speakers.

In the context of the Albayzin-2010 evaluation campaign an audio segmen-
tation task was proposed in [6]. Almost all the participants of the evaluation
used hierarchical systems, including the winning system [7] based on a hierar-
chical arquitecture that used different sets of features for every level. For this
evaluation database, in [8] we proposed a system that uses a 2-level hierarchical
architecture where the second level is based on FA minimizing the segmentation
error over this database.

In this paper, a comparison between Factor Analysis and HMM-GMM is re-
ported. The first group of experiments is based on the classification task over
the segments with oracle boundaries. In the second group of experiments, the
systems must identify the begining and the end of each segment so a segmenta-
tion/classification error is reported.

The remainder of the paper is organized as follows: database and metric of
Albayzin 2010 evaluation is presented in section 2. Section 3 shows the factor
analysis theoretical approach based on language recognition systems. Classifica-
tions and segmentation results are presented in section 4. Finally, the conclusions
and the future work are presented in section 5.

2 Albayzin 2010 Audio Segmentation Evaluation

2.1 Database

The database used for the Albayzin2010 evaluation consists of a Catalan broad-
cast news database from the public TV news channel that was recorded by the
TALP Research Center from the UPC, and was manually annotated by Verbio
Technologies. The database includes approximately 87 hours of annotated audio
(24 files of 4 hours long).

Five different audio classes were defined for the evaluation: music(MU),
speech(SP), speech with music(SM), speech with noise(SN) and others(OT) but
this class is not evaluated in final test. The distribution of the classes within
the database is the following: Clean speech: 37%; Music: 5%; Speech over music:
15%; Speech over noise: 40%; Other: 3%.

The database for the evaluation was split into 2 parts: for train-
ing/development (2/3 of the total amount of data), and testing (the remaining
1/3).

2.2 Metric

The metric is defined as a relative error averaged over all acoustic classes (ACs):

Error = averagei
dur(missi) + dur(fai)

dur(refi)
(1)
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where dur(missi) is the total duration of all deletion errors (misses) for the ith
AC, dur(fai) is the total duration of all insertion errors (false alarms) for the
ith AC, and dur(refi) is the total duration of all the ith AC instances according
to the reference file. The incorrectly classified audio segment (a substitution) is
computed both as a deletion error for one AC and an insertion error for another.
A forgiveness collar of 1 sec (both + and -) is not scored around each reference
boundary. This accounts for both the inconsistent human annotation and the
uncertainty about when an AC begins/ends.

The proposed metric is slightly different from the conventional NIST metric
for speaker diarization, where only the total error time is taken into account
independently of the acoustic class. Since the distribution of the classes in the
database is not uniform, the errors from different classes are weighed differ-
ently (depending on the total duration of the class in the database). Therefore
the participants have to detect correctly not only the best-represented classes
(speech and speech over noise, 77% of total duration), but also the minor classes
(like music, 5%). Detection error rates (DET) curves are also provided in the
hierarchical segmentation systems for comparison.

3 Factor Analysis Framework

3.1 Statistics

The Factor Analysis approach has been successfully used in speaker recognition
[9] and more recently in language recognition [10]. The main advantage of Factor
Analysis compared to other classification methods is its ability to compensate
for the session variability that can be found in the data due to several factors
like background noise, recording devices, etc.

As in language identification, this work examines the problem of assigning a
class label to each segment using FA models trying to compensate the within-
class variability. Additionally, this task has to deal the with the problem of
detecting boundaries between segments of different classes where every segment
may have a different length. These segments are going to be mapped to sufficient
statistics of fixed size by using a Universal Background Model (UBM) which is a
class-independent GMM trained with the EM-algorithm on the feature vectors
of the training data. Following the classic terminology of the bibliography, we
refer mean-vector and diagonal precision matrix of the UBM as μk and Pk where
k is the Gaussian component index. All further processing is based only on the
statistics, rather than the original feature vectors. Let Pksi = P (k|φsi) denote the
posterior probability of UBM component k, given feature vector φsi, computed
with the standard method for GMM observations, assuming frame-independence.
For segment s, with frames indexed i = 1, 2, ..., Ns, we define the zero and first-
order statistics respectively as:

nsk =

Ns∑
i=1

Pksi (2)
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fsk =

Ns∑
i=1

PksiP
1/2
k (φsi − μk) (3)

For convenience, we stack the first-order vectors for all components into a single
supervector, denoted as fs. We also center and reduce our statistics relative
to the UBM, so that we can assume the UBM as having zero mean and unity
precision for all components. After this transformation the formulas below no
longer require UBM parameters.

3.2 Channel Compensation

Data from a particular class segment is modeled by a GMM defined by means
m1,m2, ...,mC , weights w1, w2, ..., wC and covariances Σ1, Σ2, ..., ΣC where C is
the number of Gaussians. The Factor Analysis model is the adaptation of the
UBM model where the supervector of means is not fixed and it can vary from
segment to segment to account for differences in the channel. These GMMs have
segment and class dependent component means but fixed component weights and
covariances chosen to be equal to the UBM weights and covariances. Specifically,
we use a Factor Analysis model for the mean of kth component of the GMM for
segment s:

msk = tc(s)k + Ukxs (4)

where c(s) denotes the class of segment s; tsk is the channel independent class
location vector; Uk is the factor loading matrix which is the subspace of channel
variability and xs is a vector of L segment-dependent channel factors generated
by a normal distribution. Channel factor vector xs can be seen as the coordinates
of the channel dependent class segment vector in the subspace defined by Uk . As
in the case of the first-order statistics, we stack component-dependent vectors
into supervectors ms and tc and we stack the component-dependent Uk matrices
into a single tall matrix U , so that equation 4 can be expressed more compactly
as:

ms = tc(s) + Uxs (5)

where U is known as the channel matrix and it represents the within-class vari-
ability. Let T = [tmu, tot, tsm, tsn, tsp] where T represents the locations of classes
in the GMM space, so our metamodel for class-segment-dependent GMM is
parametrized by (T, U) which are describing prior distribution of parameters m.

The parameters Θ = {T, U} can be estimated using the EM algorithm iter-
atively. Data from many segments are used, where the channel factors of each
segment is treated as a hidden variable. In the E-step posterior distributions of x
are estimated for each segment, using current parameters Θold. In the M-step we
find parameters Θ that maximize the auxiliary function Q(Θ,Θold). The simple
case is considered where location vectors tck are obtained by using a single itera-
tion of relevance-MAP adaptation from the UBM. This adaptation is expressed
in terms of statistics as:
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tck =

∑
s fsk

r +
∑

s nsk
(6)

where the sums are over all segments s belonging to the class c and r is the
relevance factor (r = 14 in our experiments). With the class locations fixed, x is
re-estimated for each segment s and then Uk for every component k.

Given the channel matrix U and the statistics fsk and nsk for a segment s, a
class-independent maximum-a- posteriori(MAP) point-estimate of the channel
factors xs can be performed, relative to the UBM as it can be seen in [10]. This
estimate is computed as:

x̂s =
(
I +

∑
k

nskU
′
kUk

)−1
U ′
kfs (7)

The effect of the channel factors can be approximately removed from the first-
order statistics:

f̂sk = fsk − nskUkx̂s (8)

where f̂sk is the compensated first-orden statistic.

3.3 Scoring

In [11], different scoring methods are studied. The log-likelihood ratio (LLR)
scoring shows a significant speedup without any loss in performance due to
the simplification of scoring shown in [9] by omitting non-linear terms. To get
the score, the compensated first-orden statistics are used to calculate the class
locations :

t̂ck =

∑
s f̂sk

r +
∑

s nsk
(9)

Again, the location supervectors are packed into the columns of a matrix denoted
as T̂ and thus the score is computed as:

λs =
T̂ ′f̂sk∑
k nsk

(10)

This type of scoring can be seen as a dot product between the compensated
test vector and the different class vectors. As a result, a calibration for the
dot product is needed. In our approach, a normal distribution N(μ,Σ) (one
Gaussian) is trained using the set of scores vector where each class is represented
by one dimension of the Gaussian. This Gaussian transforms the general scores
to Ns multi-class log-likelihoods where Ns is the number of target classes [12].
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4 Experimental Results

4.1 Factor Analysis as a Classifier of Segments with Oracle
Boundaries

To evaluate the benefits of using FA, a baseline using the same configuration
of the winning system in the Albayzin 2010 evaluation [7] is presented over the
output of a perfect segmentation system to be able to evaluate the classification
error. This system uses a hierarchical HMM/GMM approach to classify the
frames between MU/NOMU on the first level, SM/NOSM on the second level
and SP/SN on the last level as it is shown in Fig. 1. The audio features extracted
for this system is a combination of 15MFCC + C0 + Δ + ΔΔ + 12Chroma.
The mean and the standard deviation are computed over a 1 second window
with an overlap of 0.5 seconds. Previous experiments showed us that it is better
to use less components in the models of the classes with less data (SM and MU)
and more Gaussians per HMM state for the classes with more data (SP and
SN). Table 1 shows the average error of the four classes for a different number of
states of the HMM and a different number of Gaussians. Note that the number of
Gaussians for the SP/SN classes is four times greater than that for the MU/SM
classes.

Fig. 1. Block diagraman of the hierarchical system

Table 1. Classification error for oracle boundaries with HMM-GMM systems

Gauss / States 3 4 5 6 7 8 9

32G-128G 26.17 25.87 26.58 25.11 26.40 26.20 28.13
64G-256G 26.30 25.29 24.56 25.29 26.34 25.97 27.05

With the same audio features used for the HMM/GMM experiments, a UBM
with 1024 Gaussians was trained over all the training set. The channel com-
pensation was performed with 100 channel factors. In Table 2 the average error
of the four classes over the training dataset, over the test dataset and over the
test dataset with a GBE calibration stage are shown. The first row shows the
results of the FA over the smoothed features with mean and standard deviation.
The use of the mean and the standard deviation for FA seems to be not a good
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Table 2. Classification error for oracle boundaries with FA systems using MFCCs and
Chroma features

TRAIN TEST

With Mean-Std - UBM 1024G - 100ChnF 3.24 55.21
Without Mean-Std - UBM 1024G - 100ChnF 14.77 22.91

solution based on the results of Table 2 where a good accuracy over the training
segments can be seen but a poor generalization over the test segments.

A very important issue for the channel compensation task is the early fusion
of various types of features. According to the results shown in Table 3 stacking
features seems not to be the best solution if we compare these figures with the
results shown in Table 2.

Table 3. Classification error for oracle boundaries with FA systems using MFCCs

TEST

MFCC16+Δ+ΔΔ - UBM 1024G - 100ChnF 21.25
MFCC16+Δ+ΔΔ - UBM 2048G - 100ChnF 20.81

Fig. 2 shows the error per class and the average error for those systems that
have better results in each table. The effectiveness of the HMM/GMM system as
a music detector compared with FA systems is evident. A possible explanation
for this behavior is that the U matrix was trained for all the classes and the
most important channel effect is the speech class because it represents 92% of
the database so when channel compensation is applied over the music segments,
a distortion is produced. On the other hand, the behavior of the FA in SN and
SP classes is much better than HMM/GMM.

4.2 Factor Analysis as a Segmentation System

Using the same HMM/GMM hierarchical system with the same audio features
that were used in the previous subsection, the error segmentation for different
number of states were calculated and the results are presented in Table 4. In this
case, it is clear that the best configuration for the segmentation task is with 8
HMM states instead of 6 states in the case of the classification task.

For the FA segmentation system we use the MFCC16+Δ+ΔΔ audio features
with 2048 Gaussians to train the UBM and 100 channel factor to model the
channel compensation. As it can be seen, this system was used in the previous
subsection yielding the best results in the classification task. The segmentation
is produced with the classification of 3 seconds segments with an overlap of 1.5
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Fig. 2. Comparison of error rate per class between HMM/GMM and FA systems

Table 4. Segmentation error with HMM-GMM systems

Gauss / States 3 4 5 6 7 8 9

32G-128G 39.97 34.76 32.88 31.47 30.85 30.43 31.31
64G-256G 39.27 33.66 31.11 30.91 30.99 29.37 31.59

seconds. In this case the transition probabilities between segments are not used
so there is no contextual information at all. With this framework, the difference
between the classification error and the segmentation error in the worst case
(MU-NOMU because we have more error rate) is evident and is shown in Fig.
3(a) where DET curves for oracle and non-oracle segmentation are compared. In
Fig. 3(b) the DET curves for every branch of the hierarchical system are plotted.

(a) (b)

Fig. 3. (a) DET curves for oracle boundaries vs non-perfect segmentation in the music
hierarchical level and (b) DET curves for every level of the hierarchical system

Table 5 shows the results plotted in Fig. 3(b) with the evaluation metric for
every class. The error for classes like MU or SM is still very high compared to
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the HMM/GMM error rate. Nevertheless, Fig. 4 shows the DET curves divided
by the length of each segment. It can be seen that for long segments, the GMM
is the best classifier but for short segments, FA system is much better than the
GMM.

Table 5. Segmentation error per class for the best HMM/GMM system and FA system

MU SM SN SP TOTAL

HMM/GMM-8states 15.93 23.43 38.66 39.48 29.37
Hierarchical FA 52.91 37.19 45.08 40.80 43.99

Fig. 4. DET curves GMM vs FA with different length of segments

5 Conclusion and Future Work

By means of classification experiments it has been shown that channel com-
pensation helps to classify segments decreasing the error rate and improving
the classification of all speech classes. These results justify the creation of a
whole-FA segmentation system following the same hierarchical structure used
for HMM/GMM. Although the segmentation error is very high, the better clas-
sification in short segments encourages to improve the system.

For future work, different window lengths and time advances will be imple-
mented to try to improve the segmentation. Also, other scoring methods different
than the linear scoring will be studied like those presented in [11]. In addition,
the class dependent training of several U matrices will be investigated creating
a new U matrix by stacking the different class dependent U matrices to decrease
the error in the MU class which is critical for the metric of the evaluation.
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Abstract. This study presents an approach to the task of automatically classify-
ing and detecting speaking styles. The detection of speaking styles is useful for 
the segmentation of multimedia data into consistent parts and has important ap-
plications, such as identifying speech segments to train acoustic models for 
speech recognition. In this work the database consists of daily news broadcasts 
in Portuguese television, on which two main speaking styles are evident: read 
speech from voice-over and anchors, and spontaneous speech from interviews 
and commentaries. Using a combination of phonetic and prosodic features we 
can separate these two speaking styles with a good accuracy (93.7% read, 
69.5% spontaneous). This is performed in two steps. The first step separates the 
speech segments from the non-speech audio segments and the second step clas-
sifies read versus spontaneous speaking style. The use of phonetic and prosodic 
features provides alternative information that leads to an improvement of the 
classification and detection task. 

Keywords: speaking styles, phonetic and prosodic features, speech classifica-
tion, event detection. 

1 Introduction 

A considerable worldwide mobilization of efforts has been emerging in order to de-
velop speech technology solutions. In a world where access to information is mainly 
acquired through multimedia services, the emergence of speech technologies and the 
lack of solutions based on such products lead to an increase in the need to generate 
segmented speech corpora. 

Manual segmentation, even when carried out by linguistic and annotator experts, 
has many disadvantages, such as the amount of time spent, the lack of unanimously 
conventional criteria, the susceptibility to incoherence and to human errors. Automat-
ic detection of speaking styles for segmentation purposes of multimedia data is one of 
the goals of the researchers in automatic speech processing, aiming to find a way of 
obtaining data in a more cost-effective way. The analysis and characterization of the 
speaking styles with a reliable feature set is also itself a topic for research in the 
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speech communication domain. Sociolinguistic and psycholinguistic studies, such as 
[1] and [2] were pioneers in that direction. 

Before starting to analyze any speech corpora in terms of style, a definition of what 
a speaking style is must be taken into account. There are some studies, as [3], which 
have defined different axes to better capture the nature of speaking styles. However, 
the concept of speaking style is not a closed definition and terms such as ‘clear 
speech’, ‘slow’ or ‘fast speech’, ‘spontaneous’, ‘informal’ or ‘casual speech’, 
‘planned’ or ‘read speech’, among others have been used and defined in many ways, 
almost as numerous as the authors who have dealt with the subject (see an overview 
in [4]). A closer glance in the literature also shows that there has not been one single 
specific feature capable of characterizing changes in speaking styles. On the one 
hand, acoustic characteristics were used by [5] in the context of the automatic speech 
recognition to differentiate spontaneous and read speech. On the other hand, studies 
such as [6] have hypothesized that prosody could be intertwined with phonetics for a 
better comprehension of the speech structure, as well as an improvement of the 
speech style classification, [7] and [8]. For Portuguese, we can mention works that 
had attempted to provide evidence of the hesitation events [9], [10] or the degree of 
relative hypo articulation of the surface forms [11], [12], in the continuous speech. 
Another study, [13], takes evidence of the rhythm of the speech to compare European 
and Brazilian Portuguese speaking styles. 

With this work we aim to distinguish the two most evident speaking styles in 
broadcast news: spontaneous speech and read speech. For this task we decided to 
explore the combination of a set of phonetic and prosodic features. For the same pur-
pose, we also intend to further explore the possibility of extending the performance of 
this set of features with previous results concerning the characterization of the hesita-
tion events [14]. 

In section 2 we briefly describe the data source used in our experiments. Section 3 
provides information about methodology procedure and section 4 presents the results. 
Final conclusions are drawn in section 5. 

2 Corpus Characterization 

Audio signal extracted from broadcast news (BN) of a Portuguese television channel 
podcast was used for training, test and evaluation purposes. The audio was downsam-
pled from 44.1 kHz to 16 kHz sampling rate and the video information is discarded. A 
total of 30 daily news programs were considered for this study, with a total duration 
of about 27 hours. The sound material contains studio and out of studio recordings, as 
well as sessions recorded from the telephone. Utterances by anchors and professional 
speakers, commentators, reporters, interviewers and interviewees are present in the 
audio. Prepared (reading) speaking style is dominant but, most of the time, speech is 
over background speech, noise or music. There are also non-speech events like music, 
jingles, laughter, coughing or clapping. 

All the audio has been carefully examined and annotated manually, using the Tran-
scriber software tool [15]. Four levels of annotation were considered. At the signal level 
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(first level), the labels are ‘speech’, ‘music’, ‘jingle’, ‘noise’, ‘cough’, ‘laugh’, ‘claps’, 
etc. The acoustical environment is the second level with the following labels: ‘clean’, 
‘music’, ‘stationary noise’, ‘speech overlapping’, ‘crowd noise’, ‘mixed-’ or ‘indistinct’ 
background. In this level speech over a telephone system was also annotated. The 
speaking style is identified in the third level, labeled as ‘Lombard’, ‘read’ and ‘sponta-
neous’ speech. Spontaneous speech is still differentiated into low-, middle- and high-
spontaneity, taking into consideration the occurrence of several fluency events such as 
hesitations. The speaker information corresponds to the fourth level, in which the 
speaker is identified whenever possible. The occurrence of foreign languages in the 
signal was also included in the labels. Table 1 shows all annotation levels. Only speech 
segments were annotated with levels 2, 3 and 4. All the non-speech annotations are 
grouped into a single label for the speech/non-speech classification. 

Table 1. Corpus annotation levels 

1 - Signal Level 2 – Acoustical Env. 3 – Speech Style 4 - Speaker 
Speech Clean (no noise) Prepared Anchor1 
Silence Music overlap Lombard Anchor2 
Music Speech overlap Unprepared (High) Journalist(M/F) 
Jingle Stationary noise Unprepared (Average) Male 
Noise Crowd noise Unprepared (Low) Female 
Clapping, etc. Mixed background  VIP(1,2,3…) 
 Indistinct background   
 Telephone   

3 Methods 

The proposed method of speech styles classification and detection combines a set of 
phonetic and prosodic features in order to improve their automatic classification and 
detection. The classification task uses acoustic signal and manual segments and the 
detection task uses only acoustic signal. The detection task performs automatic seg-
mentation based on the Bayesian Information Criterion (BIC) [16] and uses the same 
classifiers as the classification task. 

The phonetic features are based on the duration of the phones automatically recog-
nized from the segment signal. The phone recognition system used is based on hidden 
Markov models using phone acoustic models and a simple bigram model that  
constrains the allowable recognized phone sequence. Several phonetic features are 
computed using the phone durations and the recognition likelihood. The size of para-
meter vector is 214, corresponding to 5 statistical duration measures (mean, median, 
standard variation, maximum and minimum) and likelihood for each of the 35 phones 
(6x35=210) plus speaking and silent rates and durations. 

The prosodic features are based on the pitch (F0) and harmonic to noise ratio 
(HNR), acquired by the Praat tool [16]. The features for each speaking-style segment 
consist of first and second order statistics of the F0/HNR envelope in every voiced 
portion of the segment as well as the parameters of a polynomial fit of order 1 and 2 
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of that envelope. Other measures, such as F0/HNR reset rate (rate of voiced portions), 
speaking and silence duration rates, were also taken. In total the resulting prosodic 
parameter vector has 108 features. Consequently the vector representing the combina-
tion has a total of 322 features. 

3.1 Classification 

Two Support Vectors Machines (SVM) classifiers are trained: one for speech/non-
speech classification and one to distinguish the two speaking styles. The evaluation 
process uses the k-fold cross-validation paradigm (k=5). The results from the folds 
can be averaged to produce a single estimation. 

The SVM was trained with Sequential Minimal Optimization (SMO) [18] and for 
each classifier we chose the complexity parameter C in the SMO algorithm that 
achieves the best-weighted average value given in cross validation. In order to im-
plement this classification analysis we use the software WEKA (Waikato Environ-
ment for Knowledge Analysis, [19]) which is an open-source machine-learning tool, 
commonly used to train and test SVM classifiers. 

In the broadcast news corpora there are different background environments that 
can cover a wide range of noises and events that can be classified as noise. Also the 
presence of jingles, music, claps, and similar occurrences increase the difficulty of a 
correct automatic classification of audio segments. Thus, our approach is based on a 
two-step classification. Given an audio segment, we first classify it as non-speech or 
as a speech segment, regardless of the style and environment type. The second step 
consists of a classification that is applied only for the speech audio segments. This 
double step classification is an obvious choice since SVMs are binary classifiers. This 
allows a more precise speaking style classification since, hopefully, there are only 
speech segments to classify in this step. 

3.2 Automatic Segmentation 

Automatic detection task requires an automatic segmentation process followed by the 
classification.  

The acoustic segmentation method is based on the modified Bayesian Information 
Criterion (BIC) approach where the symmetric Kullback-Leibler distance is used in 
the first step to compute acoustic dissimilarity and the BIC measure is used on the 
second step to validate the detected segment boundaries. This approach was presented 
on [16] and is identified as distBIC. Sliding two consecutives windows with fixed 
size, and modeling each window by a Gaussian distribution, the distance between the 
two models is computed. High acoustic dissimilarity between windows results in a 
high distance value; so, the segment boundary is computed by finding significant 
local maximum on distance value. A threshold with hysteresis between the local  
maximum and enclosed local minimums is used to determine the significance of the 
local maximum. The threshold value is based on standard deviation of distance. 

The second step validates the segment boundaries by computing the delta BIC. In 
this step, three Gaussian distributions are used for each boundary candidate: one to 
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model the left windows, other to model right windows and another to model the 
acoustic data in both windows. A negative delta BIC value means that it is better to 
model left and right windows as two Gaussian distributions instead of one. 

In the automatic segmentation implementation, 16 Mel-frequency cepstral coeffi-
cients (MFCCs) plus logarithm of energy are used as acoustic features. Before the 
distBIC process, energy information is used to mark low energy segments with dura-
tion above 0.5 seconds. A threshold of 0.6 of distance standard deviation was used to 
select significant local maximum. The window size was 2 seconds and the sliding step 
was 0.1 second. These values are chosen empirically to maximize the segmentation 
accuracy. 

4 Results and Discussion 

The evaluations are carried out on two steps classification approach using phonetic 
and prosodic features as well as a combination of both features. 

Results with classification using manual segmentation are presented first. This task 
illustrates the performance of the trained classifiers. Two measures are presented to 
evaluate the detection task performance: the segmentation accuracy and F1-score; and 
the agreement time between references and classified labels. Table 2 shows statistics 
for the type of segments used for this evaluation. 

Table 2. Segment count and duration statistics 

Type of segment Number of segments 
Average duration 

(± std deviation) (s)  
Speech 7971 11.0 (± 9.4)  

Non-Speech 2529 4.1 (± 5.3) 
Read Speech 4989 10.6 (± 8.5) 

Spontaneous Speech 1738 12.0 (± 10.4) 

4.1 Speech/Non-speech Classification 

The first classification stage aims to distinguish speech segments from the remaining 
audio-segmented events. In the database the events considered as non-speech have a 
total duration of approximately three hours. Using the method described above we 
have obtained the values presented in Table 3.  

Table 3. Speech/Non-speech classification results. “Acc” stands for accuracy. 

Type of features Acc. Speech  Non-speech 
Phonetic 93.8% 96.7% 82.0% 
Prosodic 93.8% 97.5% 81.9% 

Combination 94.4% 97.6% 84.0% 
 



94 A. Veiga et al. 

 

The speech and non-speech groups have distinctive audio characteristics that ma-
nifest in distinct phonetic and prosodic characteristics. This may explain why the 
classification performance presents similar values for the two sets of features. Some 
of the misclassified events observed are due to the fact that some audio segments 
labeled as speech have intense music or noise background leading to a classification 
as non-speech segment. However, the association of phonetic and prosodic features 
leads to a better performance, showing the advantage of their combination. 

4.2 Read/Spontaneous Classification 

For the second step in the classification task we only considered the audio segments 
that were labeled as speech. In this particular group a small set of speech segments 
(Lombard and spontaneous-low speech) were not included because they lack charac-
teristics that can clearly fit them in the read/spontaneous distinction. Results in the 
prediction of correctly classified instances are shown in table 4. 

Table 4. Read/Spontaneous speech classification results. “Acc” stands for accuracy. 

Type of features Acc. Read Spontaneous 
Phonetic 83.2% 92.8% 55.4% 
Prosodic 86.4% 95.0% 61.6% 

Combination 87.4% 93.7% 69.5% 

Table 4 shows that the prosodic features resulted in better classifications over the 
phonetic ones, and that the combination approach provided a significant increase in 
spontaneous speech detection, leading to a slightly global improvement. 

4.3 Detection Performance 

The detection task is carried out by two processes: automatic segmentation and classi-
fication. The classification is performed similarly as above but using the new segmen-
tation and a different performance metric.  

4.3.1 Automatic Segmentation Performance 
The automatic segmentation is evaluated using the manual segmentation as reference 
mark and the performance is based on accuracy and F1-score. The accuracy shows the 
rate of correctly detected reference marks. A detected mark is assigned as correct if 
there is one reference mark inside a predefined threshold collar. Figure 1 shows the 
accuracies with collars from 0.5 to 2.0 seconds. 

In the segmentation procedure the two types of errors that can occur are misses - 
where a reference mark was not detected - and insertions - where a detected mark did 
not have a corresponding reference mark. Since the accuracy only relates to the miss 
error and the recall to the insertion error, the use of the F1-score that combines accu-
racy and recall can be used to show a global system performance (Fig. 2). 
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Fig. 1. Segmentation performance (Accuracy) for the audio signals using 4 collar values 

 
Fig. 2. Segmentation performance (F1-score) for the audio signals using 4 collar values 

It is harder to recover from a miss error than an insertion error. Therefore, the au-
tomatic segmentation was tuned in order to minimize miss errors at the cost of inser-
tion ones, causing lower F1-score values. 

4.3.2 Classification Performance 
The classification for automatic detection performance is based on agreement time 
between reference label and automatic classified label.  
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Table 5. Speech/Non-speech detection results. “AT” stands for agreement time. 

Type of features AT. Speech (87772 sec.) Non-speech (10287 sec.) 
Phonetic 91.5% 94.9% 62.2% 
Prosodic 93.2% 97.0% 61.0% 

Combination 93.3% 96.6% 64.9% 

The segments classified as speech on the first step (table 5) are used as input for 
the second classifier. The final results are presented in table 6. 

Table 6. Read/Spontaneous speech detection results. “AT” stands for agreement time. 

Type of features AT. Read (52622 sec.) Spontaneous (20917 sec.) 
Phonetic 76.7% 91.9% 38.6% 
Prosodic 81.1% 93.0% 51.2% 

Combination 83.3% 92.7% 59.6% 

Similarly to the classification procedure, the combination of features leads to the 
best detection performance. 

4.4 Final Remarks 

The above results are based on only a few and simple measures of the speech signal: 
statistics of phone durations and likelihoods and F0/HNR statistics. It is significant 
that such few measures could provide these reasonable results. 

The results suggest that the F0 envelopes and phone durations should have consis-
tent patterns that could differentiate audio segments. In fact, we have also tried to 
separate the audio segments into other classes, for instance, Jingle and Music 
(representing approximately 40% of the non-speech segments) versus other kind of 
segments. We achieved a detection of 76% of Jingle/Music, with 99% accuracy on 
other segments. The main characteristics of Music or Jingles are the long F0 patterns 
and probably, the long recognized phones. 

The detection of different acoustic speech environments was also examined but the 
results were poor (only 60% of global accuracy) which demonstrate that the consi-
dered features are not appropriate for this classification. For this acoustic environment 
detection, GMMs (Gaussian Mixture Models), for example, could lead to much better 
results [21]. 

5 Conclusions 

The result of this study provides a practical example, using broadcast news, of the 
importance of considering both prosody and phonetics in the characterization of 
speech in terms of its structure and style. Under the term of speaking styles, sponta-
neous and read speech were characterized automatically. Prosodic features were the 
best in classifying the two styles, but a combination of phonetic- and prosodic-based 
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classification provided even better results, and therefore both seem to have important 
and alternative information. The use of both phonetic and prosodic features together 
has been already explored by the authors for the detection of hesitation events (fillers) 
from the speech signal [9]. 

Using an approach through automatic audio segmentation based on BIC we also 
obtained reasonable results. This encourages our long-term objective: to automatically 
segment all audio genres and speaking styles. In other works we have already imple-
mented several important features, such as hesitations detection [14], aspiration detec-
tion using word spot techniques, speaker identification using GMM [20] and jingle 
detection based on audio fingerprint [22] that can be incorporated to achieve this goal.  

Furthermore, we believe that the study of the relevance of each SVM feature  
(ranking) is important, allowing to consider a smaller set of features that will perform 
classification with the same level of accuracy but with a reduction in time and resources.  

The identification of both prosodic and phonetic features to characterize different 
speaking styles in children’s speech is another intended extension of this study. 
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Abstract. The paper presents a set of experiments on pathological voice
detection over the Saarbrücken Voice Database (SVD) by using the Mul-
tiFocal toolkit for a discriminative calibration and fusion. The SVD is
freely available online containing a collection of voice recordings of dif-
ferent pathologies, including both functional and organic. A generative
Gaussian mixture model trained with mel-frequency cepstral coefficients,
harmonics-to-noise ratio, normalized noise energy and glottal-to-noise
excitation ratio, is used as classifier. Scores are calibrated to increase
performance at the desired operating point. Finally, the fusion of differ-
ent recordings for each speaker, in which vowels /a/, /i/ and /u/ are
pronounced with normal, low, high, and low-high-low intonations, of-
fers a great increase in the performance. Results are compared with the
Massachusetts Eye and Ear Infirmary (MEEI) database, which makes
possible to see that SVD is much more challenging.

Keywords: Pathological Voice Detection, Saarbrücken Voice Database,
GMM, Fusion, MultiFocal toolkit.

The detection of laryngeal pathologies through an automatic voice analysis is one
of the most promising tools for speech therapists, mainly due to its noninvasive
nature and its objectivity for making decisions. The performance of these systems
is nevertheless not perfect, and nowadays it is used as an additional source of
information for other laryngoscopial exams [1].

Researchers have focused their efforts on finding new features that could dis-
criminate between normal and pathological voices or even assess their quality,
but also on finding different approaches for classification. Some of the most useful
features are considered to be acoustic parameters such as mel-frequency cepstral
coefficients (MFCC) [17, 1], amplitude and frequency perturbation parameters
[9], and noise related parameters [2, 6], but there are different alternatives like
nonlinear analysis [3, 4]. Regarding to the classifiers, well-known approaches in
speech processing like hidden Markovmodels (HMM) [7], Gaussian mixture mod-
els (GMM) [1], multilayer perceptrons (MLP) [8], or support vector machines
(SVM) [9], have been studied.
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Most of the works in the literature make use of the MEEI database, openly
commercialized by Kay Elemetrics [12]. In other cases, private databases col-
lected in local hospitals are the alternative. However, recently a new open and
freely downloadable database, the SVD [13], has been recorded by the Institute
of Phonetics of Saarland University. On it, sustained /a/, /i/ and /u/ vowels,
pronounced with normal, low, high and low-high-low intonations, and a spoken
sentence in German, are found, what make of this database a very complete set
to conduct experiments, and easy to reach by all the community. No previous
results for voice pathology detection have been found on it, and with this work
we also aim at proposing a baseline for future research.

Experiments related with pathological voices can be focused on three main
tasks. While the most simple and direct idea is to classify voices as pathological or
normal, like in [2, 6, 7, 10, 11], another goal is to assess voice quality according to
a perceptual scale, like GRBAS [24, 25], DSI [27, 28] or VPA [26], among others.
A third typical problem is to identify a specific pathology, like for example,
functional dysphonia in [28], nodules and other laryngeal injuries in [9], or polyps,
keratosis leukoplakia, adductor spasmodic dysphonia and vocal nodules in [5].

The work developed in [11] explores different configurations for a GMM clas-
sifier to detect pathological voices, fed with MFCC, harmonics-to-noise ratio
(HNR) [14], normalized noise energy (NNE) [15] and glottal-to-noise excitation
ratio (GNE) [16]. The performance is tested on the MEEI database, and only
files with recordings of vowel /ah/ sustained are used. A 30-fold strategy is fol-
lowed and several random partitions are created to average results. The best
performance is obtained with 3 Gaussians and 16 MFCCs, and the area under
the curve (AUC) [18] is 0.98459, with the 95.49% of the pathological files and
90.70% of the normal files correctly classified. In addition, the same study is
performed in different environments, such as MP3 compression and telephone
channel distortion.

In this work, we have tried to follow the guidelines marked in [11] to discrim-
inate between normal and pathological voices, extrapolating the techniques to
the SVD, and taking benefit of the MultiFocal toolkit [19] for fusing different
subsystems. MultiFocal toolkit is a toolkit developed by Niko Brümmer, and is
widely used among the speaker and language recognition community.

The rest of the paper is organized as follows: in Section 1, the MEEI database
and the SVD are presented; in Section 2, the features extracted from the audio
are described; in Section 3, it is detailed how a GMM classifier works; in Section
4, a brief description of MultiFocal toolkit is given: in Section 5, the experiments
that have been performed are presented and analyzed, for the two databases
mentioned above; and in Section 6, the conclusions of this work are drawn.

1 Databases

1.1 MEEI, Kay Elemetrics

The same configuration adopted in [2, 6, 11] has been taken for the present
work. There, 226 recordings of the whole database were used, corresponding to
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vowel /ah/ sustained. From this subset, 173 files belong to pathological patients
and 53 to normal speakers. Male and female speakers covering ages from 21 to
59 are uniformly distributed in both groups. The mean length of pathological
recordings is 1 second and the one of normal recordings is 3 seconds. All files are
converted to a common sampling frequency of 25 kHz and 16-bit resolution.

1.2 SVD, Saarland University

This database has been recently made freely available online [13]. It is a collection
of voice recordings from more than 2000 persons, where a session is defined as a
collection of:

– recordings of vowels /a/, /i/, /u/ produced at normal, high, low and low-
high-low pitch.

– recording of sentence ”Guten Morgen, wie geht es Ihnen?” (”Good morning,
how are you?”).

That makes a total of 13 files per session. In addition, the electroglottogram
(EGG) signal is also stored for each case in a separate file. The length of the files
with sustained vowels is between 1 and 3 seconds. All recordings are sampled
at 50 kHz and their resolution is 16-bit. 71 different pathologies are contained,
including both functional and organic. For our experiments only files with sus-
tained vowels and people older than 18 are used. A total of 1970 sessions are
kept, after discarding those where some of the recordings were missing or dam-
aged. 1320 (609 males and 711 females) sessions belong to pathological speakers
and 650 (400 males and 250 females) to normal speakers.

2 Features

The features used in this work are divided in two groups, according to their
nature: acoustic features, represented by the MFCC, where the aim is to charac-
terize the frequency content of the signal; and noise related features, represented
by HNR, NNE and GNE, where the aim is to measure how good the quality of
the signal is, or simply, how noisy it is.

2.1 Acoustic Features

MFCC are a family of parameters widely used for many tasks related with speech
processing. It makes a frequency analysis of the signal based on the human per-
ception of the sounds. This idea matches well with the fact that an experienced
speech therapist can detect the presence of a disorder just by listening to the
signal [10].

In the extraction procedure, after downsampling to 25 kHz, a 40 ms window
with 50% overlap has been used, with a bank of 30 Mel filters, to obtain 15
MFCC plus log-energy. The first two and last two frames have been discarded to
avoid possible errors in the edges of the recordings, like peaks due to the on and
off switches. Finally, the coefficients are mean and variance normalized within
each file.
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2.2 Noise Related Features

Harmonics-to-Noise Ratio. HNR was introduced to measure in an objective
manner the perceptual feeling of hoarseness in the voice [14]. To calculate it,
the signal is firstly downsampled to 16 kHz, and split into 25 ms length frames,
with 10 ms shift. In each frame, a comb filter is applied to the signal to compute
the energy in the harmonic components. To the logarithm of this quantity, the
log-energy of the noise is substracted to get the HNR.

Normalized Noise Energy. In a similar process to the calculation of the HNR,
and also with the signal downsampled to 16 kHz and with 25 ms length frames
and 10 ms shift, the noise estimation is calculated and normalized by the total
energy of the signal. This was first used in [15] and it assumes that pathological
voices are noisier than normal voices.

Glottal-to-Noise Excitation Ratio. The goal of this parameter is to compare
the amount of signal due to vocal folds vibration with the amount of signal due
to noise produced by air turbulences produced during phonation [16]. It is a good
measurement of breathiness, although not the only factor that can cause it. To
compute it, the signal is first downsampled to 10 kHz, and frames of 40 ms length
with 20 ms shift are taken. For each frame, the spectrum is divided into bands
of 2000 Hz with centers separated 500 Hz. For each of these bands, the Hilbert
envelope in time domain is calculated and the correlation of this envelope with
the envelopes of the bands separated more than half of the bandwidth (in this
case, bands must be at least 1000 Hz) is computed. The GNE is the maximum of
all correlations. If the voice is not pathological, the correlation should be high,
because all bands should be excited at the same time when the glottis is closed.

3 GMM Classifier

The features extracted from the signal are used to train a generative GMM
model [22] for each class. This model is the basis for many speech processing
tasks, like speech, speaker, or language recognition. It is a generalization of the
Gaussian model, and it permits to generate much more complicated likelihood
functions.

For D-dimension features x calculated in a frame-by-frame basis, a GMM
probability density function has the form

p(x|ω, μ,Σ) =

K∑
k=1

ωkN (x|μk, Σk), (1)

where K is the number of Gaussians in the model, ωk is the weight of the
kth Gaussian, and N (x|μk, Σk) is the Gaussian function with mean μk and
covariance Σk.
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To train this model the expectation-maximization (EM) algorithm [23] has
been used. K random Gaussians are generated for initialization and 10 iterations
of the algorithm are performed. Full-covariance matrices are used. Then for each
test file y, the likelihoods for pathological and normal classes are calculated,
calibrated as explained in next section, and the log-likelihood ratio between
them is obtained as

LLK(y) = log p(y|pathological)− log p(y|normal), (2)

which will decide to which class the file belongs.

4 Calibration and Fusion with MultiFocal Toolkit

In pathology detection, the traditional metrics to evaluate the performance of
the classifiers are:

– the area under the receiver operating characteristic (ROC) curve (AUC) [18]
– equal-error-rate (EER), point in ROC where the probability of miss is equal

to the probability of false alarm
– correct classification rate (CCR), percentage of trials correctly classified
– error rate (ER), percentage of trials wrong classified, complementary to CCR
– sensitivity (S), ability of the classifier to detect the target class
– specifity (E), ability of the classifier to detect the impostor class

AUC and EER are calibration-insensitive evaluation metrics, and the last four
are calibration-sensitive metrics. Since we are interested in a specific operating
point, that is, in the hard decisions made by our classifier, we find more interest-
ing to evaluate the real performance of our classifier with a calibration-sensitive
metric than with AUC and EER. AUC and EER can be useful in early stages
of our system development, when hard decisions are not of immediate interest
and we are only interested in the goodness of uncalibrated scores [20].

In addition, two more metrics that we consider meaningful are the detection
cost function (DCF) or empirical Bayes risk, and its minimum value for the
selected operating point (minDCF) [19]. DCF is defined as

DCF = πCmissPmiss + (1 − π)CfaPfa, (3)

where π is the prior probability of the target class, in our case the pathological
voice, Cmiss and Cfa are the costs of a miss, that is, a pathological voice classified
as normal, and a false alarm, that is, a normal voice classified as pathological,
respectively, and Pmiss and Pfa are the probabilities of a miss and a false alarm.
It is a calibration-sensitive metric, since it depends on the current threshold.
However, minDCF is calibration-insensitive, and it gives the minimum cost that
could have been obtained with optimal calibration, at every operating point. It
is calculated by varying the threshold from −∞ to ∞ for each operating point,
and then picking the minimum.

MultiFocal is a toolkit developed in Matlab primarily designed for calibrating
and fusing scores of a language recognition task [19]. The aim of using this toolkit
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is twofold: i) to calibrate scores so cost effective Bayes decisions can be made,
by setting the threshold to the Bayes decision threshold, η,

η = log
Cfa

Cmiss
− logit(π); (4)

ii) to fuse scores coming from different recognizers to obtain a better recognizer.
The idea behind calibration is that scores are converted in such a way that

the Bayes decision threshold can be used for making the best possible decisions.
Equivalently, the user could tune the threshold manually to minimize the error
metric.

To calculate calibrated log-likelihoods, MultiFocal optimizes another
calibration-sensitive metric, Cllr [21]. Cllr is defined as

Cllr = − 1

T

T∑
t=1

ωt log2 Pt, (5)

where T is the number of trials, ωt is a weight to normalize the class proportions
in the evaluation trials,

ωt =
πc(t)

Qc(t)
(6) , Qi =

nr. of trials of classHi

T
, (7)

c(t) is the true class of trial t, πi the prior of class i, Pt is the posterior probability
of hypothesis Hc(t) of true class given the vector of calibrated log-likelihoods,
l′(xt), at trial t,

Pt = P (Hc(t)|l′(xt)) =
πc(t)e

l′c(t)(xt)

πc(t)e
l′
c(t)

(xt) + πc̄(t)e
l′
c̄(t)

(xt)
, (8)

being c̄(t) the impostor class at trial t, and xt the observation at t. As we are in
a 2-class problem, c(t) ∈{‘0’,‘1’}, being ‘0’ the label for the target class, and ‘1’
the label for the impostor class.

Cllr has the sense of a cost and it is measured in terms of bits of information.
0 ≤ Cllr ≤ ∞, being 0 for perfect recognition.

Well-calibrated log-likelihoods, l′(xt), are the final output of our calibration
procedure. They are obtained as,

l′(xt) = αl(xt) + β, (9)

where l(xt) is the uncalibrated log-likelihood obtained from the classifier. Then,
through the mimization of Cllr , we obtain the scalar α, that scales our out-
puts, and the vector β, that shifts our outputs. The optimization is made via a
discriminative logistic regression.

More generally, to fuse K systems what we want is our calibrated log-
likelihoods to be a linear combination of the uncalibrated log-likelihoods of the
K systems,

l′(xt) =

K∑
k=1

αklk(xt) + β. (10)
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As we can check, the fusion is a generalization of the calibration of a single
system (where K=1), and since the fusion is also a calibration, because of the
linearity of the operation, there is no need to pre-calibrate each input system,
or to post-calibrate the fusion [19].

5 Experiments

The experiments conducted in this work are divided in two, according to the
database tested. First, results for the MEEI datatabase will be shown. We have
followed a similar procedure to [11]. This will be useful to compare our classifier
with a state of the art system. After this check, our classifier will be used to test
the SVD. This database will make possible to show how the fusion of different
sources of information increase the performance of the system. The results will be
given in terms of the traditional metrics described in Section 4, AUC, EER, CCR,
ER, S and E, and also in terms of DCF and minDCF as additional information
to check how good the calibration is. Finally, a confidence interval (CI) at 95%
confidence (α = 0.05) will be given for each experiment. Note that it is computed
over the CCR.

For all our experiments, Cfa = Cmiss = 1, π0 = π1 = 0.5, and threshold equal
to the Bayes decision threshold, in our case η=0.

5.1 Results on MEEI

The database is divided in 30 folds, in the same manner as in [11]. For every
test fold, the remaining 29 are used for training. Then, an average performance
measure is extracted from the 30. GMMs with 3 components are trained. This is
the optimal number found in [11]. One difference with [11] is that all recordings of
the same speaker are grouped into the same fold, in such a way that one speaker is
not in the training and test subsets at the same time. This will avoid recognizing
the speaker instead of the pathology. Note that a slight drop in performance
could be seen as a consequence, compared to the experiments in [11].

In table 1, results between normal and pathological classes are shown, where
every recording is considered as a trial. The features are 19 dimensional, includ-
ing 15 MFCCs plus log-energy, HNR, NNE and GNE, previously normalized in
mean and variance. A comparison between results with and without calibration
is done. As we can see, the calibration-insensitive metrics, AUC and EER, do not
change. However, S, E, CCR and ER, indicate that something has changed. With
calibration our system detects better both normal and pathological classes. The
reason is that the scores have been transformed in such a way that the posterior
probabilities of the true class are maximized, what at the same time minimizes
the Bayes risk, because now the Bayes decision threshold will be the optimal one
to make decisions. Note that we have trained the calibration with the data under
test, and this gives the optimal values for α and β. In a real system, these values
should be trained before any clinical evaluation, and the performance would not
probably be optimal. However, in this way an upper bound of the results is ob-
tained, and this is more reliable for comparison with other systems tested over
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Table 1. Evaluation metrics for the experiments on MEEI database. Averages over 30
folds.

Metric AUC EER CCR ER S E CI DCF minDCF
Calibrated 0.943 0.048 0.948 0.052 0.949 0.950 0.071 0.050 0.033
Uncalibrated 0.943 0.048 0.923 0.077 0.950 0.850 0.123 0.099 0.033
Work in [11] 0.985 - 0.943 0.057 0.955 0.907 0.034 0.069 -

the same data, since there is no dependence on any development data used for
training the calibration.

We consider DCF a reasonable criterion to choose one classifier or another,
because it weights both kind of errors, misses and false alarms, at the desired
operating point. minDCF will tell us how good our system could have been
with a perfect calibration. In turn, AUC and EER are evaluation metrics of
the performance of our system considering all operating points. Also in table
1, DCF and minDCF can be found for the experiments made with MEEI. In
[11] they have actually worked at the operating point given by EER, but we do
not know the values for Cfa, Cmiss and π. Assuming they are the same as ours
(which can be an unfair but reasonable assumption since they work at EER and
their effective prior is 0.5, what would give those values of Cfa, Cmiss and π,
for η =0), in terms of DCF, our system performs better. However, their AUC
is very good, and it would probably give better estimated DCF if a calibration
had been performed.

5.2 Results on SVD

In this case, 12 subsets of data are created by grouping separately the recordings
belonging to /a/, /i/, and /u/, pronounced with normal, low, high, and low-
high-low intonation. Then, for each one of these subsets a 30-fold strategy is
followed. Also 3 components are trained in the GMM. In this case, grouping
of the same speaker into the same subset is not guaranteed, what could give
optimistic results. In short, the same procedure as in Section 5.1 is followed for
each subset. In table 2, results for the same 19 dimension features as above are
shown in terms of AUC, EER, CCR, ER, S, E, CI, DCF, and minDCF. Only
calibrated results are shown. The behavior of the classifier for each vowel and
intonation is interesting. It seems that the recognition rate is slightly better for
/a/, but the differences are small. It can be checked that for /a/, normal and
low intonations help the most, for /i/ all intonations behave similar, and for /u/,
the normal intonation is the least discriminative.

Next, a partial fusion is made for each vowel, where the 4 intonations of each
one are fused. This is made for every fold and then all folds are averaged. In
table 2 this is in the last line of each vowel. It can be seen that the results
are improved with regard to the case with every vowel and intonation tested
individually, and that the classifier built with /a/ outperforms the ones with /i/
and /u/. However, looking at the confidence interval, no definitive conclusions
should be made.
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Table 2. Evaluation metrics for the experiments on SVD. Averages over 30 folds.
Intonations are N: normal; L: low; H: high; and LHL: low-high-low.

Metric AUC EER CCR ER S E CI DCF minDCF
Vowel /a/
N 0.747 0.321 0.670 0.330 0.636 0.739 0.112 0.313 0.270
L 0.743 0.335 0.656 0.340 0.650 0.680 0.114 0.334 0.286
H 0.722 0.336 0.666 0.334 0.655 0.687 0.112 0.328 0.285
LHL 0.702 0.353 0.645 0.355 0.640 0.655 0.114 0.352 0.304
Fusion /a/ 0.804 0.277 0.718 0.282 0.701 0.752 0.108 0.273 0.234

Vowel /i/
N 0.702 0.350 0.645 0.355 0.627 0.682 0.114 0.345 0.305
L 0.705 0.348 0.642 0.358 0.620 0.687 0.115 0.347 0.303
H 0.700 0.354 0.640 0.359 0.629 0.664 0.115 0.352 0.305
LHL 0.679 0.373 0.639 0.361 0.652 0.612 0.116 0.368 0.322
Fusion /i/ 0.783 0.283 0.710 0.290 0.694 0.741 0.110 0.282 0.247

Vowel /u/
N 0.706 0.354 0.634 0.366 0.615 0.671 0.116 0.357 0.307
L 0.712 0.342 0.646 0.354 0.624 0.692 0.115 0.342 0.301
H 0.713 0.348 0.640 0.356 0.619 0.684 0.116 0.348 0.293
LHL 0.715 0.344 0.666 0.334 0.678 0.642 0.114 0.340 0.293
Fusion /u/ 0.797 0.282 0.715 0.284 0.702 0.741 0.108 0.278 0.242

Fusion 0.879 0.206 0.794 0.206 0.778 0.826 0.095 0.198 0.165

Finally, a global fusion with all vowels and intonations is made for each fold,
and as before, all folds are averaged to obtain a single figure for each of the
metrics. This is in the last line of table 2. Actually, we do not fuse different
systems, but the same system trained on different data. A huge increase in
performance is obtained. Comparing with the best result without fusion (/a/
normal), the increase in perfomance is 17.67% for the AUC, 35.83% for the
EER, and 36.74% for the DCF. We believe that the main reason is the fact
of having much more data, and containing different information, because they
come from different vowels and intonations. Again, these results are optimal in
terms of the fusion, since the fusion parameters have been trained on the test
data. If we compare this fusion with the partial fusion of each vowel, it can be
seen that all vowels contribute to the improvement, because the global fusion
outperforms the partial ones.

6 Conclusions

A new voice database, the SVD, has been evaluated for the task of pathology
detection. The amount of recordings of different sounds and intonations included
in this database makes possible to conduct different and interesting experiments.
This is an open and free database available online. A robust GMM with 3 com-
ponents, trained on MFCC, HNR, NNE and GNE, has been used as classifier,
and the effect of calibration has been shown. Finally, a fusion of the classifiers
trained on /a/, /i/ and /u/, pronounced with normal, low, high and low-high-low
intonations, has been performed, showing that every sound gives different infor-
mation to the system and their combination offers a huge improvement: 17.67%
for the AUC and 36.75 % for the DCF. As future work we plan to test the effect
of the number of Gaussians on the performance and other methods for fusing,
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such as a simple concatenation of files of the same session. In addition, this work
is thought to be a starting point for a further research with the SVD database,
which is currently being perceptually classified according to the GRABS scale
by a speech therapist of the Bioingenieŕıa y Optoelectrónica (ByO) group at the
Universidad Politécnica de Madrid.
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Abstract. The article presents a set of experiments on pathological
voice detection over the Saarbrücken Voice Database (SVD). The SVD
is freely available online containing a collection of voice recordings of
different pathologies, both functional and organic. It includes recordings
for more than 2000 speakers in which sustained vowels /a/, /i/, and /u/
are pronounced with normal, low, high, and low-high-low intonations.
This variety of sounds makes possible to set different experiments, and
in this paper a comparison between the performance of a system where
all the vowels and intonations are pooled together to train a single model
per class, and a system where a different model per class is trained for
each vowel and intonation, and the scores of each subsystem are fused
at the end, is conducted. The first approach is what we call audio level
fusion, and the second is what we call score level fusion. For classifica-
tion, a generative Gaussian mixture model trained with mel-frequency
cepstral coefficients, harmonics-to-noise ratio, normalized noise energy
and glottal-to-noise excitation ratio, is used. It is shown that the score
level fusion is far more effective than the audio level fusion.

Keywords: Pathological Voice Detection, Saarbrücken Voice Database,
GMM, Fusion, MultiFocal toolkit.

1 Introduction

The detection of laryngeal pathologies through an automatic voice analysis is one of the
most promising tools for speech therapists, mainly due to its noninvasive nature and
its objectivity for making decisions. The performance of these systems is nevertheless
not perfect, and nowadays it is used as an additional source of information for other
laryngoscopial exams [1].

Researchers have focused their efforts on finding new features that could discriminate
between normal and pathological voices or even assess their quality, but also on finding
different approaches for classification. Some of the most useful features are considered
to be acoustic parameters such as mel-frequency cepstral coefficients (MFCC) [17, 1],
amplitude and frequency perturbation parameters [9], and noise related parameters
[2, 6], but there are different alternatives like nonlinear analysis [3, 4]. Regarding to
the classifiers, well-known approaches in speech processing like hidden Markov model
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(HMM) [7], Gaussian mixture model (GMM) [1], multilayer perceptron (MLP) [8], or
support vector machine (SVM) [9], have been studied.

Experiments related with pathological voices can be focused on three main tasks.
While the most simple and direct idea is to classify voices as pathological or normal, like
in [2, 6, 7, 10, 11], another goal is to assess voice quality according to a perceptual scale,
like GRBAS [22, 23], DSI [25, 26] or VPA [24], among others. A third typical problem is
to identify a specific pathology, like for example, functional dysphonia in [26], nodules
and other laryngeal injuries in [9], or polyps, keratosis leukoplakia, adductor spasmodic
dysphonia and vocal nodules in [5].

The main difficulty when facing a pathological voice related experiment is the
database acquisition. Most of the works in the literature make use of the MEEI
database, openly commercialized by Kay Elemetrics [12]. But the amount of recordings
is limited and current approaches already give excellent performance, being difficult
to evaluate improvements of new ideas. In other cases, private databases collected in
local hospitals are the alternative. This is costly and generally they are not public.
However, recently a new open and freely downloadable database, the SVD [13], has
been recorded by the Institute of Phonetics of Saarland University. On it, sustained
/a/, /i/ and /u/ vowels, pronounced with normal, low, high and low-high-low into-
nations, and a spoken sentence in German, are found, what make of this database a
very complete set to conduct experiments, and easy to reach by all the community.
In [27] a first approach is conducted to test this database on a pathological voice de-
tection task, with GMMs as classifier, MFCC, harmonics-to-noise ratio (HNR) [14],
normalized noise energy (NNE) [15], and glottal-to-noise excitation ratio (GNE) [16],
as features. Calibration and fusion of scores coming from the subsystems built with
each vowel and intonation is performed with MultiFocal toolkit [18]. MultiFocal toolkit
is a toolkit developed by Niko Brümmer, and is widely used among the speaker and
language recognition community. The fusion results are shown to be very promising.

In this work, following the guidelines marked in [11] to discriminate between normal
and pathological voices, a comparison between the fusion techniques used in [27] and
a pool-of-data strategy is conducted, where instead of fusing different systems trained
on each vowel and intonation, a single system trained on all vowels and intonations
pooled together is used.

The classifier used in this work was also evaluated on MEEI database in [27]. The
results were close to similar approaches in the bibliography, like [11]. Concretely, the
Area Under the Curve (AUC) was 0.943 and 94.93% of pathological files and 95.00%
of the normal files were correctly classified.

The rest of the paper is organized as follows: in Section 2, the SVD is presented; in
Section 3, the features extracted from the audio are described; in Section 4, the classi-
fication, calibration and fusion procedures are explained; in Section 5, the experiments
that have been performed are presented and analyzed, for the two strategies mentioned
above; and in Section 6, the conclusions of this work are drawn.

2 Saarbrücken Voice Database

This database has been recently made freely available online [13]. It is a collection of
voice recordings from more than 2000 persons, where a session is defined as a collection
of:

– recordings of vowels /a/, /i/, /u/ produced at normal, high, low and low-high-low
pitch.
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– recording of sentence ”Guten Morgen, wie geht es Ihnen?” (”Good morning, how
are you?”).

That makes a total of 13 files per session. In addition, the electroglottogram (EGG)
signal is also stored for each case in a separate file. The length of the files with sus-
tained vowels is between 1 and 3 seconds. All recordings are sampled at 50 kHz and
their resolution is 16-bit. 71 different pathologies are contained, including both func-
tional and organic. For our experiments only files with sustained vowels and people
older than 18 are used. A total of 1970 sessions are kept, after discarding those where
some of the recordings were missing or damaged. 1320 (609 males and 711 females)
sessions belong to pathological speakers and 650 (400 males and 250 females) to normal
speakers.

3 Features

The features used in this work are divided into two groups, according to their nature:
acoustic features, represented by the MFCC, where the aim is to characterize the
frequency content of the signal; and noise related features, represented by HNR, NNE
and GNE, where the aim is to measure how good the quality of the signal is, or simply,
how noisy it is.

3.1 Acoustic Features

MFCC are a family of parameters widely used for many tasks related with speech
processing. It makes a frequency analysis of the signal based on the human perception
of the sounds. This idea matches well with the fact that an experienced speech therapist
can detect the presence of a disorder just by listening to the signal [10].

In the extraction procedure, after downsampling to 25 kHz, a 40 ms window with
50% overlap has been used, with a bank of 30 Mel filters, to obtain 15 MFCC plus
log-energy. The first two and last two frames have been discarded to avoid possible
errors in the edges of the recordings, like peaks due to the on and off switches.

3.2 Noise Related Features

Harmonics-to-Noise Ratio. HNR was introduced to measure in an objective
manner the perceptual feeling of hoarseness in the voice [14]. To calculate it, the signal
is firstly downsampled to 16 kHz, and split into 25 ms length frames, with 10 ms shift.
In each frame, a comb filter is applied to the signal to compute the energy in the
harmonic components. To the logarithm of this quantity, the log-energy of the noise is
substracted to get the HNR.

Normalized Noise Energy. In a similar process to the calculation of the HNR,
and also with the signal downsampled to 16 kHz and with 25 ms length frames and 10
ms shift, the noise estimation is calculated and normalized by the total energy of the
signal. This was first used in [15] and it assumes that pathological voices are noisier
than normal voices.
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Glottal-to-Noise Excitation Ratio. The goal of this parameter is to compare
the amount of signal due to vocal folds vibration with the amount of signal due to noise
produced by air turbulences produced during phonation [16]. It is a good measurement
of breathiness, although not the only factor that can cause it. To compute it, the signal
is first downsampled to 10 kHz, and frames of 40 ms length with 20 ms shift are taken.
For each frame, the spectrum is divided into bands of 2000 Hz with centers separated
500 Hz. For each of these bands, the Hilbert envelope in time domain is calculated and
the correlation of this envelope with the envelopes of the bands separated more than
half of the bandwidth (in this case, bands must be at least 1000 Hz) is computed. The
GNE is the maximum of all correlations. For a normal voice, the correlation should be
high, because all bands should be excited at the same time when the glottis is closed.

4 Classification, Calibration and Fusion

4.1 Classification

The features extracted from the signal are used to train a generative GMM [21] for
each class. For D-dimension features x calculated in a frame-by-frame basis, a GMM
probability density function has the form

p(x|ω,μ,Σ) =
K∑

k=1

ωkN (x|μk, Σk), (1)

where K is the number of Gaussians in the model, ωk is the weight of the kth Gaussian,
and N (x|μk, Σk) is the Gaussian function with mean μk and covariance Σk.

For each test file y, the likelihoods for pathological and normal classes are calculated,
calibrated as explained in section 4.2, and the log-likelihood ratio between them is
obtained as

LLK(y) = log p(y|pathological)− log p(y|normal), (2)

which will decide to which class the file belongs.
The metrics to evaluate the performance used in this work are the AUC of the re-

ceiver operating characteristic (ROC), the equal-error-rate (EER), the detection cost
function (DCF) or empirical Bayes risk, and its minimum value for the selected oper-
ating point (minDCF) [18]. DCF is defined as

DCF = πCmissPmiss + (1− π)CfaPfa, (3)

for a false alarm cost Cfa, a miss cost Cmiss, a prior probability for the target class π, a
false alarm probability Pfa, and a miss probability Pmiss. DCF is a calibration-sensitive
metric, since it depends on the current threshold. However, minDCF is calibration-
insensitive, and it gives the minimum cost that could have been obtained with optimal
calibration, at every operating point. It is calculated by varying the threshold from −∞
to ∞ for each operating point, and then picking the minimum. AUC and EER are also
calibration-insensitive metrics. We are interested in the hard decisions made by our
classifier to decide if a voice is pathological or not, therefore we find more interesting
to use calibration sensitive metrics like DCF. AUC and EER can be useful in early
stages of our system development, when hard decisions are not of immediate interest
and we are only interested in the goodness of uncalibrated scores [19].
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4.2 Calibration and Fusion

MultiFocal toolkit [18] is used for calibration and fusion. This toolkit developed in
Matlab is primarily designed for calibrating and fusing scores of a language recognition
task. The goal of the toolkit is twofold: i) to calibrate scores so cost effective Bayes
decisions can be made, by setting the threshold to the Bayes decision threshold, η,

η = log
Cfa

Cmiss
− logit(π), (4)

being the pathological voices our target class; and ii) to fuse scores coming from dif-
ferent recognizers to obtain a better recognizer. In our experiments, Cfa = Cmiss = 1,
π0 = π1 = 0.5, and threshold equal to the Bayes decision threshold, in our case η=0.

The idea behind calibration is that our scores are converted in such a way that the
Bayes decision threshold can be used for making the best possible decisions. Equiva-
lently, the user could tune the threshold manually to minimize the error metric.

To calculate calibrated log-likelihoods, l′(xt), MultiFocal optimizes another
calibration-sensitive metric, Cllr, through a discriminative logistic regression, and ob-
tains a scalar α, and a vector β [20]. Then

l′(xt) = αl(xt) + β, (5)

where l(xt) is the uncalibrated log-likelihood obtained from the classifier.
More generally, to fuse K systems what we want is our calibrated log-likelihoods to

be a linear combination of the uncalibrated log-likelihoods of the K systems,

l′(xt) =
K∑

k=1

αklk(xt) + β. (6)

As we can check, the fusion is a generalization of the calibration of a single system
(K=1), and since the fusion is also a calibration, due to the linearity of the operation,
there is no need to pre-calibrate each input system, or to post-calibrate the fusion [18].

5 Experiments

The experiments conducted in this work are divided in two, according to the strategy
followed to combine all the different varieties of sounds. The first strategy is the one
implemented in [27], where an individual subsystem is trained for each vowel and
intonation, and a discriminative score level fusion of all the subsystems is performed
with MultiFocal toolkit. We will revise this experiment in the first part of section 5.1.
In the second part of this section, an experiment has been configured with a single
common GMM trained with all the files of all vowels and intonations, and the fusion
is made with the scores tested over this common model. This will make possible to see
if the different sounds are correlated and we can take benefit from one to the other.
The second strategy trains a unique model per class by concatenating all the files with
the different sounds belonging to the same speaker, and in the test phase, all the files
belonging to the same speaker are also concatenated and tested over this model as a
single file. This is called audio level fusion.

The features used as input for our classifiers will be 19-dimensional, including 15
MFCC + log-energy + HNR + NNE + GNE, all of them mean and variance normalized
within each file. A 30-fold strategy is followed in all experiments, in which for every test
fold, the remaining 29 are used for training. Then, an average performance measure is
extracted from the 30, in the same manner as in [11].
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Table 1. Metrics with score level fusion and individual models for each vowel and
intonation for 3, 6, 8, 16 and 36 Gaussians. Average over 30 folds.

Metric AUC EER DCF minDCF
3 G 0.879 0.206 0.198 0.165
6 G 0.891 0.226 0.228 0.169
8 G 0.886 0.191 0.187 0.158
16G 0.890 0.190 0.184 0.148
36 G 0.899 0.274 0.274 0.191

5.1 Score Level Fusion

Score Level Fusion with Individual Training Subsets In this case, 12 sub-
sets of data are created by grouping the recordings of all speakers belonging to the
same vowel and intonation. That is, different subsets for the vowels /a/, /i/, and /u/,
pronounced with normal, low, high, and low-high-low intonation are created. With each
subset a different model is trained, and in the test phase, every vowel and intonation
is tested against its model and the scores are fused at the end. A graphical view of the
model is in figure 1. This is the same experiment made in [27], and the results for each
vowel and intonation can be consulted in this reference. Averaged fused results for 3, 6,
8, 16 and 36 Gaussians are included in table 1. As we can see, there is not a significant
improvement when increasing the number of Gaussians. Remember that every model
is trained with data of only one vowel and intonation, and thus the number of modes in
each dataset is not big. The model with 16 Gaussians gives slightly better perfomance
than the others.

Fig. 1. Score level fusion scheme with one model per vowel and intonation

The analysis of each vowel and intonation individually is also in [27], but we will
summarise the main points in this paragraph, since the same trends can be seen in
the rest of experiments of this article. The first evidence is that vowel /a/ pronounced
with normal intonation performs the best, while /i/ pronounced with low-high-low in-
tonation performs the worst. In particular, for /a/ normal AUC is 0.747, EER is 0.321,
DCF is 0.313 and minDCF is 0.270. Studying the fusion of all intonations for each
vowel, it can be seen that vowel /a/ outperforms vowels /u/ and /i/, and vowel /u/
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outperforms vowel /i/. However, the overlap in the figures according to the confidence
interval, says that no definitive conclusions should be drawn. It is also noticeable the
important improvement after this partial fusion. For example, for 3 Gaussians, the
relative improvement in AUC is 7.63%, and in DCF is 12.78%, comparing /a/ with
all pronountiations fused and /a/ normal. If we look at the intonations, the variability
is high: among the results with /a/, the normal intonation works better, for /i/ the
low intonation works better, and for /u/ the low-high-low intonation is the one that
performs the best. As we see, no specific intonation is better than others, and it de-
pends on the vowel pronounced by the subject. With the global fusion with all vowels
and intonations a huge increase in performance is obtained. Comparing with the best
result without fusion (/a/ normal), the increase in perfomance, again for the case of 3
Gaussians, is 17.67% for the AUC and 36.74% for the DCF. We believe that the main
reason is the fact of having much more data, and containing different information,
because they come from different vowels and intonations. Note that these results are
optimal in terms of the fusion, since the fusion parameters have been trained on the
test data. If we compare this fusion with the partial fusion of each vowel, it can be seen
that all vowels contribute to the improvement, because the global fusion outperforms
the partial ones.

Fig. 2. Score level fusion scheme with a common model for all vowels and intonations

Score Level Fusion with a Common Training Subset. This experiment is
similar to the one in the previous section, where a late fusion with MultiFocal toolkit
is done, but training a common GMM with all training data, including all vowels and
intonations. Then, in the test phase, every vowel and intonation is tested against this
common model and the scores are fused at the end. The scheme can be seen in figure
2. In table 2 averaged results are shown for the metrics described in Section 4.1. Only
fusion results are shown for 3, 6, 8, 16 and 36 Gaussians. In this case, as the model
includes all the sounds, it could be expected to reach a higher number of Gaussians
robustly trained. However, as it can be seen in the tables, the best results are obtained
with 16 Gaussians. The individual behavior of the different vowels and intonations is
similar to the previous case, being the best results obtained for /a/ pronounced with
normal intonation.
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Table 2. Metrics with score level fusion and a common model for all vowels and
intonations for 3, 6, 8, 16 and 36 Gaussians. Average over 30 folds.

Metric AUC EER DCF minDCF
3 G 0.868 0.210 0.210 0.174
6 G 0.865 0.230 0.226 0.179
8 G 0.867 0.214 0.214 0.177
16G 0.892 0.192 0.190 0.154
36 G 0.879 0.201 0.198 0.169

More interesting is the comparison with the results of the previous experiment.
Comparing tables 1 and 2, in both experiments the optimal number of Gaussians is
16, and the differences between each other are not meaningful. In short, we obtain no
benefit when training the models with all data, mixing all vowels and intonations. That
can be a sign of being each of the sounds really independent of each other, because
they do not take advantage of a bigger model trained with the pool of the data.

5.2 Audio Level Fusion

In this case, we train a single GMM with data coming from all vowels and pronoun-
ciations, as in the second experiment of section 5.1. In the test phase, all the files
belonging to the same speaker are concatenated and evaluated as just one single file.
The difference with the previous case is that now a single score per speaker is obtained
and no score level fusion is needed. A graphical scheme can be seen in figure 3. In table
3 we have the averaged results in terms of AUC, EER, DCF and minDCF for 3, 6, 8,
16 and 36 Gaussians. For comparison with the first case of section 5.1 (also in [27]),
note that there we needed 12 (models) × [3 (Gaussians per model) × [19 (means) +
190 (Σ)]+3 (weights)] + 12 (fusion weights) + 2 (fusion offsets) = 7574 parameters
for 3 Gaussians, and 90734 parameters for 36 Gaussians. Now, in the most demanding
case, the one with 36 components, we need 36 (weights) + 36 × [ 19 (means) + 190
(Σ) ] + 1 (calibration weight) + 2 (calibration offset) = 7563 parameters. We see that

Fig. 3. Audio level fusion scheme
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Table 3. Audio level fusion metrics for 3, 6, 8, 16 and 36 Gaussians. Average over 30
folds.

Metric AUC EER DCF minDCF
3 G 0.768 0.308 0.310 0.250
6 G 0.777 0.303 0.305 0.256
8 G 0.771 0.311 0.302 0.259
16G 0.788 0.303 0.284 0.242
36 G 0.790 0.303 0.286 0.242

the audio level fusion makes possible to save parameters, since the most demanding
case is similar to the least demanding case of the score level fusion. The interest lies
in checking if it is better an early fusion, as the one presented in this section, or a late
fusion, as the one presented in the previous subsection.

As it can be checked in the different experiments, the performance is much better
when fusing at score level that when concatenating the different files of the same
session and doing the test of a single file. For example, with 16 Gaussians, the relative
improvement of using score level fusion with individual training subsets for each vowel
and intonation with respect to the audio level fusion is 12.94% in terms of AUC and
35.21% in terms of DCF. Since the number of parameters is very similar between the
case of score level fusion with a 3 component GMM and the case of audio level fusion
with 36 component GMM, more similar results could be expected. One explanation
could be that the audio level fusion is more sensitive to errors in any of the concatenated
files, whereas in the score level fusion, the fact of having different weights for each of
the sounds makes the system more flexible and able to give stronger weights to the
sounds working better.

As in section 5.1, the fact of having longer files with larger sound variability could
take benefit of a model with more components. But also in this case it can be appreci-
ated that the 16 Gaussian model gives slightly better results than the rest, supporting
the theory presented before, stating that every vowel and intonation is independent of
the rest and there is no benefit of a bigger model trained with all sounds. Note also
that the audio level fusion gives improvements with regard to the case where only one
of the vowels and intonations is considered.

6 Conclusions

SVD is an open and free database available online. The amount of recordings of different
sounds and intonations contained in this database makes possible to conduct different
and interesting experiments. In this article a comparison between voice pathology de-
tection experiments carried out on the SVD with a score level fusion and an audio level
fusion is presented. The score level fusion refers to the process in which every file with
a different vowel and intonation is tested separately and the scores are fused at the
end. The audio level fusion refers to the concatenation of the files with different sounds
into a single file that is evaluated to obtain directly a single likelihood. A robust GMM,
trained on MFCC, log-energy and HNR, NNE and GNE, has been used as classifier.
The score level fusion gives better results than the audio level fusion. For a model
trained with 16 Gaussians, the AUC is a 12.94% higher and DCF a 35.21% lower in
the former than in the latter. The improvement of the score level fusion results with
respect to the evaluation of a single vowel and intonation alone is also huge: a 17.67% in
AUC and 36.75% in DCF, with respect to /a/ pronounced in normal intonation, which
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is the one with the best individual performance. It is also interesting to see that the
optimal number of Gaussians is 16 both in the score level and in the audio level fusion.
In addition, training a bigger model with the different sounds pooled into the same file
gives no further benefit, an indication of independence among different sounds.
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Teixeira, A. (eds.) IberSPEECH 2012. CCIS, vol. 328, pp. 99–109. Springer, Hei-
delberg (2012)

http://sites.google.com/site/nikobrummer/focalmulticlass
http://sites.google.com/site/bosaristoolkit


D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 121–128, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Using HMM to Detect Speakers with Severe Obstructive 
Sleep Apnoea Syndrome 

Ana Montero Benavides1, José Luis Blanco1, Alejandra Fernández2,  
Rubén Fernandez Pozo1, Doroteo Torre Toledano2, and Luis Hernández Gómez1 

1 Signal, Systems & RadioCommunications Department 
Universidad Politécnica de Madrid, Spain 

{ana.montero,jlblanco,ruben,luis}@gaps.ssr.upm.es 
2 ATVS Biometric Recognition Group 

Universidad Autónoma de Madrid, Spain 
alejandra.fernandezh@estudiante.uam.es, doroteo.torre@uam.es 

Abstract. Nowadays definitive diagnosis of obstructive sleep apnoea (OSA) 
syndrome is expensive and time-consuming. Previous research on voice charac-
teristics of OSA patients has shown that resonance, phonation and articulation 
differences arise when compared to healthy subjects. In this contribution we 
study different speech modeling techniques to detect patients with severe OSA 
envisioning the future classification of patients according to their priority of 
need identifying the most severe cases and reducing medical costs. 

Hidden Markov Models (HMMs) are used, as generally applied in text-
dependent speech recognition, for detecting voices of OSA patients. Specific 
acoustic properties of continuous speech are modeled attending to different lin-
guistic contexts which reflect discriminative physiological characteristics found 
in OSA patients. Experimental results on the discrimination of apnoea voices 
are presented over a database including both severe OSA and healthy speakers. 
An 85% correct classification rate is achieved by using whole-sentence HMMs, 
outperforming previous schemes proposed in the literature.  

Keywords: HMM, GMM, Phoneme models, Linguistic context, Obstructive 
sleep apnoea syndrome. 

1 Introduction 

Obstructive sleep apnoea (OSA) is a common sleep disorder that affects 2-4% of 
adults and 11% of children [1]. The male-female ratio in the United States in clinical 
practice varies from 6:1 to 10:1 [2, 3]. OSA consists in the complete cessation of air-
flow for more than 10 seconds, as a result, a fall in oxygen saturation and arousal 
from sleep occurs [4]. The AHI (apnoea-hypopnea index), the measure used to quanti-
fy the severity of patients' condition, refers to the number of apnoeas and hypopneas 
occurring per hour of sleep. It is considered mild between 5 and 15 and severe above 
30. Epidemiologic studies have shown a frequent prevalence of undiagnosed OSA. 
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Even mild OSA is associated with significant morbidity [5] and mortality [6]. OSA is 
also a risk factor for cardiovascular disease [7], often related to traffic accidents 
caused by somnolent drivers [7-9] and it can lead to a poor quality of life and im-
paired work performance. 

Nowadays, the definitive diagnosis of OSA requires an expensive full overnight 
study, the polysomnography, considered the “gold standard” in sleep disorders. It 
consists in recording and processing neuroelectrophisiological and cardiorespiratory 
variables which is very time-consuming. In Spain, e.g. patients have to endure a wait-
ing list of several years before the test is done. This delays the proper therapy. If not 
treated, OSA is a serious health risk [9]. The common treatment is continuous positive 
airway pressure (CPAP), i.e., providing a pneumatic splint to the airway during sleep. 
This prevents apnoea episodes and reduces snoring, one of the earliest symptoms of 
OSA. Alternative methods for early diagnosis of OSA are required. Speech-based 
methods for OSA detection are promising in this respect, due to their non-intrusive 
nature and their ability to provide quantitative data swiftly reducing the time for  
diagnosis.  Our main goal is to classify patients according to the severity of their dis-
ease just by the analysis of some extracts of speech, complementary to existing OSA  
diagnosis methods and clinicians’ judgment and as an aid for early detection of  
these cases.  

Previous studies [10, 11] have confirmed that patients with OSA commonly have 
narrower and more collapsible upper airways (UAs) than patients without OSA, sug-
gesting that OSA could be associated with anatomical and functional abnormalities of 
the UA. Unfortunately, not much research has been carried out on the acoustic proper-
ties of speakers suffering from OSA. Nonetheless, abnormalities in phonation, articu-
lation and resonance have been found, although differences are somewhat unclear 
[12]. What seemed to be clear was that the apnoea group had abnormal resonances 
that might be due to altered structure or function of the UA, and this anomaly could 
result not only in a respiratory but also in a speech dysfunction. 

The standard approach concerning pathological voices detection has most often 
been based on sustained vowels analysis, though the analysis of continuous speech 
offers more possibilities. Specific patterns present in OSA voices could be present in 
the transitions between different phonetic units [13]. According to this, we focus on 
continuous speech signals as in [14], where a remarkable discussion on how ASR 
techniques could be applied to the OSA detection is provided. Efforts have been de-
voted to the characterization of OSA patients' acoustic space to trace specific patterns 
connected to the apnoea syndrome [8, 12, 14, 15]. Nonetheless, no previous work has 
focused on introducing HMMs to improve OSA characterization. 

The rest of this paper is organized as follows: Section 2 briefly presents the  
database we used in our study. The use of different HMM models to characterize and 
discriminate continuous speech from apnoea and healthy speakers are described in 
Section 3. Section 4 presents experimental results over the speech database and  
a discussion on them. Finally, some conclusions and future research are given in  
Section 5. 
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2 Apnoea Database 

2.1 Data Collection 

The apnoea database was recorded at the Respiratory Department of the Hospital 
Clínico Universitario of Málaga, Spain. It contains the voices from 80 male subjects 
with similar physical characteristics such as age and body mass index (BMI, height to 
square-weight ratio). 40 of these subjects present severe sleep apnoea (AHI > 30), 
while the other 40 from the control group present mild OSA (AHI < 10). Speech sig-
nals were recorded at 16 kHz sampling rate in an acoustically isolated booth. Record-
ing equipment was a standard laptop computer equipped with a SP500 Plantronics 
headset microphone that includes A/D conversion and digital data exchange through 
USB-port. 

2.2 Speech Corpus 

The speech corpus includes four sentences that are repeated three times each in an 
alternate sequence by each speaker. Sentences were designed trying to cover all the 
relevant linguistic contexts where physiological OSA features could have higher im-
pact on specific acoustic characteristics, keeping in mind the results from the percep-
tual study by Fox and colleagues [12]. The phrases include instances of the following 
specific phonetic contexts:  

• In relation to resonance anomalies, sentences were designed to allow measuring 
differential voice features for each speaker (e.g. to compare the degree of vowel 
nasalization). 

• Regarding phonation anomalies, we included consecutive voiced sounds to 
measure irregular phonation patterns related to muscular fatigue in apnea  
patients. 

• To look at articulatory anomalies, we collected voiced sounds affected by pre-
ceding phonemes that have their primary locus of articulation near the back of 
the oral cavity. 

More details about the corpus and database can be found in [16]. 

3 HMM Models to Characterize OSA Voices 

In this contribution we consider apnoea/control classification as a two-class recogni-
tion problem using two different statistical models: one trained for the apnoea group 
and the other for the control group (i.e. healthy speakers). This approach was fol-
lowed in [14] using Gaussian Mixture Models (GMMs) to fit apnoea and control 
acoustic spaces. The severe apnoea detection system described there will be used as a 
baseline system in this contribution to compare the new approaches using HMMs. It 
is important to point out that when using two GMMs for modeling the apnoea and 
control group, respectively, all the acoustic space from the four sentences in our data-
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base is represented in a text-independent way. That is, no specific modeling is done to 
represent the characteristics of different sounds depending on their particular linguis-
tic context. 

Differently from using GMMs, in this work we explore different ways to character-
ize OSA voices using HMMs looking for a better modeling of the aforementioned 
different linguistic contexts. More specifically, we have followed two approaches: a) 
to use HMM phoneme models trained for each one of our four sentences, which will 
be denoted as sentence-dependent phonemes; and b) to train a whole HMM model for 
each sentence, that will be referred to as whole sentence HMMs. Two different sets of 
whole sentences and sentence-dependent phonemes HMM models are needed for 
representing the apnoea and control groups, and were tested in detecting severe OSA 
cases.  

The rationale behind using these two types of HMM units is as follows. Context-
dependent (CD) phonetic modeling is broadly used in large vocabulary ASR systems. 
The most frequent units for CD modeling are triphones which represent a phone in a 
particular left and right context. However, as the specificity of the model increases, 
the number of parameters to train also increases, and as the amount of triphone repeti-
tions in our database is limited (e.g. the first triphone of the first sentence only ap-
pears once) we decided to test two different alternative approaches. 

The first approach, sentence-dependent phonemes, was designed to use context-
independent (CI) phonemes but training a different CI phoneme depending on each 
one of the four sentences in our corpus. So, e.g. the CI HMM model for phoneme /a/ 
in sentence 1 is different from CI HMMs for phoneme /a/ in sentences 2, 3 and 4 re-
spectively. In that way HMM models of sentence-dependent phonemes should be able 
to model possible apnea/control voices differences related to the specific different 
phonetic contexts defined in the design of each one of the sentences (as previously 
described in sub-section 2.2). 

While for the second approach, whole sentence models, different HMMs have been 
used for each sentence with a number of states close to the number of phonemes in 
the sentence (as will be described in Section 4, best results were obtained when using 
40 states, and the average number of phonemes for the four sentences is 42). There-
fore whole sentence HMM models can be seen very similar to the use of CD tri-
phones, as they represent the specific linguistic structure of each sentence through the 
sequence of states, but with the benefit of containing a reduced number of states, thus 
providing an efficient way to train them (based on the limited amount of available 
data). Furthermore, another interesting feature of whole sentence HMMs is that they 
are not constrained to use explicit phoneme information and every HMM state trained 
can freely adjust to different units. 

4 Experiments 

In addition to the methodology described, throughout this work the standard leave-
one-out cross-validation protocol was used. This protocol will sequentially discard all 
audio records from one sample speaker and use all the remaining apnea and control 
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samples for training the apnoea/control classifier. The excluded samples are then used 
as test data to evaluate each system’s performance, and a figure of merit, e.g. DET 
(Detection Error Trade-off) curve and/or equal error rate (EER), is estimated to com-
pare multiple schemes.  

Audio files parameterization included 12 MFCC (Mel Frequency Cepstral Coeffi-
cients), without velocity or acceleration coefficients, to extract the information 
representing the speakers’ acoustic space. Conventional MFCC parameterization pro-
vides relative independent coefficients and high discrimination between sounds, while 
being designed relying on human perception processing. Different parameterizations 
were tested, while the best results were obtained with 12 MFCCs. Due to the lack of 
space, the discussion on the optimization of these parameters for the apnoea detection 
problem will be presented in future publications. 

Training and evaluation of HMMs were performed using the Hidden Markov 
Model Toolkit (HTK) [17], while the aforementioned text-independent baseline sys-
tem used to compare our results is based on GMMs [14] and was trained using the 
BECARS open source toolkit [18]. In both situations the number of mixtures included 
in the trained models was limited to prevent models overfitting, according to the spe-
cific characteristics of the classification scheme. As for the baseline GMM system, 
256 Gaussian components were used to adapt both the apnoea and control models 
from a universal background model by means of MAP adaptation.  The use of a high-
er number of mixtures up to 2048 for the GMM was tested without obtaining a noti-
ceable improvement in the classification accuracy. 

For the sentence-dependent phonemes we used a total number of 61 HMM models 
to represent all the sentence-dependent phonemes in the four sentences. Each HMM 
phoneme model used a standard left-to-right 3 states topology and the best results 
were obtained using 6 mixtures per state (resulting in 1098 gaussians). HMM models 
for sentence-dependent phonemes were obtained using standard MLLR + MAP for 
adapting a set of CI phoneme models trained from the Spanish phonetically balanced 
corpus of Albayzin [19], to the apnea and control groups (only records from male 
subjects were used as our OSA database includes only male speakers). 

To establish the proper topology for the whole sentence HMM models a maximum 
number of Gaussian mixtures close to 500 was considered. Bearing this in mind, dif-
ferent topologies were trained using standard MAP adaptation from a background 
model using global cepstral mean and variance for every Gaussian, and tested to iden-
tify the most suitable one. The best results were obtained when using whole sentence 
HMMs with the same number of states equal to 40 for each sentence and 13 mixtures 
of Gaussians for state (resulting in a total of 2080 gaussian components). 

4.1 Results 

Results using the leave-one-out procedure on the three automatic severe apnoea detec-
tion systems included in this contribution are shown in Figure 1. LLRs (i.e. Log-
Likelihood Ratio (apnea/control)) scores, corresponding to each speaker (40 control + 
40 severe OSA speakers) while uttering each phrase (4 sentences, 3 repetitions each 
one) were used to estimate the plotted DET curves in the Figure (a total of 960 tests), 
considering all possible operating points.  
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Fig. 1. DET curves corresponding to three severe apnoea detection systems: GMM-based base-
line system, sentence-dependent phoneme HMMs and whole sentence HMMs 

As we can see in Figure 1 the initial classification results obtained with the text-
independent GMM models, which mostly disregard the linguistic context information, 
were enhanced as context information modeled by HMMs was added. So, when com-
pared to the GMM baseline system, a relative moderate improvement is achieved 
using sentence-dependent phoneme-based HMM models. However, better results are 
achieved for whole sentence HMM models with 40 states, producing an overall 
11.6% relative reduction in Equal Error Rate (EER) (see second column in Table 1). 
In order to have a global figure-of-merit using all the available audio data for each 
speaker in our database, LLR scores obtained from the three repetitions of the four 
sentences were fussed (i.e. averaged) for every speaker and used, again following a 
leave-one-out protocol, for severe OSA / control classification.  ERRs for each classi-
fication scheme are presented in the third column of Table 1. These results show that 
the best classification performance is again achieved when using the whole sentence 
HMM classifier, providing a 25% relative reduction in the EER value compared to the 
baseline GMM system.  

Table 1. EER values obtained for each classification scheme 

Models EER on one sentence EER combining all sentences 

GMM 21,46% 20,00% 
sentence-dependent 
phonemes HMMs 21,25% 17,50% 

whole sentence HMMs 18,96% 15,00% 
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5 Conclusions and Future Research 

Experimental results on the discrimination of apnoea voices are presented over a da-
tabase including both severe OSA and healthy speakers. This study offers an innova-
tive perspective on how HMMs can be used to model CD phonetic information for 
detecting voices of speakers suffering from severe OSA syndrome. MFCC-based 
parameterization was used in all three apnoea detection systems compared in this 
contribution, just as it was done in [13-15]. From this acoustic representation, experi-
mental results were obtained using HMMs for modeling both sentence-dependent 
phonemes and the whole sentence. Additionally, a GMM-based baseline system was 
also evaluated on this same task to compare the results. After analyzing all the expe-
rimental results we can conclude that CD models outperform the text-independent 
baseline GMM system. The highest correct classification rate of 85% is achieved 
when using whole-sentence HMMs. These sentence-dependent models seem to be 
able to combine the potential of a flexible representation for specific linguistic con-
texts in each sentence together with an efficient training procedure with a limited 
amount of training data. Further analysis should be carried out to confirm these results 
on a larger database, as well as to explore the use of other alternative HMM modeling 
schemes (such as triphones) and to explicitly exploit the different discriminative pow-
er of different linguistic contexts. 
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Abstract. This study investigates acoustic changes in the speech of
European Portuguese children, as a function of age and gender. Funda-
mental frequency, formant frequencies and duration of vowels produced
by a group of 30 children, ages 7 and 10 years, were measured. The re-
sults revealed that, for male speakers, F0, F1 and F2 decrease as age
increases, although the age effect was not statistically significant for F0
and F1. A similar trend was observed for female speakers, but only in F2.
Moreover, F0 and formant frequencies were found to be similar between
male and female children. Between ages 7 and 10, vowel durations de-
creased significantly, and the values for females were higher than those
for males. These results provide a base of information for establishing
the normal pattern of development in European Portuguese children.

1 Introduction

There has been great interest in the study of acoustic characteristics of children’s
speech. The knowledge on the age-dependent changes of acoustic parameters
(such as fundamental frequency, formant frequencies and segmental durations)
has important implications to the development of speech applications suitable
for children’s voices [1,2] and to clinical assessment of speech disorders.

Several acoustic studies [3,4,5,6,7,8,9] have examined the effects of age and
gender in the fundamental frequency (F0) and formant frequencies (F1 and F2)
values. In general, these investigations showed that values of the three acoustic
parameters decrease as age increases. Some authors [7,10,11] also reported longer
segmental durations and greater spectral variability in children’s speech than in
adult’s speech.

As regards the beginning of gender-related differences in F0 and formant fre-
quencies, results of previous studies are not fully consensual. Busby and Plant [5]
and Whiteside and Hodgson [6] reported gender differences in F0 and/or formant
frequencies from the age of five, while Lee et al. [7] and Perry et al. [12] did not
find significant differences related to gender in acoustic parameters until after

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 129–138, 2012.
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eleven years old. Likewise, anatomical studies of the child vocal tract [13] only
found differences in vocal tract morphology, between genders, starting at age
ten.

Acoustic characteristics of children who speak languages other than English
have rarely been investigated [8]. To our knowledge, no research on the acoustic
analysis of European Portuguese (EP) children’s speech has been published. The
few studies currently available [14,15] provide only information on the acoustic
characteristics of vowels produced by adult speakers.

The purpose of this study is to acoustically examine the vowels of EP produced
by children of 7 and 10 years of age. Fundamental frequency (F0), first two
formant frequencies (F1–F2) and vowel durations are measured and analysed as
a function of age and gender. The acoustic parameters of EP children are also
compared with adults data obtained from a study by Escudero et al. [15].

This study provides additional information on F0 and formant frequency char-
acteristics of children who speak a language with a vowel space different from
English and, in that sense, might help to better understand cross-linguistic sim-
ilarities and language-particular features of vowel development.

This paper is organized as follows. Section 2 describes the adopted method,
sections 3 and 4 present and discuss the obtained results and section 5 presents
conclusions and ideas for future work.

2 Method

2.1 Participants

Thirty children, divided in two age groups (7 and 10 years old), were recruited
from an elementary school in Aveiro (north of Portugal) for this study. For each
age group there were seven boys and eight girls, so that the gender-dependence
of the vowels could also be investigated. All children were native speakers of EP,
with no history of hearing or speech disorders. Parents/guardians of children
provided written consent before data collection.

2.2 Speech Materials

All experimental procedures were conducted in a quiet room in the children´s
school. Voice samples were recorded at a sampling rate of 22 kHz with a headset
condenser microphone connected to an external 24-bit sound system (Roland
UA-25 EX Cakewalk).

Children produced each EP oral vowel ([a], [E], [e], [i], [O], [o], [u]) in a di-
syllabic CVCV sequence (e.g. ["pip1]), where C was an identical voiceless stop
consonant ([p], [t] or [k]). The nonce words were embedded in a carrier sentence
“Digo ... para ti.” (“I say ... to you”).

The corpus is based on the one presented in a recent acoustic study of vowels
produced by adult speakers of European and Brazilian Portuguese [15], in order
to allow the comparison of results.
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2.3 Data Collection

The sentences were presented to the children orthographically, on a computer
screen, using the software tool ProRec [16]. The tester familiarized the partic-
ipants with the materials and procedures prior to data acquisition. This was
particularly important for the youngest subjects given their reduced reading ex-
perience. The children were encouraged to read the test items at a comfortable
pitch and loudness level. If the children hesitated or misread a sentence, they
were asked to repeat it.

Although more than thirty children were initially recorded, some voices with
problems, i.e breathiness, roughness or muting (for boys), were excluded by a cer-
tified speech therapist (the second author), after evaluation of the voice samples.
The children repeated each item three times. Thus, a total of 630 productions
(30 participants × 7 vowels × 3 repetitions) were analysed.

2.4 Speech Analysis

Each vowel and flanking consonants were manually segmented and labelled, over
the digitized sound wave, by using the software Praat [17].

Acoustic Analysis. The total duration was computed from the label files that
contained the start and end points of each vowel. The consonantal context (voice-
less stops) allowed that the onset and offset of the vowels could be easily deter-
mined.

The fundamental frequency (F0) of the seven vowels was estimated with the
cross-correlation method available in the software Praat. Median F0 value was
taken of the central 40 percent of each vowel.

Burg-LPC algorithm, as provided by Praat, was used to compile values for
F1 and F2, at the central 40 percent of the vowel. The frequency range initially
used was 50 Hz to 7500 Hz. This strategy yielded several unlikely values for
some formants. Therefore, a procedure, adapted from Escudero et al. [15], was
applied to optimize the formant ceiling for a certain vowel of a certain speaker.
The first two formants were determined several times, for all ceilings between
5500 and 7500Hz in steps of 100 Hz. The chosen ceiling was the one that yielded
the lowest variation (for more details see [15]). With this method, almost all
outliers were removed.

Statistical Analysis. The statistical analysis was conducted with the SPSS
software package (SPSS 19.0 – SPSS Inc., Chicago, IL, USA). For each depen-
dent variable (F0, F1, F2, and duration), a three-way mixed analysis of variance
(ANOVA) was performed, with vowel as within-subject factor and gender and
age as between-subject factors. The ANOVA assumptions of residual normal-
ity and homogeneity of variance were validated. As regards sphericity, Epsilon
Huynh-Feldt correction was used. In all statistical analysis, the level of signifi-
cance was p < 0.05.
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3 Results

3.1 Fundamental Frequency

The mean and standard deviation (SD) of F0 for the seven EP vowels are given in
Table 1A, according to age and gender. For the male speakers, F0 decreases as age
increases, while for female speakers the opposite tendency is observed. However,
the three-factor ANOVA indicates there were no significant age (F (1; 26) =
0.701; p = 0.410) or gender (F (1; 26) = 1.1; p = 0.315) differences. Only a
significant interaction age by gender was found (F (1; 26) = 4.4; p = 0.046).

Table 1A denotes the following progression in the mean F0 value of individual
vowels: [u] (258.8±34.0Hz) followed by [i] (257.7±34.0Hz), [o] (251.2±33.4Hz),
[e] (250.9± 32.5Hz), [O] (242.6± 31.8Hz), [E] (241.5± 32.7Hz) and [a] (239.0±
31.3Hz). There is a significant effect of vowels on F0 (F (5.1; 133.6) = 65.9;
p < 0.001).

As expected, mean F0 values are higher than those computed for adult speak-
ers [15].

3.2 Formant Frequencies

Mean formant frequency values for F1 and F2, averaged across male and female
subjects, for each vowel and age group, are provided in Table 1B and 1C. Figure 1
shows the mean F1 and F2 values for the boys and girls of each age group.

Fig. 1. First and second formants of the EP vowels produced by the seven females and
eight males (age 7 on the left; age 10 on the right)

It can be observed, from Table 1B, that F1 values decrease with an increase
in age, but only for male speakers. For female speakers, the F1 values are, in
general, higher for 10-year-olds than for 7-year-olds, as it happens with F0. The
exceptions are the F1 values for [a] and [u]. No statistical differences were found
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for age (F (1; 26) = 2.5; p = 0.126), but there was a significant gender effect
(F (1; 26) = 4.4; p = 0.047).

The effect of vowel is also statistically significant (F (1.9; 48.6) = 140.70; p =
0.001). The mean value of F1 is higher for [a] (898.0± 237.0Hz), followed by [O]
(542.2±106.8Hz), [E] (531.8±69.1Hz), [o] (444.1±57.5Hz), [e] (439.5±45.7Hz),
[u] (324.6± 43.8Hz) and [i] (290.2± 25.9Hz).

There are significant age by gender (F (1; 26) = 8.1; p = 0.009) and vowel by
gender (F (1.9; 48.6) = 4.5; p = 0.017) interactions.

As shown in Table 1C, F2 values for 7-year-olds (2002.4± 94.3Hz) are higher
than those for 10-year-olds (1877.3 ± 94.3Hz), for the majority of vowels. The
two exceptions are the vowels [o] and [u], for both male and female children.
This F2 drop is statistically significant (F (1; 26) = 13.2; p = 0.001).

In general, female speakers of both age groups exhibit high F2 values. The
F2 differences between males and females are statistically significant(F (1; 26) =
5.7; p = 0.024).

The effect of vowel on F2 is statistically significant (F (3.6; 93.0) = 1205.6; p =
0.001). The mean value of F2 is higher for vowel [i] (3244.4± 189.4Hz) followed
by [e] (2978.5 ± 199.0Hz), [E] (2758.7 ± 211.4Hz), [a] (1705.5 ± 298.8Hz), [O]
(1104.2± 118.5Hz), [o] (940.0± 149.4Hz) and [u] (866.9± 174.2Hz).

There is a significant vowel by age (F (3.6; 93.0) = 4.863; p = 0.002) interaction.
Standard deviations in Tables 1B and 1C suggest that variability decreases

with age, for both F1 and F2. This tendency is also clearly illustrated in Figure 1,
especially for female children.

Figure 2 depicts the mean F1 and F2 values for the seven vowels, for male
and female speakers, ages 7 and 10.

Fig. 2. Average F1 and F2 according to gender and
age

Fig. 3.Mean duration of vowels
for each subject group (gender
and age)
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3.3 Duration

Mean duration of each EP vowel is depicted in Figure 3 in terms of age and
gender. It can be observed that female subjects (145.4± 28.4ms) present higher
vowel durations than male subjects (123.6 ± 28.5ms). ANOVA shows that the
effect of gender on vowel duration is statistically significant (F (1; 26) = 4.4; p =
0.047).

Seven-year-old children (152.1± 28.5ms) also display longer vowel durations
than the older group (116.8 ± 28.5ms). Effect of age is significant (F (1; 26) =
11.5; p = 0.002).

The effect of vowel on mean duration is also statistically significant (F (6; 156)=
64.4; p = 0.001). The following pattern of vowel duration is observed: [a] (154.6±
40.3ms) > [O] (147.3± 39.8ms) > [E] (146.0± 35.8ms) > [o] (133.0± 35.4ms) >
[e] (129.9± 27.9ms) > [u] (120.3± 36.0ms) >[i] (115.4± 34.5ms).

Despite the higher duration values, when compared to those given by Escudero
et al. [15] for adults, similar vowel duration patterns are observed.

4 Discussion

4.1 Fundamental Frequency

In general, previous investigations [4,5,6,7,18] revealed that F0 decreases as age
increases. Although not statistically significant, the current study also found a
similar trend for male children. In contrast, the older group of female children
showed a higher F0 than the younger group. Hasek et al. [3] have also reported
a decrease in F0 for boys between 5 and 10 years old, but not for girls with the
same age. It is possible that the beginning of pitch change may be different for
male and female subjects.

The finding that F0 is similar for male and female children at 7 and 10 years
is consistent with most of previous acoustic studies of children’s speech, that
have shown little F0 differences in children under 12 years of age [5,7,12]. This
may be indicative of a modest growth of the vocal folds during pre-puberty [13].
Hasek et al. [3] and Whiteside and Hodgson [6] found that gender-related F0
differences begin to emerge earlier, but they examined only the /a/ vowel, while
the other studies focused on F0 for all vowels.

The presented study revealed a tendency for the high vowels to have a higher
fundamental frequency than the low vowels, as previously evidenced by Costa [19]
and Escudero et al. [15] for adult speakers. This result suggests that children
acquire the ability to control intrinsic F0 [20] relatively early [7].

4.2 Formant Frequencies

The values of F1 decreased with increase in age, but only for male speakers.
Furthermore, F2 frequencies for older children were, in general, lower than those
for younger children, both for male and female groups. Results for male subjects
are in general agreement with those published in the literature [5,7,9]. For female
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subjects, the growth of the vocal tract between 7 and 10 years of age seems to
reflect only in F2 frequencies. Significant gender differences were noticeable for
both F1 and F2 values.

As can be seen in Figure 2, gender and age differences are clearer and more
consistent in the EP vowel [a]. Similar patterns were found in English and
Korean-speaking children [5,8]. A possible explanation for the low vowels to
be more sensitive to age- and gender- related distinctions is that these vowels
are produced with a more open vocal tract and, therefore, the acoustic output
would reflect the dimensions of the entire tube [8].

Comparing our results with the data from Escudero et al. [15], it is observed
that the formant values of vowels produced by children of ages 10 are almost in
adults range.

4.3 Duration

In this study, the group of age 7 showed significantly longer mean vowel dura-
tions than the older age group. Although this might be partially due to reading
abilities, since younger children attended their first school year, the results ob-
tained are consistent with the study of Lee et al. [7], that reported reduction of
vowel duration as age increased.

Furthermore, the female speakers exhibited greater vowel durations than male
speakers. These data are in agreement with those in Escudero et al. [15], Botinis
et al. [21] and Hillenbrand et al. [11] for adult speakers. Although not statistically
significant, Lee et al. [7] also found a similar trend for children. On the other
hand, Rauber [22] did not find any significant difference in vowel duration due to
gender. Ericsdotter and Ericsson [23] concluded that women use vowel duration
contrasts better, producing shorter vowels (or similar to men) in unstressed
positions and longer vowels in stressed positions.

Finally, it was observed that duration depends on vowel height, i.e. lower/more
open vowels are longer than high/less open vowels. The tendency for low vow-
els to be intrinsically longer than high vowels is considered to be a phonetic
universal phenomena and has been observed for many languages, including Por-
tuguese [14,19,22,15]. The similar vowel duration patterns between children and
adults suggest that EP children, like English children [7], are able to control
intrinsic vowel duration since early ages.

5 Conclusions

The purpose of this study was to analyse acoustic characteristics of speech col-
lected from children 7 to 10 years of age, in order to provide a base of information
for establishing the normal pattern of development in EP children. Although not
statistically significant, a trend for a decrease in F0 and formant frequencies with
age has been observed for male speakers, which is an indicator of physical devel-
opment of the voice source and vocal tract. The unexpected increase in F0 and
F1, between the 7 and 10-year-olds, for female speakers, is not readily explained,
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but may be associated with differences in the rate of growth of the larynx between
male and female subjects [9]. Only further investigations, including additional
acoustic data and direct articulatory measurements, could give clearer answers
to this question.

This study also revealed a significant effect of age in vowel duration, consistent
with previous findings [7]. However, it is likely that this result might be mainly
determined by the elicitation method used, since young children have shown
limited reading abilities. It would be important to use different speech-elicitation
methods in future works.

As demonstrated by several studies (e.g. [13,7]), a rapid decrease in F0 and
formant frequencies is observed after the ages included in this investigation, dur-
ing adolescence (more so in males than females), and remarkable differences in
male-female F0 and formant frequency patterns are evident by age 12. There-
fore, more detailed data obtained from a larger number of subjects with a wider
age range will be necessary, in order to fully understand developmental acoustic
patterns of EP children and their relation to the underlying anatomical devel-
opment.

Although several questions in EP speech development remain unanswered, the
current study nevertheless provides some preliminary data on the normal pattern
of development in EP children, against which disordered vowel productions can
be compared.
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Abstract. Standard automatic speech recognition (ASR) systems use
acoustic models typically trained with speech of young adult speakers.
Ageing is known to alter speech production in ways that require ASR sys-
tems to be adapted, in particular at the level of acoustic modeling. This
paper reports ASR experiments that illustrate the impact of speaker
age on speech recognition performance. A large read speech corpus in
European Portuguese allowed us to measure statistically significant per-
formance differences among age groups ranging from 60- to 90-year-old
speakers. An increase of 41% relative (11.9% absolute) in word error rate
was observed between 60-65-year-old and 81-86-year-old speakers. This
paper also reports experiments on retraining acoustic models (AMs),
further illustrating the impact of ageing on ASR performance. Differen-
tiated gains were observed depending on the age range of the adaptation
data use to retrain the acoustic models.

Keywords: ASR, Portuguese, Elderly Speech.

1 Introduction

European countries, in particular Western European countries, are about to face
a significant social change, brought by an unprecedented demographic change:
the ratio of older people is steadily growing, while the ratio of younger people
is shrinking. Between 2010 and 2030, the number of people aged 65 and over is
expected to rise by nearly 30%-40% relative (according to the statistics of the
European Commission from 2010).

Most elderly people would like to live in their own homes as long as possible
(“ageing in place”). Thus, research and development of new technologies adapted
to older people are becoming strategical, in order to increase their autonomy and
independence. Due to the ageing process and the changes that come with it, this
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population faces specific difficulties to interact with computers and machines.
To overcome this issue, speech appears to be the most natural and effective
modality. Thus, speech recognition for the elderly is a key technology in many
R&D projects related to the Ageing Well problematic.

Due to both cognitive and physiological age-related changes, elderly speech
shows specific characteristics that make its processing significantly harder when
using models built using speech from younger people. In particular, automati-
cally recognizing the speech of older people is known to be challenging compared
with automatically recognizing the speech of younger people, with performance
decreases of around 9-12% absolute [1,2,3]. Various reasons are presented in the
literature: ageing causes changes in the speech production mechanism, altering
the vocal chords, the vocal cavities and the lungs; it also causes a decline in cog-
nitive and perceptual abilities [4,5]. Seniors may also interact with machines in
a different way than younger speakers do, by using everyday language and their
own words to issue commands, even when instructions with a required syntax
are given [6].

In the framework of an ongoing national Portuguese project named “AVoz”1,
an in-depth study of ASR for the elderly is conducted in order to improve the
global performance in European Portuguese (EP). The goal of this paper is to
illustrate the impact of age on ASR performance. Experiments on a large read
speech corpus of elderly speech collected by the Microsoft Language Development
Center (MLDC) from Lisbon2 are reported. After an overview of our ASR system
for EP, the MLDC elderly speech corpus is briefly described in Section 3. In
Section 4, ASR results achieved on this database are reported.

2 Overview of Our ASR System

Our automatic speech recognition engine named Audimus [7,8] is a hybrid au-
tomatic speech recognizer that combines the temporal modeling capabilities of
Hidden Markov Models (HMMs) with the pattern discriminative classification
capabilities of Multi-Layer Perceptrons (MLPs). The MLPs perform a phoneme
classification by estimating the posterior probabilities of the different phonemes
for a given input speech frame (and its context). These posterior probabilities
are associated to the single state of context independent phoneme HMMs.

Specifically, the system combines three MLP outputs trained with Percep-
tual Linear Prediction (PLP) features (13 static + first derivative), log-RelAtive
SpecTrAl (RASTA) features (13 static + first derivative) and Modulation Spec-
troGram (MSG) features (28 static) [9]. Each MLP classifier incorporates two
fully connected non-linear hidden layers. The number of units of each hidden
layer as well as the number of softmax outputs of the MLP networks differs for
every language. Usually, the hidden layer size depends on the amount of training
data available, while the number of MLP outputs depends on the characteristic

1 http://avoz.l2f.inesc-id.pt
2 http://www.microsoft.com/pt-pt/mldc

http://avoz.l2f.inesc-id.pt
http://www.microsoft.com/pt-pt/mldc
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phonetic set of each language. Finally, the decoder is based on a weighted finite-
state transducer (WFST) approach to large vocabulary speech recognition, that
maps observation distributions to words.

The baseline ASR system used in this work is exactly the ASR system for
EP described in [10]. The acoustic models were initially trained with 46 hours
of manually annotated broadcast news (BN) data collected from the public Por-
tuguese TV, and in a second time with 1000 hours of data from news shows
of several EP TV channels automatically transcribed and selected according to
a confidence measure threshold (non-supervised training). The EP MLPs are
formed by 2 hidden layers with 2000 units each and have 500 softmax output
units that correspond to 38 three state monophones of the EP language plus
a single-state non-speech model (silence) and 385 phone transition units which
were chosen to cover a very significant part of all the transition units present in
the training data. Details on phone transition modeling with hybrid ANN/HMM
can be found in [11].

The Language Model (LM) is a statistical 4-gram model that was estimated
from the interpolation of several specific LMs: in particular a backoff 4-gram LM,
trained on a 700M word corpus of newspaper texts, collected from the Web from
1991 to 2005, and a backoff 3-gramLM estimated on a 531k word corpus of broad-
cast news transcripts. The final language model is a 4-gram LM, with Kneser-Ney
modified smoothing, 100kwords (or 1-gram), 7.5M 2-gram, 14M 3-gram and 7.9M
4-gram. The multiple-pronunciation EP lexicon includes about 114k entries.

These models, both AMs and the LM, were specifically trained to transcribe
BN data. The Word Error Rate (WER) of our current ASR system is under 20%
for BN speech in average: 18.4% obtained in one of our BN evaluation test sets
(RTP07), composed by six one hour long news shows from 2007 [10].

Table 1. Number of speakers and speech durations according to the age ranges in the
all corpus (after removing speakers with less than 2min of speech)

Age # Speakers Duration (h)

60-65 371 64.1
66-70 183 31.9
71-75 155 28.3
76-80 87 15.4
81-85 55 10.2
86-90 27 5.0
91-95 2 0.3
96-100 1 0.2

3 Elderly Speech Corpus

The speech corpus is comprised of about 150 hours of read speech (including
silences) that was collected by MLDC. A total of 1038 speakers between 60 and
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100 years of age read up to 160 prompts among a broad variety of prompts, from
isolated digits to phonetically rich sentences. On average, this corresponds to 12
minutes of speech per speaker. For this work, speakers with less than 2 minutes
of speech were removed from our datasets, so that the total speaker number was
881. Speaker age information is reported using 5-year ranges: 60-65, 66-70 and
so on. Many more female than male speakers were recorded: 641 and 240 respec-
tively. The number of speakers and the duration of the recordings according to
the age ranges are presented in Table 1. Speakers in the 60-65 age range were the
most numerous ones with a total of 64 hours of recordings, whereas only 5 hours
were collected from speakers in the 86-90 age range. The corpus also provides
speech from younger speakers, but with no precise information about their age
(indication of a 0-59 age range), hence this data was not used in this work.

A test set comprised of about 10% of the corpus, totaling 15h of speech,
was randomly selected. Speakers from this subset do not appear in the rest
of the corpus. The proportions of the age range and gender in the full corpus
were respected. Speech from the last two age ranges (91-95 and 96-100) was not
considered since the corresponding durations were much shorter than for the
other age ranges. Table 2 summarizes the characteristics of the subset.

Table 2. Test subset. Number of speakers and Speech durations according to the age
ranges.

Age # Speakers Duration (h)

60-65 35 6h22
66-70 18 3h04
71-75 17 2h49
76-80 10 1h34
81-85 6 1h05

4 Results

In this section, performance results are reported, first gathered with our baseline
system, second with the same system but with several sets of acoustic models
that were adapted to each age range. The Out-Of-Vocabulary (OOV) rate with
the 100K word vocabulary was 0.65% and the perplexity estimated with the
4-gram LM was 150 for the test set.

4.1 Age Impact on the Baseline System Performance

Table 3 presents the WERs obtained with our baseline system. For the entire
test set, the WER was 35.3%. As stated earlier, the same system achieved a
18.4% WER with BN speech that, generally speaking, is much more difficult to
transcribe than read speech. The much higher WER observed with the present
corpus may be explained by the inappropriate LM that is suited for BN data
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and not for this corpus, which is comprised of a diversity of prompts. Another
reason may be the discrepancy of the AMs due to the age mismatch between
the speech used to train the baseline MLPs and the elderly speech.

The difference in WER between male and female speakers, 33.5% and 36.0%
respectively, was not found to be statistically significant by a one-sided t-test that
gave a p-value of 0.5539. The greater diversity of female speakers may explain
this difference.

Finally, the bottom part of the table reports the WERs according to the sub-
sets of the test data distinguished by the age range of the speakers. A clear
increase in WER can be observed with increasing speaker age. One-sided t-tests
were performed to assess statistical significance of the WER differences. The
alternate hypothesis was: ’the true difference in means is less than 0’ between
the WERs of the speakers of the first age range (60-65) and the WERs of the
speakers of each of the larger age ranges. A p-value of 0.6252 indicated no sig-
nificant difference with the closest 66-70 age range, but much slower p-values
were obtained with the larger age-range (71 and above), with values about 0.03,
validating the alternate hypothesis.

Table 3. Word error rates (WER) of the baseline system on the test set. Detailed
WERs on age-range subsets are given in the bottom part of the table. M: Male, F:
Female speakers.

Gender WER(%)

all 35.3

M 33.5
F 36.0

Age range WER(%)

60-65 29.1
66-70 28.1
71-75 36.1
76-80 45.1
81-85 41.0
86-90 54.9

4.2 Impact of Specific Age MLP Retraining

In order to further investigate the impact of age on ASR performance, basic
adaptation of the acoustic models was tested by simply retraining the baseline
MLPs with age-specific data from the train set. All the adapted MLPs shared
the same MLP structure as the baseline MLP: 2 hidden layers with 2000 units
each and an output layer with 500 units. All the remaining components were
identical (the LM, the pronunciation lexicon and the decoding parameters).

Many prompts appear in both the adaptation (“train”) and test sets. These
prompts were removed from the train set used to adapt the AMs. Furthermore,
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Table 4. WERs of the baseline and the six adapted systems on the test set. (AM for
Acoustic Models).

System WER(%)

Baseline 35.3

AM-60-65 31.5
AM-66-70 31.4
AM-71-75 31.1
AM-76-80 30.0
AM-81-85 30.0
AM-86-90 33.4

Table 5. P-values achieved with the MP test performed between the adapted systems

AM-66-70 AM-71-75 AM-76-80 AM-81-85

AM-60-65 .582 .054 .001 .001
AM-66-70 .142 .001 .001
AM-71-75 .001 .001
AM-76-80 .741

the 86-90 age range was the one with the least data available: 2 hours (5 hours
minus the common sentences with the test set). Experiments not reported here
showed that this amount of data to retrain the MLPs led to limited improvements
(the MLPs have about 5.7 million weights to re-estimate and the 500 output
units need some representation in the adaptation corpus). Hence, we limited
the adaptation data amount to 6 hours that was the amount of training data
available for the 80-85 age range. Five sets of MLPs were adapted with 6 hours
of data for the five age ranges from 60-65 to 80-85. The last one, 86-90, was
adapted with the only 2h available. Each set is comprised of three MLPs for the
three different feature streams (PLP, RASTA, and MSG), exactly as the baseline
system.

Table 4 reports the WER of the baseline and the WERs of the six adapted
systems achieved on the test set. ’AM-60-65’ for example corresponds to the
system where the AMs were adapted with data from 60-65 years old speakers.
All the adapted MLPs showed improvement over the baseline, ranging from
10.7% to 15.0% relative. The smaller improvement observed for AM-86-90 may
be explained by the smaller amount of adaptation data available for this age
range (almost one-third less data).

Since all the systems were tested on the same test data, statistical signifi-
cance can be assessed directly on the word outputs by a Matched Pairs Sentence-
Segment Word Error (MAPSSWE or MP) test with the help of the NIST sc stats
tool. Each of the six adapted system’s outputs was tested again the baseline
output. All the one-to-one tests showed to be significant at the level of a 0.001
p-value. To determine whether the differences between the adapted systems were
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significant, the same test was applied to each pair of adapted system word out-
puts. The p-values are given in Table 5. In general, the outputs of two systems
adapted with data of close age ranges did not present significant differences,
whereas outputs from disjoint age ranges did, with 0.001 values. This seems to
confirm that using adaptation material that matches the speaker age of the test
data lead to improvement.
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Fig. 1. Relative differences in WER between the baseline and each of the five systems
with age-adapted AMs, for the five age-specific test subsets

Results are further illustrated in figure 1 where the Y-axis corresponds to the
relative WER differences between the baseline and the WERs obtained with the
adapted AMs. The higher the bar, the better the improvement. For each of the
five age-specific adapted MLPs on the X-axis, five bars were plotted to give the
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Fig. 2. Word error rates (WERs) of the baseline and one of the best adapted systems
(AM-81-85) as a function of the age-range specific subsets of the test data
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detail of the improvements according to the five age-specific test subsets. The
results of the 86-90 range are not shown since the improvements are smaller
due to less adaptation data. For each group of bars, the first one on the left
corresponds to the 60-65 test subset, the first neighbor one to 66-70, etc, until
the most right-handed bar that corresponds to the 81-85 test subset. As it can
be observed, using adaptation data from older speakers gave better results on
the test subsets with larger age ranges. For instance, AM-60-65 and AM-81-85
respectively showed 13.7% and 22.0% relative improvements over the baseline
for the 81-85 test subset (5.6% and 9.0% absolute respectively). Figure 2 shows
the WER points of one of the best adapted system, AM-81-85, with the baseline
ones as a function of the age specific test subsets. The adapted curve globally
follows the baseline one, with the largest relative gains obtained for the 66-70
and 81-85 age ranges.

5 Discussion and Future Work

In this paper, we presented ASR experiments that illustrate the impact of
speaker age on ASR performance. Standard ASR systems use acoustic mod-
els typically trained with speech collected from young adult speakers. Hence,
ASR performance is expected to decrease when recognizing elderly speech. The
impact of aging on speech production and its consequences for ASR have already
been well illustrated in the literature but this article reports results achieved on
Portuguese, for which no similar study has been published to the best of our
knowledge.

A large read speech corpus of European Portuguese elderly speech allowed us
to measure statistically significant performance differences among different age
groups with 60- to 90-year-old speakers. For instance, an increase of 41% relative
(11.9% absolute) in the word error rate was observed between speakers in the
60-65 and 81-86 age groups.

To further illustrate the impact of ageing, preliminary retraining experiments
showed that consistent gains in performance can be achieved by simply retraining
the baseline MLPs with age-specific data. Differentiated impacts were observed
according to the age range of the adaptation data. However, the limitation of
these experiments lies in the fact that the adaptation data was very similar to the
test data (similar prompts). Hence, additional experiments that use a completely
different test set are needed to draw firmer conclusions on the impact of AM
adaptation.

We plan to devise and test other adaptation techniques, for instance the adap-
tation of the MLP output layer alone may help in case of small amount of adap-
tation data. To be able to use age-specific ASR systems, one would need to detect
the speaker age automatically if no a-priori information on it is available. Since
chronological age is not a consistent indicator of ageing in speech production,
other features (such as jitter and shimmer) will be investigated in order to build
a classifier. Linguistic characterization of the errors observed in the ASR exper-
iments will be performed with the objective of better understanding the special
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needs of elderly speech recognition. Finally, in the long term, we plan to collect
elderly speech in a Wizard-of-Oz framework in order to study the interaction of
elderly people with dialog systems.
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Abstract. We present two approaches to cluster dialogue-based infor-
mation obtained by the speech understanding module and the dialogue
manager of a spoken dialogue system. The purpose is to estimate a lan-
guage model related to each cluster, and use them to dynamically mod-
ify the model of the speech recognizer at each dialogue turn. In the first
approach we build the cluster tree using local decisions based on a Max-
imum Normalized Mutual Information criterion. In the second one we
take global decisions, based on the optimization of the global perplexity
of the combination of the cluster-related LMs. Our experiments show a
relative reduction of the word error rate of 15.17%, which helps to im-
prove the performance of the understanding and the dialogue manager
modules.

Keywords: SpokenDialogue System, LanguageModels, Dialogue-based
Information, Clustering.

1 Introduction

Statistical language model adaptation has become a current issue within the
scope of Speech Technology. It aims at modifying the language model (LM) of
which a speech recognition system (ASR) makes use, to improve the recognition
performance. For instance we can modify a general LM to adapt it to a closed
domain, trying to improve the overall response of a domain-dependent system
in which the ASR is included.

There are several approaches to adapt LMs, depending on the sources of the
adaptation models [3]. Perhaps the simplest one consists of a linear interpolation
between LMs [6]. This approach tries to find out an accurate weight to combine
a background LM, built with more general data, with one or several adaptation
LM, usually built with more specific data.

The adaptation LMs could be estimated at each dialogue turn [9]. Dialogue
systems that use dialogue-dependent LMs usually consider the semantic infor-
mation of each utterance. We estimate the LMs using semantic information as
well as the user intentions ellaborated by the dialogue manager [8].

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 148–157, 2012.
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To learn more robust models, we group those information elements that share
common features (such as the semantics or the word classes) prior to the LM
estimation. To discover these relationships, several techniques such as the appli-
cation of Latent Semantic Analysis (LSA) have been proposed [2].

In this work we propose two clustering techniques, using as clustering cri-
teria two metrics derived from the Information Theory. On the one hand, the
Normalized Mutual Information (NMI), previously used for the estimation of
parameters of acoustic models for speech recognition [1], or for the adaptation
of trigger-based LMs [5]. On the other hand, a minimization of the global per-
plexity of a LM obtained as the interpolation of all the clusters considered. Our
aim is to reach a tradeoff between the specificity of having a large number of
LMs related to single pieces of information, and the robustness of having few
LMs, but trained with more data.

The rest of the paper is organized as follows. We first describe our dialogue
system (Section 2), and our approaches to cluster dialogue elements (Section 3).
The interpolation technique that we apply is shown in Section 4. Finally, the
evaluation results are discussed in Section 5, and the conclusions of the work are
drawn in Section 6.

2 Baseline Dialogue System

We have designed a user-independent, mixed-initiative dialogue system for con-
trolling household devices. In this work we focus on the control of a Hi-Fi audio
system using speech, instead of an infrared remote control.

The Dialogue Manager (DM) is based on a Bayesian Networks (BNs) solution
[4] that exploits the causal relationships between the semantics of an utterance
(i.e. the dialogue concepts), and the intention of the user (i.e. the goals). We will
refer to both concepts and goals as dialogue elements. These elements have been
defined by hand using expert knowledge of the application domain.

We have defined a set of 58 concepts that cover all the semantic categories
in the application domain. These concepts could be classified into three sets:
actions (22) to be executed (e.g. to play), parameters (16) that can be set up
(e.g. the volume), and their corresponding values (20). We have also defined
15 goals, according to the available functionality of the Hi-Fi audio system. A
concept or a goal is present only if it has been extracted from the recognized
utterance (by the understanding module), or positively inferred (by the DM).

As an example of our definition of dialogue elements, let us consider the
utterance raise the volume to five. The understanding module can extract the
concepts PARAM VOL (‘volume’), VALUE VOL (‘five’), and ACTION VOL
(‘raise’). The dialogue goal that should be inferred is MODIFY VOLUME.

Once the ASR has recognized the input utterance, and the understanding
module has extracted the concepts of that utterance, the DM has to identify
the goals, using the information available (i.e. the concepts). This task is carried
out by means of a forward inference procedure (FI), that estimates the posterior
probability of each goal, given the available evidences (the presence or absence
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of each concept in the history of the dialogue). By comparing the resulting
probabilities with several predefined thresholds, the DM decides whether a goal
is present or absent.

After the FI process, the DM estimates similar probabilities for the concepts,
assuming the inferred goals as new evidences. This task is developed by means
of a backward inference (BI) procedure. The decision of assuming whether a
concept is needed or not is taken by comparing the probabilities against different
thresholds. The result of this process is used to carry out the most suitable
action (either performing the goals the user has addressed, if the system has the
information needed to accomplish them, or asking the user for the wrong or the
incomplete information otherwise).

3 Clustering of Dialogue Elements

This section presents the clustering approaches that we have developed to group
dialogue elements, as well as the dynamic LM interpolation that we carry out.

Our proposal is a bottom-up, greedy algorithm that builds a hierarchy of
clusters, each of which will have a LM associated. The hierarchy will be estab-
lished from a starting point in which each cluster will be composed of a single
dialogue element, to an ending cluster which contains all the dialogue elements
(and therefore it could be assimilated to the general, background LM).

We have proposed two algorithms based on the estimation of the perplexity
of LMs The first algorithm performs a method that exploits local information
to decide which elements should be grouped (that is, the metric is obtained by
using only those models directly related to the cluster that is potentially eligible).
The second one estimates a global measure obtained as a contribution of all the
models that are present at each step of the algorithm, and chooses the model
that optimizes that measure.

3.1 Maximum Mutual Information Criterion

Let us suppose a set of labeled sentences with which we will train two different
language models, A and B, each of which is related to a certain dialogue-specific
content (for instance, a dialogue concept or a dialogue goal). We could assume
that both LMs have a common subset of training sentences (i.e. they share some
knowledge, either lexical, semantic, or intention). Let us further assume that we
have obtained the perplexities of both models against an additional database.

The perplexity is related to the average number of words between which a
model has to decide the most suitable one. We can estimate the perplexity of a
model as ppA = 2H(A), being H (A) the entropy of that model. In other words,
the entropy of the LM A can be obtained as H (A) = log2ppA.

On the other hand, the mutual information shared between two random vari-
ables can be expressed as I (A;B) = H (A) + H (B) − H (A,B). Instead of
considering the Mutual Information between two LMs, we use the Normalized

Mutual Information (NMI), that can be expressed as NMI (A;B) = H(A)+H(B)
H(A,B) .
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According to this criterion, we will cluster the elements that maximize the NMI
of their related LMs.

We can express the NMI between two models in terms of their perplexity:

NMI (A,B) =
log2 ppA ppB
log2 ppAB

(1)

where ppA,B stands for the perplexity of the joint LM, that is, the LM estimated
when using the sentences that trained the models A and B (without repeating
the common sentences).

This criterion tends to group elements that share common information (i.e.
dialogue elements, or sentences that make reference to those elements). It also
allows us to reach a tradeoff between low values of perplexity (that tends to
lead to better LMs) and the complexity of the models (in terms of information
used to estimate them). We use this criterion since we have several elements
for which the number of training sentences is so reduced that their LMs give
reduced perplexities, but only due to the lack of training data.

3.2 Minimum Perplexity Criterion

We could consider the NMI criterion as a local one, since the decision of which
is the optimum group at each step of the algorithm is taken by considering
only the mutual information between those elements that are to be merged, and
the resulting cluster. We have also implemented a clustering strategy based on
a global criterion, that is, in which the decision on which elements to cluster
depends on a metric obtained from all the clusters considered at each step of
the algorithm. This criterion is based on a linear interpolation between the LMs
related to the clusters that are considered at each step of the algorithm. Then
the system estimates the perplexity of the resulting LM. The cluster selected is
the one that minimizes the perplexity of the global model.

We assign the same interpolation weight to each LM. That is, if at a certain
step of the algorithm there are NS clusters, the LM related to each model will
have an interpolation weight of 1/NS.

Therefore, if we represent the probability of obtaining a word w given its
history h with the LM related to cluster Sk as pSk

(w | h), the corresponding
probability in the global, artificial model, pG, at a certain iteration of the algo-
rithm, can be obtained as

pG (w | h) = 1

NS

⎡⎢⎢⎣pSij (w | h) +
NS∑
k=1,
k �=i,j

pSk
(w | h)

⎤⎥⎥⎦ (2)

Once the system obtains the perplexity of pG, the process is repeated for each
available combination ij of elements to be grouped (i.e. for each potential clus-
ter). As a result the algorithm obtains a set of global LMs related to all the
potential clusters. The algorithm selects as the new cluster to be included in the
hierarchy the one that obtains the lowest perplexity among all of them. The rest
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of the potential clusters are disregarded in the current step of the algorithm.
Nevertheless, they could be considered as potential clusters in further iterations.

The global perplexity minimization criterion is similar to the NMI-based one
in the sense that both criteria allows us to obtain groups of elements that share
common information. With the NMI metric the system groups those elements
that share a high amount of common sentences (i.e. strongly related from the
point of view of vocabulary and semantics). In the global perplexity one, the re-
sult is similar, but from the model robustness’ perspective. That is, the elements
that are clustered together are those ones that lead to a better estimated LM.
The main difference between both criteria is related to the computing time. The
global perplexity minimization one has a higher computational complexity since
it has to estimate a higher number of models at each iteration (not only the
LM related to the cluster that is included to the hierarchy, but also the specific
models and the global one for each potential cluster).

3.3 Estimating a Correction Function

After carrying out some initial clustering experiments, we found that both the
NMI and the global perplexity criteria have a main drawback. The cluster hierar-
chies that are obtained are unbalanced, in the sense that after the first grouping,
a cluster with a high number of sentences is obtained. The rest of elements tend
to join that cluster instead of building more specific groups. In order to reach
a tradeoff between the perplexity of each LM and their complexity (in terms of
the number of sentences that will train the corresponding LM, and the num-
ber of elements into each cluster), we propose to obtain a complexity correction
function that will take a positive value.

The motivation of defining a correction function is to enable the clustering of
those elements which have a strong lexical or semantic relationship, even though
the related LMs are trained with a reduced number of sentences. This fact will
avoid the generation of a too general model with which the rest of elements are
progressively joined. In other words, the system can keep an important degree
of specificity in the early steps of the clustering algorithm.

Taking into account that we want to optimize the criterion metric, the correc-
tion function is applied in two different ways, depending on the chosen criterion
for the clistering. In the case of the the NMI measure (which is a maximization
function), we will apply the function as a division factor prior to decide which
elements to cluster. In a similar fashion, the global perplexity metric (minimiza-
tion function) will be multiplied by the correction factor.

We will make the correction function dependent on the main features of each
cluster, namely the number of dialogue elements that form each cluster, and
the number of sentences with which the LM associated to the cluster will be
estimated.

The number of elements joined in a given cluster Si, which we denote as
NSi , will model the complexity of the clusters. It is used to allow those clusters
with few elements to be joined among them, avoiding thus the tendency to join a
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cluster with more elements, which in turn leads to less specific LMs, especially
in the initial steps of the clustering algorithm.

The correction criterion will also take into account the number of sentences
nA and nB that have been used to train the LMs related to the clusters to be
joined, as well as the number of sentences of the resulting cluster, nAB. We use
the number of sentences as a value that can measure both the complexity of the
model and also its robustness (the larger the number of sentences to train a LM,
the better it will be estimated).

The correction function will consider the number of sentences in the sense
of favoring the union of those elements that share a large number of common
sentences and a reduced number of different sentences.

The situation in which the correction function reaches its maximum value
arises when there are not any sentence in common between both models. In
other words, a lexical or semantic relationship between both clusters A and B is
too weak or inexistent, and therefore both clusters should not be joined in the
current step of the algorithm. This situation arises when nAB = nA + nB.

A final restriction that we apply to the correction function is that the contri-
bution of the number of sentences is measured on a logarithmic scale. We decide
that since the number of sentences with which the LMs are trained is about two
orders of magnitude over the entropy of the models (which is also a logarithmic
magnitude).

Taking these conditions into account, the expression of the correction function
CF for joining two clusters A and B into a single cluster AB is

CF = NSi ln

[√
(nAB − nB) (nAB − nA)

nA + nB − nAB
+K0

]
(3)

where K0 is a constant that assures that the logarithm takes a positive value.
We finally apply a pruning process to the cluster hierarchies obtained. The

idea is to keep these LMs that are trained with a sufficient number of sentences,
and also assuring that each LM is related to a specific content (i.e. we try to
reach a tradeoff between robustness and specificity of the LMs. The number of
LMs to be considered are 10 (when using goal-based information), 23 (when
considering concepts), and 25 (when grouping both dialogue elements).

4 Dynamic Language Model Generation

We have included a new module as a feedback loop between the ASR, the NLU,
and the DM modules. This new element, the Dynamic LM Generator, will con-
sider the information provided by the user in the current and the previous ut-
terances to dynamically modify the LMs that the ASR makes use of.

We first estimate the LM related to each cluster. Instead of keeping a LM for
each dialogue element, as we proposed in [7], we consider that keeping 73 LMs
is a suboptimal approach, since several of these models are poorly estimated,
due to the limited amount of sentences that make reference to those elements.
Therefore, we proposed to group the dialogue elements in a hierarchical cluster
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structure, according to the semantic relationships among them ([8]). Our aim
is to reach a tradeoff between the specificity of having a large number of LMs
related to single pieces of information, and the robustness of having few LMs,
but trained with more data.

At each dialogue turn, once a sentence has been recognized, and the DM has
developed both forward and backward inferences, the posterior probabilities of
concepts and goals are used to decide which LMs will be interpolated. We base
this decision on the comparison of the posterior probabilities of the dialogue
elements against different relevance thresholds, ΦC for concepts and ΦG for goals.
We find the optimal values for ΦC and ΦG at a validation stage. We perform
the LM adaptation by means of a linear interpolation between a background
LM, pB, and a context-dependent LM, pD. The probability of a word w given its
preceding words (its history) h in the interpolated model will then be

pI (w | h) = (1− λD) pB (w | h) + λD pD (w | h) (4)

being λD the interpolation weight between the background LM and the context-
dependent LM, pD. This model is also built by interpolating the LMs related
to clusters to which the dialogue elements belong to. The interpolation weights
are obtained as functions of the posterior probabilities of each dialogue element,
and also as a function of the number of elements on each cluster.

By using the summation of posterior probabilities we can achieve a tradeoff
between the contribution of the number of elements belonging to each cluster,
and their posterior probabilities, giving more relevance to those clusters to which
more dialogue elements belong to, or to those ones with the dialogue elements
with greater posterior probabilities.

5 Experimental Setup

This section presents the database that we have used to assess the adapted
system, and the evaluation results.

Our proprietary database comprises 1300 different sentences, uttered by 13
speakers (7 male, 6 female), giving a vocabulary of 391 words. Each sentence
has been manually labeled with its appropriate concepts and goals. By means of
a k -fold approach we have split the database into ten folds (each one with 130
sentences picked up randomly from the database), with which we build three
sets: a training one, composed of eight folds (1040 sentences), and a validation
and a test sets, each one with one fold (130 sentences). Using round-robin we
develop ten experiments. On each one we use the training set to build the LMs,
whereas the validation set is used to adjust the parameters of the system.

We have evaluated the word error rate (WER) of the speech recognizer, the
concept error rate (CER) of the understanding module, and the goal error rate
(GER, that is, the percentage of errors in the inference of goals).

Throughout the evaluation we have assessed the performance of the system
when using the concepts and goals extracted from an utterance to dynamically
adapt the LM, and use it to recognize again the same sentence. This way we can
estimate an upper bound of the performance of our system.
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5.1 Using the NMI Criterion

In our first experiment we consider the clustering strategy based on maximum
normalized mutual information (NMI). Table 1 shows the results of the evalua-
tion in terms of WER, CER and GER, when considering only concept-dependent
information, only goal-dependent information, or when merging both elements
for the clustering. We also include the performance of the baseline system (i.e.
with the background, static LM).

Table 1. Performance of the NMI-based language modeling

Clustering approach WER (%) CER (%) GER (%)

Baseline 5.33 13.37 26.20

Concepts 4.82 12.73 25.67

Goals 4.84 12.68 25.53

Both 4.70 12.66 25.71

The interpolation weight λD takes values of about 0.15. That is, it is enough
to slightly modify the LM (keeping a 85% of the background LM) to achieve
improvements in the three metrics considered. The improvements reach a max-
imum relative value (in terms of error reduction) of 11.80% WER and 5.34%
CER (both when considering the clustering of both dialogue elements together).
On the other hand, the maximum relative error reduction in Goal Error Rate
(2.56%) is reached when considering only dialogue goals. The main reason for
this behaviour is that using only goal-based information (that is, the more in-
tegrated source of information that the system considers) implies a reduction of
the insertions of goals into the hypothesis, which are the most important source
of errors. In any case, the size of our database makes that the improvements in
GER are not statistically significant.

5.2 Using the Minimum Perplexity Criterion

We next evaluate the performance of the adapted system when using the Mini-
mum Global Perplexity criterion. Table 2 shows the results of the evaluation of
this strategy.

Table 2. Performance of the Minimum Perplexity-based language modeling

Clustering approach WER (%) CER (%) GER (%)

Baseline 5.33 13.37 26.20

Concepts 4.52 12.54 25.60

Goals 4.60 12.59 25.64

Both 4.58 12.66 25.64

The interpolation weight λD between the background LM and the context-
dependent one (i.e. the generated using the LMs associated to the clusters con-
sidered) takes a value of about 0.21. Using this clustering strategy, the relevance
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of the context-dependent component is higher than with the NMI-based cluster-
ing approach. This fact implies that the LMs obtained with the Maximum Global
Perplexity criterion tend to be better estimated. This leads to a slightly better
performance of the system (with maximum relative error reduction of 15.17%
for Word Error Rate, and 6.28% for Concept Error Rate, both when considering
concept-based clustering). The improvement of the WER is statistically signifi-
cant with confidence intervals of 90%. As regards the dialogue performance, the
GER also tends to decrease (up to a maximum of 2.29% of relative reduction).
However, this value is not statistically significant.

Merging both dialogue elements cannot outperform the strategies of using the
elements separately. This could happen due to the fact that the goals are inferred
using the concepts. Therefore, using both sources of information may cause the
estimation of LMs with redundant information. This redundancy could cause
the reduction of the performance observed. In any case, the differences between
the performance of the clustering strategies are not significant.

6 Conclusions

We have presented two strategies to cluster dialogue-based information that is
used to generate content-specific language models. The first approach is based
on a local criterion that considers the Normalized Mutual Information (NMI)
to decide which elements to cluster at each step of the algorithm. The second
one is based on a global criterion that tries to minimize the perplexity of a
model obtained as a linear interpolation of the LMs related to the clusters con-
sidered. The LMs obtained are interpolated at each turn with a background LM
to dynamically adapt the model to be used by the recognizer.

Instead of training the most accurate interpolation weights, one of our main
claims is that the system can estimate accurate interpolation weights dynami-
cally using the posterior probabilities obtained by the DM. This way, the more
confident the system is when inferring a given concept or goal, the more relevant
the LM associated to that dialogue element will be in the dynamic LM estimated
at that turn.

The evaluation results show that these clustering strategies lead to an estima-
tion of LMs which can improve the recognition performance. More importantly,
the improvement of these LMs (used by the speech recognizer) tends to improve
the performance of other modules of the system (the speech understanding and
the DM). We have also seen that the clustering based on the minimization of
the perplexity tends to obtain better LMs (from both the specificity and the
robustness points of view) than the NMI-based one.

We are aware that the databases that we have used are limited. We are now ac-
quiring and preparing new data to train the LMs related to the different dialogue
elements. This way we have to label this data at the three levels of information
(lexical, semantic, and user intention).

We are now working on another interpolation strategy for the Minimum Per-
plexity approach. Instead of using the same weight for all the LMs, we will make
them dependent on the complexity of each cluster.
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We are also defining a strategy to adjust dynamically the weight λD between
the background and the context-dependent LMs, instead of obtaining it at a
validation stage.

We are also applying our adaptation paradigm to other information sources,
such as the knowledge that the system has about the users, taking into account
that each speaker may express their ideas in different ways. The system could
take advantage of this information once it identifies the speaker, to adapt the
LMs to the characteristics of each user.
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Abstract. In this paper, we present a statistical approach to Language
Understanding that allows to avoid the effort of obtaining new semantic
models when changing the language. This way, it is not necessary to ac-
quire and label new training corpora in the new language. Our approach
consists of learning all the semantic models in a target language and
to do the semantic decoding of the sentences pronounced in the source
language after a translation process. In order to deal with the errors and
the lack of coverage of the translations, a mechanism to generalize the
result of several translators is proposed. The graph of words generated
in this phase is the input to the semantic decoding algorithm specifically
designed to combine statistical models and graphs of words. Some exper-
iments that show the good behavior of the proposed approach are also
presented.

Keywords: Multilingual Language Understanding, Graph of Words.

1 Introduction

In the last few years, different approaches have been developed for the problem
of Spoken Language Understanding (SLU). There are many types of applications
for SLU, and one of the most interesting is its use in limited-domain spoken dialog
systems. Some characteristics of this kind of systems are that they have to deal
with spontaneous speech, the size of the vocabulary is small or medium, and
the semantic labels involved in the understanding process are strongly related to
some specific words or segments of words present in the user turns. In the recent
literature, a variety of approaches for automatic SLU have been proposed, like
those explained in [1–3].

As in other speech areas, statistical modelization is one of the successfully
approaches that have been used in SLU [4–7]. One of the advantages of these
approaches is that the models can be automatically learned from labeled training
samples and they can represent the variability of sequences of words and con-
cepts. Due to the limited number of training samples, and the limitations of the
learning methods, not all the variability of the speech messages can be correctly
represented in the models, and some errors generated in previous phases can not
be recovered in the following phases. This is the reason why the use of n-best or
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c© Springer-Verlag Berlin Heidelberg 2012



A Multilingual SLU System Based on Semantic Decoding 159

weighted graphs of linguistic units are interesting approaches to communicate
information between the different modules [8, 9].

The use of some kind of graph of words as the input of the decoding module
makes this task more difficult, as the search space becomes larger, and it is
necessary to combine the different weights representing the accuracy of the words
in the graph and the corresponding probabilities of the model of the decoding
process (in our case the semantic models). On the other hand, the advantage of
using graphs is that there is more information that could help to find the correct
semantic interpretation, rather than just taking the best sentence given by the
Automatic Speech Recognizer (ASR), or other module that provides the input
sentence.

The methodology proposed in this paper is based on Stochastic Finite State
Transducers (SFST). This is a generative approach that composes several trans-
ducers containing acoustic, lexical and semantic knowledge. Our method per-
forms this composition obtaining as a result a graph of concepts, where semantic
information is associated to segments of words. To carry out this step, we use a
statistical modelization of the lexicalisation of concepts; that is, the sequences of
words associated to the concepts, and also a statistical model of the sequences
of concepts. All these probabilities are automatically learned from a training
corpus segmented and labeled in terms of concepts.

One of the problems of the statistical modelization of semantics is that the
training process needs a segmented and labeled corpus. In most cases it is neces-
sary a very time-consuming work to label the training corpus. This is the reason
why many works oriented to avoid this work have been developed, such as semi-
supervised learning techniques, or active learning methods [10, 11]. These tech-
niques are also used to facilitate the adaptation of the system to different tasks
or new languages. In particular, when the problem is to translate a previously
obtained SLU system into another language, some approaches can be used: to
translate the corpus and to do a new labeling; to automatically obtain the trans-
lated system and labeling; or to process the sentences in the new language (after
translating them) with the original models. The latter approach is the one that
we have developed in this paper. That is, we obtained the semantic models for
Spanish by using a labeled training corpus, and we used this system to interact
with users of other language (French in this work) by translating their sentences
into the target language and decoding these translated sentences. However, it
must be considered that the quality of the general purpose translators is quite
insufficient. This is the reason why it is necessary to supply the maximum in-
formation of the original sentences to the semantic decoding process, in order to
better tackle the errors generated in the translation process.

In the proposed system, the sentence uttered in the source language is trans-
lated into a graph of words in the target language, by means of an adequate
combination of the translations generated by several web translators. This way,
we obtain a generalization of the translations that allows the semantic decoder
to recover some of the errors generated in the translation phase.
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This paper is organized as follows. In Section 2, the general framework of the
system is presented. In Section 3, the process of generating the graph of words
from the different sentences obtained by the translators is described. In Section
4, the algorithm of semantic decoding of the graph of words is presented. Section
5 shows some experimental results over the DIHANA task, and finally, in Section
6 some conclusions and future work are presented.

2 The SFST Approach for Multilingual SLU

The SLU problem can be expressed as stated in Equation 1, where C represents
a sequence of concepts or semantic labels and A is the utterance that constitutes
the input to the system.

Ĉ = argmax
C

p(C|A) (1)

The task we are addressing is multilingual SLU, which in our case means that
the speaker utters a sentence in one language s, but our models are trained in
another language t. Thus, a translation process between the source and target
languages is needed. Taking into account the underlying sequence of words Ws

uttered by the speaker in the source language and its translation into the target
language Wt, this equation can be rewritten as follows.

Ĉ = argmax
C

max
Ws,Wt

p(C,Ws,Wt|A) (2)

Applying the Bayes’ Rule and making some reasonable assumptions about the
independence of these variables, the probability of this equation can be decom-
posed into several factors as shown in Equation 3.

Ĉ = argmax
C

max
Ws,Wt

p(A|Ws) · p(Ws|Wt) · p(Wt|C) · p(C) (3)

This equation can be seen as the composition of 4 SFST, which are:

– A SFST λG generated by the ASR module where the acoustic probabilities
p(A|Ws) are represented.

– A SFST λWs2Wt that expresses the translation process between the source
and target languages.

– A SFST λWt2C that represents the probability that a sequence of words in
the language t corresponds to a concept C. Thus, it provides the probability
distribution p(Wt|C).

– A SFST λSLM which corresponds to a language model of the sequences of
concepts. Thus, it modelizes the probability of a sequence of concepts p(C).

It is possible to compose these four transducers as shown in Equation 4.

λMSLU = λG ◦ λWs2Wt ◦ λWt2C ◦ λSLM (4)

In consequence, finding the best path in the resulting transducer λMSLU provides
as a result the best sequence of concepts Ĉ, a translation W̃t of the transcription
of the input utterance as well as a segmentation of W̃t according to Ĉ.
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In this work, our goal is to build and evaluate a multilingual understand-
ing system that receives a sentence in one language and, passing this sentence
through a translation process, is able to use understanding models trained in
another language. If the input to the system were utterances, the recognition
process would add some error to the output of the understanding module. Thus,
in order to evaluate the performance of the understanding system without any
other external factors, the input to our system will be correct written sentences,
which is equivalent to assume that we have a “perfect” ASR. In terms of prob-
abilities, this implies that p(A|Ws) = 1. For this reason, we will not use the λG

transducer from Equation 4.

Moreover, p(Ws|Wt) can be rewritten as p(Wt|Ws)·p(Ws)
p(Wt)

. Taking the written

sentence as the input to the system, means that the whole sentence that is going
to be translated is known1. From this known sentence in the source language,
we will obtain a set of possible translations and represent them as a graph of
words. If we consider that the probability p(Wt) of any sentence of the set of
possible translations is the same, then it is not necessary to take into account this
probability in the maximization process. Considering these two simplifications,
we can rewrite Equation 3 as:

Ĉ = argmax
C

max
Wt

p(Wt|Ws) · p(Wt|C) · p(C) (5)

Thus, the λWs2Wt transducer will represent the probability p(Wt|Ws) that a
sentence Wt in the target language is a translation of Ws.

3 Graph of Words Generation

In this section, the process of obtaining the word-graph in the target language
from a sentence in the source language is be explained. This process is divided
into three steps:

1. the source sentence (in French in this work) is translated to the target lan-
guage using several free-available web translators. As a result, a set of sen-
tences in the target language (Spanish in this work) that represent different
possible translations of the source sentence is obtained.

2. this set of sentences are aligned using a multiple sequence alignment algo-
rithm.

3. the aligned sentences are used to obtain the word-graph that will be the
input to the graph-based understanding module.

A Multiple Sequence Alignment (MSA) is a sentence alignment process that
allows the alignment of three or more sentences that minimize the number of
substitutions, insertions and deletions among all the sentences. Although the
original use of MSA is the alignment of biological sequences, MSA algorithms
can align sequences of symbols of any kind. Within the frame work of Natural

1 It would be the same if we took the 1-best from an ASR.
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Language Processing (NLP), MSA has been mainly used in automatic translation
tasks [12, 13]. All these approaches –including the one presented in this paper–
coincide in the creation of a graph of words from the result of the MSA. However,
they differ in how the graph is generated and what it is used for.

In this work, a modification of the well-known ClustalW [14] Multiple Se-
quence Alignment software has been used. These modifications consist basically
of: i) it allows the alignment of sentences with any symbol, originally ClustalW
only allows symbols representing protein, DNA, and RNA; ii) all weight matrices
have been replaced by 0s and 1s (where 1 is the score for symbol matches and
0 is the score for symbol mismatches). That is, the same probability is assigned
to all symbol substitutions.

3.1 From Alignment Matrix to Graph of Words

The result of the Multiple Sequence Alignment process is a MSA alignment
matrix. Each row in the matrix represents a different aligned sentence and the
columns are synchronization points. In other words, a column of the matrix
indicates which symbols of the sentences are aligned at each point. Unless all
the sentences are the same, there will be several non-alignment points. These
non-alignment points are represented in the alignment matrix by the special
symbol ’-’.

From the MSA alignment matrix, a directed acyclic weighted graph of words
is created. In order to build this graph of words, the following algorithm is used:

1. as many nodes as the number of columns in the alignment matrix plus one
additional node to be used as the initial node are created.

2. for each matrix cell containing a symbol other than ’-’ –that is, a cell that
represents a real word of an aligned sentence– an arc in the graph will be
created. The destination node of the arc will be the one representing the
column to which the cell belongs and the origin node will be the one repre-
senting the column of the previous word in the same sentence (or the initial
node if the cell contains the first word of the sentence). The arc is labeled
with the word in the cell and its weight is set to 1. If the arc already exists
(because it has been previously added), its weight is incremented by 1.

3. the weights of the arcs are normalized to represent probabilities.

Figure 1 shows a real example –extracted from the test set– of the full process of
obtaining the graph of words in the target language (Spanish) from a sentence in
the source language (French). Firstly, the original sentence pouvez vous répéter
à quelle heure sort le premier is translated using 6 different free-available web
translators. Secondly, the 6 translations are aligned using a Multiple Sequence
Alignment algorithm. Finally, the directed acyclic weighted graph of words is
created from the MSA alignment matrix.

The obtained graph of words represents a language which is a generalization of
the individual translations of the original sentence. A full path –from the initial
node to the final node– over the graph may be seen as an alternative translation
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source sentence pouvez vous répéter à quelle heure sort le premier

poded a qué hora sale el premier
(1) puede repetir a qué hora saca el primero

multiple poded a qué hora sale el premier
translations puede repetirse a qué hora suerte el primero

pueda repetirse a qué hora suerte el primero
puede me repetir a qué hora saca el primero

(2)

- - poded a qué hora sale el premier
puede - repetir a qué hora saca el primero

alignment - - poded a qué hora sale el premier
matrix puede - repetirse a qué hora suerte el primero

pueda - repetirse a qué hora suerte el primero
(3) puede me repetir a qué hora saca el primero

Fig. 1. Steps in the process of obtaining the graph of words from the original sentence
pouvez vous répéter à quelle heure sort le premier

of the original sentence. In addition, the product of the weights of all the arcs
in a full path may be considered as the probability of the string represented by
the path Wt (in the target language) to be the translation of the original string
Ws (in the source language); that is, p(Wt|Ws).

4 Understanding the Translated Graphs of Words

As every arc in the graph of words is labeled with a word, any path between any
pair of nodes represents a segment of words that can be related to one or more
concepts. Consequently, it is possible to build a new graph with the same set
of nodes but where each arc is labeled with a segment of words and a concept
associated to it. Every arc of this new graph can be weighted with a combination
of the original graph probability and the probability that the segment belongs
to the concept.

To build this graph of concepts, for each pair of nodes i, j and each concept c,
an arc that represents the most probable path associated to concept c between
these nodes is created. We define the most probable path as the one that maxi-
mizes the expression p(W i,j

t |Ws)·p(W i,j
t |c) given a concept c, whereW i,j

t denotes
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a segment of words induced by a path from node i to node j. The resulting arc
will be labeled with the concept c, and the sequence W i,j

t that maximizes the
former probability. The arc will be weighted with the value of this expression for
W i,j

t and c.
The last formula introduces the probability of a sequence of words given a

concept. To estimate it, a model of the lexical structures associated to the con-
cepts is needed. One way to estimate this is to train a language model for each
concept, using the segments of words associated to each of them. Thus, the
probability p(W i,j

t |Ws) is represented in the graph of words obtained from the
translation and generalization process, and p(W i,j

t |c) is provided by the language
model specific to each concept.

Finally, finding the best path in the graph of concepts between the initial
and the final nodes, provides the best sequence of concepts and the sentence
associated to it, as well as a segmentation of this sentence. To find this best
path, a language model of the sequences of concepts may be used, in order to
properly model their concatenation.

This way of obtaining the best sequence of concepts fulfills what was stated
in Equation 4, as λWd2C is composed by the set of the language models that
provide the probability that a sequence of words belongs to a concept and λSLM

is the language model of the sequence of concepts that helps to find the best
path in the graph of concepts.

5 Experiments and Results

For the experimentation, we used the DIHANA corpus [15]. This is a corpus in
Spanish composed by 900 dialogs acquired by 225 speakers using the Wizard of
Oz technique, with a total of 6,229 user turns. The DIHANA task consists of
acceding by phone to a spoken dialog system to ask for information about rail-
way timetables and fares using spontaneous speech in Spanish. The experiments
reported here were performed using the 5,369 user turns of the DIHANA corpus,
splitting them into a set of 480 turns for test and the remaining 4,889 turns for
training. Some interesting statistics about the DIHANA corpus are shown in
Table 1.

Table 1. Characteristics of the DIHANA corpus

Number of words 47,222
Vocabulary size 811
Average number of words per user turn 7.6
Number of concepts 30
Average number of words per segment 2.5
Average number of segments per turn 3.0
Average number of samples per concept 599.6

In order to perform multilingual experiments using the DIHANA task, the 480
test sentences were correctly written in French. Then, we used 6
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general-purpose free-available web translators to translate them into Spanish.
The 6 translations of each sentence were combined using the algorithm explained
in Section 3, obtaining as a result the graph of words which is the input for the
decoding algorithm.

In order to learn all the semantic models, the Spanish training sentences were
used. The transcriptions of the user sentences of the DIHANA training corpus
were segmented and labeled in terms of concepts. This segmentation were used
to learn a language model for each concept. In addition, a semantic model was
also leaned using the sequences of concepts. All the language models involved in
this experimentation were bigram models trained using Witten-Bell smoothing
and linear interpolation.

For the evaluation, we have used three measures: the Translation Word Error
Rate (TWER), the BLEU measure, and the Concept Error Rate (CER). The
TWER represents the WER of the best path in the graph of words; that is, the
path that has been generated by the semantic decoding process. The BLEU is
a standard measure used to evaluate automatic translation systems. The CER
is the rate of incorrectly understood concepts, considering that the reference
sequence of concepts is the same in both languages (which means that, in some
cases, some correct sequences in French can be counted as errors). The TWER
and BLEU measures represent not only the quality of the composition of trans-
ducers but also the behavior of the search algorithm guided by the semantics.

Table 2 shows the results obtained in the experiments, both for the combi-
nation of translators and for each one of them, individually. It also shows the
results considering the correct sentences in Spanish as input. This result gives
an idea of the best CER that could be achieved with our semantic modelization
if no error were introduced in the translation and generalization processes.

Table 2. TWER, BLEU, and CER obtained from the combination of translators and
each of them individually, as well as for the reference sentences in Spanish

Input graphs of words TWER BLEU CER

Reference sentences – – 9.09

Translator 1 30.74 50.37 15.77

Translator 2 27.49 52.00 16.67

Translator 3 30.50 50.71 15.22

Translator 4 24.04 61.35 13.09

Translator 5 23.85 59.79 14.60

Translator 6 27.38 50.82 19.35

Combination of all the translators 18.68 67.40 11.78

These results show that the combination of the translators obtains better
results that considering them individually. That is, the increasing of the coverage
given by the use of several translators, and the adequate combination in the
graph of words outperforms the behavior of each isolated translator. These better
performances are observed in terms of TWER, BLEU, and CER. In addition,
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the CER obtained for the combination of the translators is less than 2.7 points
higher than the one achieved using the reference Spanish sentences. This means
that, although the translation process introduces some syntactic errors (which
can be seen in the TWER score), most of the semantic meaning is kept.

6 Conclusions and Future Work

We have presented an approach to multilingual language understanding. One of
the advantages of this approach is that it is not necessary to estimate different
models depending on the language. The modelization of the semantics of the
task is done by statistical models. The way to represent the variability of the
translation process is done by the construction of graphs of words. We have
developed a search algorithm to generate graphs of concepts form the graphs of
words and the semantic models. Experiments show that the proposed approach
achieves good results. It would be interesting, as future work, to adapt the system
to other languages –like English– that have syntactic structures different from
Latin languages.
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Abstract. In this paper we propose a method for merging intentional
and emotional information in spoken dialogue systems in order to make
dialogue managers more efficient and adaptive. The prediction of the
user intention and emotion is carried out for each user turn in the dia-
logue by means of a module conceived as an intermediate phase between
natural language understanding and dialogue management in the archi-
tecture of these systems. We have applied and evaluated our method in
the UAH system, for which the evaluation results show that merging
both sources of information improves system performance as well as its
perceived quality.

Keywords: Spoken Dialogue Systems, Emotion Processing.

1 Introduction and Related Work

With the aim of developing systems capable of maintaining a conversation as
natural and rich as a human conversation, emotion is gaining increasing attention
from the dialogue systems community as it affects the actions that the user
chooses to communicate with the system.

In [1] the authors found that emotional information can be useful to improve
dialogue strategies and predict system errors, but it was not employed in their
system to adapt dialogue management. Boril et al. [2] discuss that cognitive load
and emotional states affect the number of query repetitions required for drivers
to obtain information from commercial dialogue systems. In [3], the authors im-
plemented an adapted strategy for providing support to users depending on their
emotional state while solving a puzzle. Although the help policy was adapted to
emotion, the rest of the decisions made by the dialogue manager did not take
into account emotional information.

Our proposal merges the traditional view of the dialogue act theory in which
communicative acts are defined as intentions or goals, with the recent trends that
consider emotional states in order to carry out enhanced dialogue management.
To do so, we propose a user state prediction module which can be integrated in
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the architecture of a spoken dialogue system to adapt the dialogue management,
as will be explained in Section 2.

Other authors have developed alternative affective dialogue models. For exam-
ple, the model proposed in [4] derived the next dialogue state from a combination
of a plain dialogue model and a combined model including the dependencies be-
tween dialogue and emotional states. This dialogue manager was developed in
VoiceXML and ECMAScript. In our proposal, we employ statistical techniques
to infer user acts, which makes it easier porting it to different application do-
mains. Moreover, our proposed architecture is modular, which makes it possible
to employ different emotion and intention recognizers.

In [5] the dialogue model was based on POMDPs [6] to adapt the dialogue
strategy to the user actions and emotional states. To reduce the computational
cost when many emotions and dialogue acts are considered, the authors com-
plemented POMDPs with decision networks. We propose an alternative to this
statistical modeling that can be used in realistic dialogue systems, and evaluate
it in a less emotional application domain in which emotions are produced more
subtly.

2 Our Proposal

The proposed method predicts user states in terms of intention and emotion, and
can be integrated in the architecture of a spoken dialogue system as a module
placed between the natural language understanding and the dialogue manage-
ment phases, as shown in Figure 1. The module is comprised of an emotion
recognizer, an intention recognizer, and a user state composer. The emotion rec-
ognizer detects the user emotional state by extracting an emotion category from
the voice signal and the dialogue history. The intention recognizer takes the se-
mantic representation of the user input and predicts the next user action. Then,
in the user state composition phase, a data structure is built from the emotion
and intention recognized, which is passed on to the dialogue manager.

2.1 The Emotion Recognizer

As the architecture shown in Figure 1 has been designed to be highly modular,
different emotion recognizers can be employed within it. We have employed a
recognition method based on our previous work [7].

We are interested in recognizing negative emotions that might discourage
users from employing the system again or lead them to abort an ongoing dia-
logue. Concretely, we have considered three negative emotions: anger, boredom,
and doubtfulness, where the latter refers to a situation in which the user is
uncertain about what to do next. The recognizer employs acoustic information
to distinguish anger from doubtfulness or boredom, and dialogue information
to discriminate between doubtfulness and boredom, which are more difficult to
discriminate only by using phonetic cues.
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Fig. 1. Integration of the user state prediction into the architecture of a spoken dialogue
system

In most information providing spoken dialogue systems, the application do-
main is not highly affective, thus a baseline algorithm which always chooses
‘neutral’ provides a very high accuracy (in our case 85%). This rate is difficult
to improve by classifying the rest of emotions, which are very subtlety produced.
Instead of considering neutral as another emotional class, we calculate the most
likely non-neutral category. The dialogue manager employs the intention infor-
mation together with this category to decide whether to treat the user input as
emotional or neutral, as will be explained in Section 3.

2.2 The Intention Recognizer

The methodology that we have developed for modelling the user intention ex-
tends our previous work in statistical models for dialogue management [8]. We
consider user intention as the predicted next user action to fulfill their objective
in the dialogue. It is computed taking into account the information provided by
the user during the dialogue and the last system turn.

The formal description of the proposed model is as follows. Let Ai be the
output of the dialogue system (the system answer) at time i, expressed in terms
of dialogue acts. Let Ui be the semantic representation of the user intention.
We represent a dialogue as a sequence of pairs (Ai, Ui), where A1 is the system
greeting (the first dialogue turn), and Un is the last user turn.

The objective of the user intention recognizer at time i is to select an appro-
priate user answer Ui. This selection is a local process for each time i, which
takes into account the sequence of pairs that precede time i and the system an-
swer at time i. The selection of the most likely user intention Ûi at each time i, is
made using the following maximization rule: Ûi = argmaxUi∈UP (Ui|URi−1, Ai),
where the set U contains all the possible user answers, and URi is what we call
the user register at time i.
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The user register is a data structure that, on the one hand, contains informa-
tion about concepts and attribute values provided by the user throughout the
previous dialogue history. On the other hand, it contains information regarding
the user profile: id, gender, experience, skill level, most frequent objective of the
user, a reference to the location of all the information regarding the previous
interactions and the corresponding objective and subjective parameters for that
user, and the parameters of the user neutral voice.

To recognize the user intention, we assume that two different sequences of
states are equivalent if they lead to the same UR and that the exact values
for the attributes provided by the user are not significant to determine the user
intention. Therefore, the values of the attributes in the UR are coded in terms of
three values: 0 (not provided), 1 (provided with high confidence), and 2 (provided
with low confidence).

3 The Enhanced UAH Dialogue System

Universidad Al Habla (UAH - University on the Line) is a spoken dialogue
system that provides academic information about the Dept. of Languages and
Computer Systems at the University of Granada, Spain. The information that
the system provides can be classified in four main groups: subjects, professors,
PhD courses and student registration [9].

A corpus of 100 dialogues was acquired with this system from student tele-
phone calls. The total number of user turns was 422 and the recorded speech
has a duration of 150 minutes. In order to develop an enhanced version of the
system that includes the module shown in Figure 1, we carried out two types of
corpus annotation: intentional and emotional.

On the one hand, we estimated the user intention for each user utterance by
using concepts and attribute-value pairs. One or more concepts represent the
intention of the utterance, and a sequence of attribute-value pairs contains the
information about the values provided by the user. We defined four concepts
to represent the different queries that the user can perform (Subject, Lecturers,
Doctoral studies, and Registration), three task-independent concepts (Affirma-
tion, Negation, and Not-Understood), and eight attributes (Subject-Name, De-
gree, Group-Name, Subject-Type, Lecturer-Name, Program-Name, Semester, and
Deadline).

The labelling of the system turns was similar to that for user turns. To do
so, 30 concepts were defined and grouped as task-independent concepts (e.g.
Affirmation and Negation), concepts used to inform the user about the result
of a specific query (e.g. Subject or Lecturers), concepts defined to require the
user the attributes that are necessary for a specific query (e.g. Subject-Name),
and concepts used for the confirmation of concepts and attributes. As shown in
Figure 2, the UR defined for the task is a sequence of 16 fields corresponding to
the concepts and attributes defined for the task and the user profile.

On the other hand, we assigned an emotion category (neutral, doubtful, angry,
or bored) to each user utterance. Nine annotators tagged the corpus twice and
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Fig. 2. User Register of the UAH system

the final emotion for each utterance was assigned by majority voting. A detailed
description of the annotation procedure and the intricacies of the calculation of
inter-annotator reliability can be found in a previous study [7].

Additionally, we have modified the dialogue manager to process the user state
information in order to reduce the impact of the user negative states and the user
experience on the communication, by adapting the system responses considering
user states. The dialogue manager tailors the next system answer to the user
state by changing the help providing mechanisms, the confirmation strategy and
the interaction flexibility. The conciliation strategies adopted are, following the
constraints defined in [10], straightforward and well delimited in order not to
make the user loose the focus on the task.

If the recognized emotion is doubtful and the user has changed his behaviour
several times during the dialogue, the dialogue manager changes to a system-
directed initiative and generates a help message describing the available options.
This approach is also selected when the user profile indicates that the user is
non-expert (or if there is no profile for the current user), and when their first
utterances are classified as doubtful.

In the case of anger, if the dialogue history shows that there have been many
errors during the interaction, the system apologizes and switches to DTMF
(Dual-Tone Multi-Frequency) mode. If the user is assumed to be angry but the
system is not aware of any error, the system’s prompt is rephrased with more
agreeable phrases and the user is advised that they can ask for help at any time.

In the case of boredom, if there is information available from other interactions
of the same user, the system tries to infer from those dialogueswhat themost likely
objective of the user might be. If the detected objective matches the predicted in-
tention, the system takes the information for granted and uses implicit confirma-
tions. For example, if a student always asks for subjects of the same degree, the
system can directly disambiguate a subject if it is in several degrees.
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In any other case, the emotion is assumed to be neutral, and the next system
prompt is decided only on the basis of the user intention and the user profile
(i.e., considering user preferences, previous interactions, and expertise level).

4 Experiments

In order to evaluate our proposal, we have recorded the interactions of 6 recruited
users. Four of them recorded 30 dialogues (15 scenarios with the baseline system
and 15 with the enhanced system), and two of them recorded 15 dialogues (15
dialogues with the baseline or the enhanced system only). Thus, a total of 150
dialogues were recorded in such a way that there were two dialogues recorded
per scenario, three in the case of the five most frequent scenarios of the initial
UAH corpus.

Table 1. Results of the objective evaluation of the systems

Evaluation metrics Baseline Enhanced
Dialogue success rate 85.0 96.0
Error correction rate 81.0 91.5
Average number of turns per dialogue 12.1 8.1
Average number of actions per turn 1.8 1.5
% of different dialogues (intention only) 85.0 83.5
% of different dialogues (intention and
emotion)

85.0 88.0

Number of repetitions of the most seen
dialogue

3.5 6

Number of turns of the most seen dia-
logue

5.5 4.5

Number of turns of the shortest dialogue 4.5 4.5
Number of turns of the longest dialogue 14.5 12.0

As observed in Table 1, on the one hand the success rate for the enhanced
system is higher than the baseline. This difference showed a significance of 0.03
in a two-tailed t-test. On the other hand, although the error correction rate is
also higher in absolute values in the enhanced system, this improvement is not
significant. Both results are explained by the fact that we have not designed
a specific strategy to improve the recognition or understanding processes and
decrease the error rate. Instead, our proposal for adaptation to the user state
overcomes these problems during the dialogue once they are produced.

Regarding the number of dialogue turns, the enhanced system produced
shorter dialogues (with a 0.00 significance value in a two-tailed t-test when com-
pared to the number of turns of the baseline system). As shown in Table 1, this
general reduction appears also in the case of the longest, shortest and most seen
dialogues for the enhanced system. There is also a slight reduction in the number
of actions per turn for the dialogues of the enhanced system (with a 0.00 signifi-
cance value in the t-test). This might be because users have to explicitly provide
and confirm more information using the baseline system, whereas the enhanced
system automatically adapted the dialogue to the user and the dialogue history.
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Regarding the percentage of different dialogues obtained, the rate was lower
using the enhanced system, due to an increment in the variability of ways in
which users can provide the different data required to the enhanced system. This
result was significant when the dialogues were considered different only when
they differed in the sequence of observed user intentions, and also when even
with the same sequence of intentions, two dialogues were considered different if
the emotions observed were different. This is consistent with the fact that the
number of repetitions of the most observed dialogues is higher for the baseline
system.

With respect to the dialogue participant activity, Figure 3 shows the ratio of
user versus system actions. The dialogues of the enhanced system have a higher
proportion of system actions due to a reduction of the confirmation turns.

Fig. 3. Ratio of user vs. system actions in the enhanced and baseline systems

Regarding dialogue style and cooperativeness, Figures 4 and 5 respectively
show the frequency of the most dominant user and system dialogue acts in the
dialogues collected with the enhanced and baseline systems. On the one hand,
Figure 4 shows that users need to provide less information explicitly using the
enhanced system, which explains the higher proportion of queries (significant
over 98%). On the other hand, Figure 5 shows that there is a reduction in
the system requests when the enhanced system is used. This explains a higher
proportion of system turns to provide information in the enhanced system.

Table 2 shows the average results obtained with respect to the subjective
evaluation. As can be observed, both systems correctly understand the different
user queries and obtain a similar evaluation regarding the user observed easiness
in correcting errors made by the ASR module. However, the enhanced system is
judged to be better regarding the user observed easiness in obtaining the data
required to fulfill the complete set of objectives defined in the scenario, as well
as the suitability of the interaction rate during the dialogue.
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Fig. 4. Histogram of user dialogue acts in the enhanced and baseline systems

Table 2. Results of the subjective evaluation of the systems

Questions (1 to 5 scale) Baseline Enhanced
How well did the system under-
stand you?

4.6 4.8

How well did you understand the
system messages?

3.6 3.9

Was it easy to obtain the requested
information?

3.8 4.3

Was the interaction rate adequate? 3.4 4.2
If the system made errors, was it
easy for you to correct them?

3.2 3.3

Fig. 5. Histogram of system dialogue acts in the enhanced and baseline systems
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5 Conclusions and Future Work

In this paper we have presented a method for predicting user states considering
their emotions and intentions, which can be employed to develop more adaptive
spoken dialogue systems. We have proposed an architecture in which our method
is implemented as a module comprised of an emotion recognizer and an intention
recognizer. The former deduces user emotional states from the acoustics of their
utterances as well as the dialogue history. The latter decides the next user action
and their dialogue goal using a statistical approach that relies on the previous
user input and system prompt.

We have evaluated the method with the UAH spoken dialogue system, im-
plementing the prediction module between the system’s natural language un-
derstanding module and dialogue manager. Additionally, we have improved the
dialogue manager to take this information into account in order to compute and
adapt the system responses.

The evaluation was carried out using a corpus of interactions of recruited users
with the enhanced version of the system. The results show that this version of the
system performs better in terms of duration of the dialogues, number of turns
needed for successful dialogues, and number of confirmations and repetitions
needed. Additionally, the test users judged the system to be better when it
could adapt its behaviour to their intentions and emotions.

As a future work we plan to annotate the emotions of the collected corpus in
order to refine the adaptation strategies of the dialogue manager.
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Abstract. This paper shows how the nowadays prevalent technology
used in HTR borrows concepts and methods from the field of ASR; i.e.
those based on Hidden Markov Models (HMMs). Additionally, it will be
described a HTR approach based on employing Bernoulli distributions
rather than Gaussian-Mixture distributions for the HMM-state emission
probability of observations. Finally, handwritten text recognition evalu-
ation results are reported for several corpora involving different charac-
teristics and languages.

Index Terms:Off-Line Continuous Handwritten Text Recognition, Mix-
ture of Gaussian Densities, Mixture of Bernoulli Distributions. Hidden
Markov Model Emission Probability.

1 Introduction

Analogously to Automatic Speech Recognition (ASR), handwritten text image
transcription (or “Off-Line” HTR) can be defined as the task of converting hand-
written text images into an electronic text format such as ASCII or PDF, which
allows taking advantage of the modern text-based storing, typesetting, searching
and retrieval technologies.

For some time in the past decades, the interest in Off-line HTR was diminish-
ing, under the assumption that modern computer technologies will soon make
paper-based documents useless. However, in the last years, HTR has become an
important research topic, specially because of the increasing number of on-line
digital libraries publishing large quantities of digitized legacy documents. The
vast majority of these documents, hundreds of terabytes worth of digital im-
age data, remain waiting to be transcribed into a textual electronic format that
would provide historians and other researchers new ways of indexing, consulting
and querying these documents.

HTR should not be confused with OCR (Optical Character Recognition),
because in HTR it is generally impossible to reliably isolate the characters or
even the words that compose a handwritten text. HTR, specially for historical
documents, is a very difficult task. To some extent HTR is comparable with
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the task of recognizing continuous speech in a significantly degraded audio file.
And, in fact, the nowadays prevalent technology for HTR borrows concepts and
methods from the field of Automatic Speech Recognition.

In this sense, the handwritten text recognition (HTR) approaches considered
here are based on Hidden Markov Models (HMMs). Specifically in this work,
two different HTR versions are presented according to the observation emission
probability law associated to each HMM-state: one using a mixture of Gaussian
densities and another employing a mixture of Bernoulli probability distributions.

Finally, to show that the ASR technology applied to the HTR field is pro-
ducing promising results, in section 4 are carried out several HTR experiments
on several hadwritten document corpora involving different characteristics and
languages.

2 Previous Required Preprocessing Steps

Text line images constitute here the basic input of the HTR approaches described
in this paper. Therefore, given document page images, first it is necessary to
detect their text blocks and after that in turn, to proceed to detect and extract
their constituent text line images. In this way, document layout analysis comes
to play an important role in this task.

Thus, a preprocessing step entailing background removal, noise reduction, and
page skew correction is applied on each document page image before perform-
ing on it the text line detection procedure. Actually, this detection process is
fully automatically carried out using standard preprocessing techniques based
on horizontal and vertical projection profiles [1], and on the run-length smooth-
ing algorithm (RLSA) [2].

3 General Statistical Framework for HTR

As ASR, the continuous handwritten text recognition problem can be also formu-
lated as the problem of finding the most likely word sequence, ŵ = 〈w1, w2, . . . , wn〉,
for a given handwritten sentence image represented by an observation sequence
o = 〈o1, o2, . . . , om〉, i.e., ŵ = argmaxw Pr(w | o). Using the Bayes’ rule we can
decompose the probability Pr(w | o) into two probabilities, Pr(x | w) and Pr(w),
representing morphological-lexical and syntactical knowledges, respectively:

ŵ = argmax
w

Pr(w | o) = argmax
w

Pr(o | w) · Pr(w)

Pr(o | w) is typically approximated by concatenated character models and Pr(w)
is approximated by a word language model (usually n-grams [3]).

Characters (or graphemes) are considered here as the basic recognition units
in the same way as phonemes in ASR, and hence, they are modeled by left-
to-right HMMs, with continuous or discrete observation emission probability
distribution on each HMM-state. Thereby, the total number of parameters to be
estimated depends mainly on the number of HMM-states and their associated
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emission probability distributions, which need to be tuned empirically to opti-
mize the overall performance on a given amount of available training samples. As
phonemes HMMs are trained from the acoustic data in ASR, character HMMs
are trained from images of continuously handwritten text (without any kind of
segmentation) accompanied by the transcription of these images into the corre-
sponding sequence of characters. This training process is carried out using a well
known instance of the EM algorithm called forward-backward or Baum-Welch
re-estimation [3].

Each lexical entry (word) ismodelledbya stochastic finite-state automatonwhich
represents all possible concatenations of individual characters that may compose
the word. By embedding the character HMMs into the edges of this automaton, a
lexical HMM is obtained. Finally, the concatenation of words into text lines or sen-
tences is modelled by a bi-gram languagemodel, with Kneser-Ney back-off smooth-
ing [4,5], estimated from the given transcriptions of the trained set.

Once all the character, word and language models are available, recognition
of new test sentences can be performed. Thanks to the homogeneous finite-state
(FS) nature of all these models, they can be easily integrated into a single global
(huge) FS model. Given an input sequence of feature vectors, the output word
sequence hypothesis corresponds to a path in the integrated network that, with
highest probability, produces the input sequence. This optimal path search is
very efficiently carried out by the well known (beam-search-accelerated) Viterbi
algorithm [3]. This technique allows integration to be performed “on the fly”
during the decoding process.

On what follows, we will explain in some detail two HTR implemented ap-
proaches employing different HMM-state emission probability functions: mixture
of Gaussians densities (GHMM) and mixture of Bernoulli distributions (BH-
MMs) respectively, which model observation sequences of different nature.

3.1 Mixture of Gaussians as State Emission Probabilities

In this case, we employ a HMM-state emission probability distribution given by
a mixture of Gaussian densities, which implies working directly with observation
sequences in the form of sequences of real-value D-dimensional feature vectors
〈o1,o2, . . . ,oT 〉, oi ∈ RD. These sequences represent (and are extracted from)
whole preprocessed handwritten text line images. The probability density func-
tion in this case is defined as a weighted sum of K Gaussian distributions as
follows:

bj(o) =

K∑
k=1

cjk
1√

(2π)d|Σjk|
e(−

1
2 (o−μ′

jk)Σ
−1
jk (o−μjk)) (1)

where, cjk, μjk and Σjk are respectively the weighting coefficient, the mean
vector and the covariance matrix for the mixture component k of state j.

The feature extraction process approach used to obtain the feature vectors
sequence follows similar ideas described in [6]. First, a grid is applied to divide the
text line image into M×N squared cells. M is chosen empirically and N is such
that N/M equals the original line image aspect ratio. Each cell is characterized
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by the following features: average gray level, horizontal gray level derivative and
vertical gray level derivative. To obtain smoothed values of these features, a s×s
cells analysis window, centered at the current cell, is used in the computations [7].
The smoothed cell-averaged gray level is computed through convolution with two
1-d Gaussian filters. The smoothed horizontal derivative is calculated as the slope
of the line which best fits the horizontal function of column-average gray level in
the analysis window. The fitting criterion is the sum of squared errors weighted
by a 1-d Gaussian filter which enhances the role of central pixels of the window
under analysis. The vertical derivative is computed in a similar way.

Columns of cells (also called frames) are processed from left to right and
a feature vector is constructed for each frame by stacking the three features
computed in their constituent cells. Hence, at the end of this process, a sequence
of N 3×M-dimensional feature vectors is obtained (M normalized gray-level
components and M horizontal and vertical derivatives components). Figure 1
shows a representative visual example of the feature vector sequence for the
Spanish word “cuarenta” (“forty”) and how a continuous density HMM models
two feature vector subsequences corresponding to the character “a”.

Fig. 1. Example of feature-vector sequence and HMMmodeling of instances of the char-
acter “a” within the Spanish word “cuarenta” (“forty”). The model is shared among
all instances of characters of the same class. The zones modelled by each state show
graphically subsequences of feature vectors (see details in the magnifying-glass view)
compounded by stacking the normalized grey level and its both derivatives features.

3.2 Mixture of Bernoullis as State Emission Probability

In speech recognition, the use of certain real-valued speech features and embed-
ded Gaussian mixture HMMs is a de-facto standard [8]. However, in the case
of HTR, there is no such a standard and, indeed, very different sets of features
are in use today. In [9] has been proposed to by-pass feature extraction and to
directly feed windows of raw, binary pixels into embedded Bernoulli mixture
HMMs. The basic idea is to ensure here that no discriminative information is
filtered out during feature extraction, which in some sense is integrated into the
recognition model.
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Fig. 2. Example of HMM, using a mixture of 32 Bernoulli components as observation
emission probability, for an specific Arabic character extracted from the IfN/ENIT
database. Here, each state models an extracted sequence of pixels windows (9 columns
size).

A Bernoulli mixture HMM (BHMM) is an HMM in which the probability of
observing o, when in the state j, is given by a Bernoulli mixture probability
function for the state j:

bj(o) =

K∑
k=1

πjk

D∏
d=1

potdjkd (1− pjkd)
1−otd (2)

where πj are the priors of the jth state mixture components, and pjk is the kth
Bernoulli component prototype in state j. As usual, the probability function (2)
can be seen as an emission model which first selects the kth component with
probability πjk, and then emits o in accordance with a Bernoulli prototype
pjk ∈ [0, 1]D; i.e. with probability pjkd for bit od to be 1, for all d.

Given a binary image normalized in height, a feature vector ot can be seen
as a concatenation of columns in a window of W columns in width, centered at
position t. Each window is then repositioned by vertically realigning the center
with its center of mass. As an example, Figure 2 shows a binary image of an
specific Arabic character extracted from the IfN/ENIT database, of 14 columns
and 30 rows, which is transformed into a sequence of 10 270-dimensional feature
vectors by application of a sliding window of width 9. For clarity, feature vectors
are depicted as 9× 30 sub-images instead of 270-dimensional column vectors. In
addition, to get some insight into the behavior of the Bernoulli HMMs, the model
for this specific Arabic character, is (partially) shown in Figure 2 (bottom) to-
gether with its Viterbi alignment. Here, the Bernoulli prototypes are represented
as grey images where the grey level of each pixel measures the probability of its
corresponding pixel to be black (white = 0 and black = 1).
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4 Experimental Results

4.1 Corpora for Transcription Tasks

In order to asses the effectiveness of the above-presented off-line HTR systems,
six corpora with more less similar HTR difficulty were employed in the exper-
iments. The first two, ODEC-M3 [10] and IAMDB [11], contain handwritten
text in modern Spanish and English, respectively. IAMDB is publicly available,
thereby serving as a reference to compare the obtained results. The following
three corpora: CS [12], Germana [13] and Rodrigo [14], consist of cursive hand-
written page images in old Spanish from 19th and 16th century. The last corpus:
IfN/ENIT [15], database of Arabic handwritten Tunisian town names, which
comprises more than 32K Arabic words written by more than one thousand
different writers, from a lexicon of one thousand Tunisian town/village names.
Figure 3 shows examples of each of them.

DIFFICULT LINE SEPARATION DIFFERENT STYLES

UNUSUAL ABBREVIATIONS VARIABLE STROKE THICKNESS

ORTHOGRAPHIC MISTAKES CROSSED-OUT WORDS

Fig. 3. From top-to-bottom and left-to-right: Handwritten Text from the Lancaster-
Oslo/Bergen Corpus (IAMDB), Answers extracted from Survey Forms made for a
Telecommunication Company (ODEC-M3), Single-Writer Manuscripts from the XIX
Century (CS and Germana), Single-Writer Spanish manuscript from XVI century
(Rodrigo) and multi-writer Arabic manuscript forms of Tunisian town/village names
(IfN/ENIT)
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4.2 Results

The quality of the transcriptions obtained with the off-line HTR system is given
by the word error rate (WER). The corresponding morphological (HMMs) and
language (bi-gram) models associated with each corpus were trained from their
respective training images and transcriptions. Besides, all results reported in
Table 1 have been obtained after optimizing the parameters values corresponding
to the preprocessing, feature extraction and modelling processes for each of the
tasks.

Concerning to the HTR using Gaussians mixture as HMM-state emission
probabilities, on the ODEC-M3, IAMDB and CS corpora, the obtained WER(%)
results were 22.9%, 35.5% and 28.5% respectively, using for all these cases a
closed-vocavulary. For the GERMANA corpus, the best WER achieved is around

Table 1. Basic statistics information from each corpus along with the WER(%) ob-
tained using the off-line HTR with Gaussians and Bernoulli mixtures as HMM-state
emission probability functions (GHMMs and BHMMs)

Corpus Iamdb Odec CS Germana Rodrigo Ifn/Enit

Language English Spanish 19thCSp. 19thCSp. 16th C Sp. Arabic

Writters many many 1 1 1 many

Lan.Model
Lexicon 8 017 2 790 2 277 7 477 17.3K 937

Train.Ratio 128 4.4 2.8 4.5 12.5 25

HMMs
Characters 78 80 78 82 115 120

Train.Ratio 2 779 808 470 2 309 7 930 1 410

Open Vocabulary N N N N Y Y N

WER (%) (GHMMs) 35.5 22.9 28.5 8.9 26.9 21.2 –

WER (%) (BHMMs) 34.3 – – – – 6.2

8.9% and 26.9% using close- and open-vocabulary respectively. Regarding the
OOV words, it becomes clear that a considerable fraction of transcription errors
is due to the occurrence of unseen words in the test partition. More precisely,
unseen words account here for approximately 50% of transcription errors. Al-
though comparable in size to GERMANA, RODRIGO comes from a much older
manuscript (from 1545), where the typical difficult characteristics of historical
documents are more evident. The best WER figure achieved in this corpus until
the moment is around 21.2%, where most of the errors are also caused by the
occurrence of out-of-vocabulary words.

Concerning to the HTR approaches using Bernoulli mixture as HMM-state
emission probability functions, a WER of 34.3% was attained, which is slightly
better than the 35.5% obtained with a similar system based on Gaussian HMMs.
However, for the IFN/ENIT database, it can be seen that the achieved 6.2% of
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WER with this BHMM system, outperforming by far the 14.6% obtained in the
ICDAR 2009 competition using this database.

5 Conclusions

Two off-line HTR systems based on Hidden Markov Models using Gaussians
and Bernoullis Mixture as HMM state emission probabilty functions have been
presented. The HMM-based HTRs has a hierarchical structure with character
models at the lowest level. These models are concatenated to words and to whole
sentences. The HMM used in this work was furthermore enhanced by a 2-gram
incorporating linguistic information beyond the word level.

Several tasks have been considered to assess these both HTR approaches. In
spite of the extreme difficulty that entails the corpora used in the experiments,
the results achieved are really encouraging.
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Abstract. An effective approach to transcribe handwritten text docu-
ments is to follow a sequential interactive approach. During the supervi-
sion phase, user corrections are incorporated into the system through an
ongoing retraining process. In the case of multilingual documents with a
high percentage of out-of-vocabulary (OOV) words, two principal issues
arise. On the one hand, a minor yet important matter for this interactive
approach is to identify the language of the current text line image to be
transcribed, as a language dependent recognisers typically performs bet-
ter than a monolingual recogniser. On the other hand, word-based lan-
guage models suffer from data scarcity in the presence of a large number
of OOV words, degrading their estimation and affecting the performance
of the transcription system. In this paper, we successfully tackle both is-
sues deploying character-based language models combined with language
identification techniques on an entire 764-page multilingual document.
The results obtained significantly reduce previously reported results in
terms of transcription error on the same task, but showed that a language
dependent approach is not effective on top of character-based recognition
of similar languages.

1 Introduction

Have not been until recently when large volumes of old handwritten documents
have undergone an image digitalisation process in order to give general public
access to this new source of information. However, digitalised handwritten doc-
uments cannot be fully exploited by natural language processing (NLP) tools, if
texts are not available in electronic format. For this reason, a continuous time-
consuming transcription effort is nowadays being carried out by digital libraries.

To alleviate this effort, automatic handwriting transcription techniques based
on speech recognition technology have flourished over the last years, although
the quality of the transcriptions provided by these techniques is still far from
not being in need of supervision [1]. An effective approach to supervision is
to integrate an ongoing retraining system that interactively incorporates user
corrections once a line has been reviewed. Such a system, along with layout
analysis and line detection features, has been implemented in an open source tool
calledGimp-based Interactive transcription of old text DOCuments (GIDOC) [2].

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 187–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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GIDOC has been used as a platform to develop techniques aimed at reducing
user effort and maximise its usability. These techniques range from adapting
models from partially supervised transcriptions [3], over an adequate trade-off
between error and supervision effort [4], to a variety of active learning strategies
to improve the interaction with the user on each new system hypothesis [5].

A specially appealing case in automatic handwritten text recognition is the
transcription of multilingual documents. A good example of multilingual docu-
ment is the GERMANA database [6]. GERMANA is the result of digitizing and
annotating a 764-page, single-author manuscript from 1891, written in Spanish
up to page 180, but then also written in five other languages, mainly in Cata-
lan and Latin. Another distinctive feature of GERMANA is the large number
of out-of-vocabulary (OOV) words accentuated by its multilingual nature. This
feature has been the main reason for the relatively poor results obtained so far
on the GERMANA database [7].

The work presented in this paper targets both characteristic features of the
GERMANA database: Multilinguality and OOV words. Multilinguality is cap-
tured by language identification models already discussed in [7]. The problem
of OOV words is tackled by deploying character-based n-gram language mod-
els. As a consequence, the reported results are the best ever achieved on the
GERMANA database.

The rest of this paper is structured as follows. Previous work related to mul-
tilinguality and character-based language modelling in speech and handwriting
recognition is reviewed in Section 2. In Section 3, the probabilistic framework for
language identification on a character-based handwriting recognition approach
is presented. Section 4 is devoted to empirical results on the whole GERMANA
manuscript. Finally, conclusions and future work are discussed in Section 5.

2 Previous Work

Multilinguality in handwritten text recognition arises the challenge of taking ad-
vantage of language identification in order to interactively adapt the underlying
models of the system and to minimise transcription errors. However, conven-
tional (non-interactive) script and language identification are still in its early
stage of research [8], and have remained unexplored until very recently [7].

Preliminary results exploiting multilinguality on the GERMANA database
proved the benefits of explicitly modelling language identification at the line
level in a interactive transcripcion scenario [7]. However, these results are far from
allowing an effective interactive transcription. In that work, the supervision effort
would be excesively high, and the user might prefer to ignore the automatically
generated output and transcribe the manuscript from scratch. An error analysis
revealed that most of these errors were due to out-of-vocabulary (OOV) words.
In fact, 53% to 71% of the words in the GERMANA database are singletons,
words ocurring only once in the lexicon of each language. Another important
problem was the scarse resources available for some languages in the GERMANA
database, so as to train their corresponding word-based language models.
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The treatment of OOV words is an open problem in different areas of NLP.
In speech recognition, which is closely related to handwritten text recognition as
far as modelisation is concerned, notable efforts has been deployed over the last
decades to deal with OOV words. In [9], the original lexicon is extended with
words from external resources that are represented as a sequence of characters
(graphemes, to be more precise) converted into phonemes. In [10], several sub-
word based methods for spoken term detection task and phone recognition are
presented to search OOV words. Phone and multigram-based systems provide
similar performance on the phone recognition task, superseding the standard
word-based system.

Regarding handwriting text recognition, the authors in [11] compared the per-
formance of a conventional word-based language model to that of a character-
based language model in the context of a German offline handwritten text recog-
nition task. However, character-based language models were not superior to their
word-based counterparts. A hybrid approach between a standard character-based
n-gram language model and a character-based connectionist language model is
proposed in [12], which obtain similar results to word-based systems on the IAM
corpus [13].

To the best of our knowledge, character-based language models has not been
able so far to supersede word-based language models in handwritten text recog-
nition. Our hypothesis is that tasks tackled in previous work did not contain a
significant number of OOV words compared to the figures of the GERMANA
database1. In GERMANA, the problem of OOV words is aggravated by its mul-
tilingual nature, since the presence of languages such as Latin, French, German
and Italian is less than 4% of the total number of words. Therefore, the estima-
tion of word-based language models is notably poor, and it is necessary to fall
back to adequate character-based language models.

3 Probabilistic Framework

Let t be the number of the current text line image to be transcribed, and let xt be
its corresponding sequence of feature vectors. The task of our system is to predict
for each text line image first its language label, lt, and then its transcription,
ct. We assume that all preceding lines have been already annotated in terms
of language labels, lt−1

1 , and transcriptions, ct−1
1 . By application of the Bayes

decision rule, the minimum-error system prediction for lt is:

l∗t (xt, l
t−1
1 ) = argmax

l̃t

p(l̃t | xt, l
t−1
1 )

= argmax
l̃t

p(l̃t | lt−1
1 ) p(xt | l̃t) (1)

where in Eq. (1), it is assumed that xt is conditionally independent of all pre-
ceding language labels, lt−1

1 , given the current line language label, l̃t. For the

1 For example, the IAM corpus only contains about 7% of OOV words.
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term p(xt | l̃t), we marginalise over all possible character-based transcriptions
for language lt, that is, C(l̃t)

p(xt | l̃t) =
∑

c̃t∈C(l̃t)

p(c̃t | l̃t) p(xt | l̃t, c̃t) (2)

≈ max
c̃t∈C(l̃t)

p(c̃t | l̃t) p(xt | l̃t, c̃t). (3)

Eq. (3), the Viterbi (maximum) approximation to the sum in Eq. (2), is applied
to only consider the most likely transcription. It must be noted that, this lan-
guage identification technique is one of the most effectives in Automatic Speech
Recognition (ASR) [14].

The decision rule (1) requires a language identification model for p(l̃t | lt−1
1 )

and, for each possible language l̃t, a l̃t-dependent character-based language model
for p(c̃t | l̃t) and a l̃t-dependent image model for p(xl | l̃t, c̃t).

A series of n-gram language identification models were proposed in [7]. In this
work, we applied the best performing models, the unigram model

p̂(l̃t | lt−1) =
N(l̃t)

t− 1
(4)

and the bigram model

p̂(l̃t | lt−1) =
N(lt−1 l̃t)

N(lt−1)
, (5)

both estimated by relative frecuency counts, where N(·) denotes the number of
occurrences of a given event in the preceding lines, such as the bigram lt−1 l̃t or
the unigram l̃t. It should be noticed that the bigram model makes use of prior
knowledge about the GERMANA database, assuming that consecutive lines are
usually written in the same language.

A character-based language model for each language p(c̃t | l̃t) is implemented
as a conventional n-gram language model [15], but considering characters in-
stead of words. Each l̃t-dependent language model is trained only from those
transcriptions labeled with l̃t. In the case of character-based n-gram language
models, the order of the n-gram is normally higher than that employed in word-
based models. The aim is to capture information not only regarding intra-word
character sequence, but also inter-word relationship, and word tokenisation and
segmentation. This information is specially useful in the transcription of OOV
words.

Image models for the different languages are implemented in terms of char-
acter HMMs [2]. Taking advantage that only a single script is used for all the
languages considered in the GERMANA database (e.g. Latin), a unique, shared
image model is estimated.

Finally, it is often useful in practice to introduce scaling parameters in the
decision rule so as to empirically adjust the contribution of the different models
involved. In our case, the decision rule given in Eq. (3) can be rewritten as

l∗t (xt, l
t−1
1 )≈ argmax

l̃t

p(l̃t | lt−1
1 )β max

c̃l∈C(l̃t)
p(xt | l̃t)αl̃t (6)
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being
p(xt | l̃t)αl̃t = p(c̃t | l̃t)αl̃t p(xt | l̃t, c̃t) (7)

where we have introduced an Identification Scale Factor (ISF) β and, for each
language l̃t, a language-dependent Grammar Scale Factor (GSF) αl̃t

. In the
experiments reported below, these parameters are tuned on a validation set.

4 Experiments

Experiments were performed in the GERMANA database [6]. GERMANA is a
single-author manuscript from 1891, which contains 764 pages written in up to
six different languages. Our main objective is to study the use of character-based
models in an interactive transcription task. As it has been said, the utilization of
character-based models is motivated by two main features of GERMANA: the
high number of OOVs, and the resource scarcity to train robust word language
models. In addition, we analyze the performance of the language identification
techniques presented in previous section.

Some basic yet precise statistics of GERMANA are given in Table 1. In terms
of running words, Spanish comprises about 81% of the document, followed by
Catalan (12%) and Latin (4%), while the other three languages only account for
less than a 3%. Similar percentages also apply for the number of lines. In terms
of lexicons, it is worth noting that Spanish and, to a lesser extent, Catalan and
Latin, have lexicons comparable in size to standard databases, such as IAM [13].
Also note that the sum of individual lexicon sizes (29.9K) is larger than the size of
the global lexicon (27.1K). This is due to presence of words common to different
languages, such as Spanish and Catalan. On the other hand, singletons, that is,
words occurring only once, account for most words in each lexicon (55%− 71%).
It goes without saying that, as usual, language modelling is a difficult task.
To be more precise, in Table 1 we have included the global perplexity and the
perplexity of each language, as given by an optimised language model on a 10-
fold cross-validation experiment.

Table 1. Basic statistics of GERMANA

Language Lines Running Chars Lexicon Perplexity

All 20151 1.08M 121 13.1 ± 0.61

Spanish 80.9% 81.2% 114 12.24± 0.15
Catalan 11.8% 11.7% 93 10.39± 0.34
Latin 4.6% 5.2% 91 10.44± 0.36
French 1.3% 1.3% 79 10.96± 0.81
German 1.1% 0.4% 61 10.17± 0.20
Italian 0.3% 0.3% 61 9.44± 0.24

In our experiments, we followed an interactive transcription framework, where
the user supervises the output of a system, which is continuosly retrained. To
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this purpose, we divided GERMANA in blocks of 500 lines, numbered from 1 to
40. First, blocks number 1 and 2 were manually transcribed and used to build
an initial system and tune the training and recognition parameters. Training
parameters, such as number of mixture components and states per HMM, re-
mains unchanged in all experiments. Then, starting from block number 3 to the
last. First, the language of each line is identified (if needed) and its transcrip-
tions is recognised by the corresponding language dependent system. Next, its
transcription and language label is supervised. Finally, after a full new block
is supervised, the system is re-trained from all supervised blocks and adapted
on the last supervised block. It must be noted that, HMMs image modeling is
carried out by the RWTH ASR toolkit [16] and language modeling by SRILM
toolkit [15]. We performed two different sets of experiments on the described
framework. The objective of the first set was to study the performance of the
language identification methods proposed. On other hand, the objective of the
second set was to study the transcription accuracy of the system when using
each different language identification method.

In the first set of experiments, we compared three different approaches for
language identification: CPL (simply assigns to a given line the language of the
previous one), unigram (uses Eq. 4) and bigram (uses Eq. 5). We performed the
interactive transcription of GERMANA using described framework for each of
the approaches. Each time a block is recognised, we measured the number of
errors committed by the language identification method used. It must be noted
that, in this set of experiments, parameters were tuned to minimise the number
of language identification errors. Table 2 shows the results in terms of language
identification error-rate (IER) for the whole document. We also included the
results on the same framework of the word-based approach presented in [7].

Table 2. Language identification results on GERMANA

System CPL Unigram Bigram

Character-based
2.5

14.2 4.0
Word-based 15.9 5.0

From the results in Table 2, it can be observed that CPL achieved the best
performance. CPL took fully advantage of document sequentiality and it only
committed errors when the language changed from line to line, which only oc-
curs a few times in GERMANA. In both, character and word based systems,
the bigram approach tunned its parameters to ignore the language dependent
recogniser probability in Eq. 7 and it forces the system to only relay on the lan-
guage model probability of language labels. In this case, the bigram approach
identifies the language only using the bigram probability. However, the bigram
approach only adapts its parameters each time a block is supervised, and thus,
it fails to identify all lines of a language when it appears the first time in the
transcription process. On the other hand, the character-based unigram approach
achieved slightly better results than its word-based version.
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In the second set of experiments, we compared five different approaches in
terms of Word Error Rate (WER) on recognised transcriptions. WER is defined
as the ratio between the minimum number of editing operations to convert the
recognised words into the reference, and the number of reference words. In the
first approach, we built a monolingual system, where we assume all lines to
belong to the same language. This approach is considered the baseline, as lan-
guage identification step is not needed and it is the simplest aproximation to
the problem. Next, motivated from the results in [7], we also built four differ-
ent language dependent systems, which differ on which language identification
method is used to switch on the proper language dependent recogniser. All the
language dependent systems shared the same HMM image models but differ on
their language models, which are only trained from the transcriptions of their
corresponding languages. These multilingual systems are named as: supervised
(language label is manually given), CPL (copy previous label), bigram (using
Eq. (5)), and unigram (using Eq. (4)). It must be noted that, in this case, all
approaches adapted their parameters to optimize the WER on last block. As
the unigram and bigram approaches can be optimized for WER or IER, we also
compared the results of both optimizations when transcribing, as the transcrip-
tions produces are different. The results are represented in Fig. 1, in terms of
WER of the recognized text up to the current line.

 22

 24

 26

 28

 30

 32

4k 6k 8k 10k 12k 14k 16k 18k 20k

WER

Training Lines

Unigram IER tunned
Bigram IER tunned

Unigram WER tunned
Bigram WER tunned

CPL
Supervised

Monolingual

Fig. 1. WER in GERMANA as a function of the number of recognized lines for the
monolingual and language-dependent approaches. Results are presented from line 3500,
in which a different language apart from Spanish appears.
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On the contrary, as it happened in [7], all multilingual systems achieved worse
results than the monolingual system. However, even though there is not signif-
icant difference between the three best approaches, as corroborated by a boot-
strap evaluation [17]; the monolingual approach is considered the best as it is
easier to build and it does not need a language identification step in recogni-
tion. In error mean terms, even in the supervised approach, where the language
is given, the use of language dependent recognizers could not outmatch the
monolingual approach. The main cause of the monolingual performance is pro-
duced by the origin of all languages but German in GERMANA. Most languages
in this document are Romance languages, which come from the same original
language, sharing a common underlying language structure. For instance, the
lexeme of many words can be correctly estimated from the Spanish part in order
to recognise other similar romance languages, such as Catalan. In fact, the main
responsible of the monolingual result is the high order (9-grams) character-based
language model, which was able to estimate the common lexeme structure of all
romance languages.

In language dependent approaches, it can be observed that, even though both
supervised and CPL approaches achieved the best transcription results, the sys-
tem performance did not always depend on the language identification perfor-
mance. On one hand, there is not always a direct relationship between IER and
WER. For instance, the unigram and bigram IER optimised approaches achieved
a IER of 14.2 and 4.0, respectively, while the WER results were 28.36 and 27.57.
On the other hand, as observed from the difference between the different opti-
mizations of unigram and bigram approaches, a system with a worse IER can
obtain a better WER results. For example, the bigramWER optimised approach
obtained 26.34 of WER from a IER of 8.5, while optimising the IER on the same
approach achieved 27.57 of WER from a IER of 4. These results corroborate our
conclusions in [7], in which we observed that a language is better recognised
using a different language dependent recogniser. However, as said, the monolin-
gual approach achieved better recognition results because the improvement from
better estimated languages is already included in the character-based language
model.

In terms of transcription performance, in our previous work [7], we also dealt
with the complete transcription of GERMANA, but using word-based models. In
that case, the monolingual approach obtained 44.39% of WER, however, in this
work the same approach obtains 25.19%. These improvement is caused by two
factors. On one hand, the RWTH recogniser improved the results due to a new
feature extraction method. On the other hand, further error analysis revealed
that, as expected, most of this improvement is due to the correct recognition of
OOVs words, and punctuation signs. In Figure 2, we can observe the performance
of both models in the recognition of a line, concretely, in this example, word-
based errors (“estado”, “Viuda”, and “reflejasen”) occured due to OOVs words
(“citado”, “Vidal”, and “refleja”). On the other hand, punctuation signs (“,”
after “Vidal” and “Reina”), are successfully recognized in the character-based
approach, whereas, the word-based approach failed to recognize this signs due
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to its scarcity in the training dataset. In past works [6], we only dealt with
GERMANA first part, where we reported a performance of 34.51% of WER,
in this same partition, the character-based system obtained a performance of
12.12% WER.

Image

Character-based invirtieron al citado Vidal, dirijida á la Reina, refleja las

Word-based invirtieron al estado Viuda dirijida á la Reina reflejasen

Fig. 2. Comparison of word-based and character-based recognition

5 Conclusions and Future Work

We have proposed a character-based approach for interactive transcription of
multilingual documents. This approach is motivated by the high number of
OOV words in these handwritten text documents. In addition, we have adapted
our previous probabilistic framework for language identification in interactive
transcription of multilingual documents to be use in a character-based system.
Empirical results are presented on the whole GERMANA database, a 764-page,
single-author manuscript from 1891 written in up to six different languages. Two
different sets of experiments were performed: language identification and auto-
matic recognition experiments. According to the empirical results, in terms of
language identification, the simplest technique, that is, the “copy the preceding
label” (CPL) bigram model is also the most accurate. On the other hand, in
terms of transcription performance, the monolingual approach achieved the best
results. This is mainly caused by the use of character-based language models,
which successfully estimates the underlying structure of similar languages. We
also observed that language identification results did not always correlate with
transcription results, and that the use of a language dependent recogniser was
not needed in the transcription task proposed. However, a language dependent
approach can be useful when dealing with very different languages, which struc-
ture do not share any similarities. In addition, the monolingual language model
was build from the concatenation of all transcription. A more adequate approach
would be to create a mixture of language dependent models, which could improve
the monolingual results. Transcription of other multilingual documents remains
as future work to better generalise the effectiveness of the presented approach.
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Abstract. This paper proposes a robust pitch extractor with applica-
tion in Automatic Speech Recognition and based on selecting pitch lines
of a tonegram (a representation of the different pitch energies at each
frame time). First, the tonegram and its maximum energy regions are ex-
tracted and a Dynamic Time Warping algorithm finds the most energetic
trajectories or pitch lines from these regions. A second stage estimates
the tonegram of the most energetic lines by applying Computational Au-
ditory Scene Analysis rules which reject and group octave-related lines.
The mean pitch of the speaker is estimated and the final pitch is es-
timated by rejecting lines which are outside from the mean pitch. The
proposed pitch extractor is evaluated in a novel way - by means of the
word accuracy of a Missing Data recognizer on Aurora-2 database.

Keywords: pitch extractor, pitch line, CASA, DTW, noise, robust speech
recognition.

1 Introduction

Acoustic noise represents one of the major challenges for Automatic Speech
Recognition (ASR) systems. Many different approaches have been proposed to
deal with this problem [10,1,3] but if we consider voiced speech (i.e. not whis-
pering speech) and the manner in which the auditory system works, pitch in-
formation can be a very useful cue to separate noise from speech and to obtain
high performance in ASR [5,7,8].

One of the main challenges for pitch-based ASR techniques is that they need a
robust pitch extractor. We can distinguish two stages in pitch extractors: a frame
stage that obtains the pitch (or pitches) at each frame, and a post-processing
stage which produces a final pitch decision. The result of the first stage is a repre-
sentation indicating at each instant time, the energy or probability of observing
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the different pitch values. We will call tonegram to this representation and dif-
ferent tools such as difference-function [2], comb-filter [4] or auto-correlogram
[5] can be employed to obtain it. The post-processing stage tries to estimate the
final pitch by employing this tonegram and rules which help to distinguish the
target pitch from possible noise pitches. The continuity and smoothness of pitch
lines is the most common rule for speech signals as it is shown by the Hidden
Markov Models (HMMs) or mode filters which many of the pitch extractors have
[5,8]. In addition, Computational Auditory Scene Analysis (CASA) rules, such
as common limits (onset/offset) or even high level information [5], have been
applied in order to group spectro-temporal pixels of the spectrogram and to
obtain, as a result, a final pitch decision.

The goal of the paper is to show how the pitch lines can be extracted from
a tonegram by means of a Dynamic Time Warping (DTW) approach, and how
a final pitch decision can be obtained by means of a post-processing, inspired
on CASA rules, of these lines. The advantage of working with pitch lines is that
it let us associate to the lines different features (such as intensity, mean-pitch,
space-localization, etc.) and later select the lines which fullfill the features of
target speaker.

The structure of the paper is as follows. First, a block diagram gives an
overview of the pitch extractor. Sec. 3 explains the proposed pitch extractor
in greater detail. Sec. 4 presents the experimental framework and the Aurora-2
results by using a pitch-based Missing Data (MD) technique for ASR. The paper
concludes with a summary and a discussion of future work.

2 System Overview

The pitch extractor (Fig. 1) has a noisy signal of an utterance (the sum of
clean speech and noise, y = x + n) as input. This signal is segmented and the
autocorrelation of each frame is obtained to produce a tonegram. High energy
regions of the tonegram are identified and their maximum energetic trajectories,
obtained by means of a DTW approach, result in many pitch lines. We select a
set of Maximum Energy Lines (M.E.L.) and their octave factors regarding their
fundamental lines are estimated by using CASA rules. We relocate these lines
at its fundamental period position, and estimate the tonegram which should be
observed if only M.E.L. were presented with the addition of the corresponding
octaves. We estimate the mean pitch of the speaker by means of this tonegram
estimate and the final pitch py is obtained by discarding and selecting those lines
which must correspond to the target speaker.

3 Pitch Extractor

The most important blocks and functions of the proposed extractor are detailed
below. Note that the parameters of the blocks were determined through pre-
liminary experiments performed over a set of training sentences of Aurora-2
contaminated with noise.
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Fig. 1. Block diagram of the proposed pitch extractor

3.1 Tonegram

In order to estimate the tonegram, the unbiased autocorrelation is employed
due to the following properties: fast computation (by means of Fast Fourier
transform), concentration of noise at first coefficients (if it is not correlated [8]),
capacity of representing the pitch energy, and capacity to define regions when a
tone is presented. The power tonegram at pitch value p and frame time t is:

TGpow(p, t) =
1

FL− p

FL−1∑
i=p

yt(i)yt(i− p) (1)

where yt (i = 0, .., FL − 1) is the noisy signal in frame t (length FL = 256,
sampling frequency 8kHz). The frame shift is FS = 80 samples and p ∈ [pl, ph],
where pl = 10 and ph = 160 samples define the range of human pitch. The
power tonegram is passed through a square root function and normalized to
[0, 1] in order to obtain the final tonegram (TG(p, t)), which is a more suitable
representation of pitch magnitude energy. Fig. 2 shows a tonegram from an
Aurora-2 utterance.

3.2 High Energy Regions

The mean and the standard deviation of each temporal frame of the tonegram
(TG(t)) increase when a tone is presented, so we can estimate the instantaneous
energy of the tonegram as follows:

ETG(t) = μTG(t) + σTG(t) (2)

where μTG(t) and σTG(t) denote the mean and the standard deviation of a tone-
gram vector at time t. The instantaneous background energyEbTG(t) is obtained
by passing ETG(t) through a smoothing mean filter of length WL/5 samples (di-
ameter 2 ∗ WL/5 + 1) followed by a minimum filter of length WL/2 samples.
WL is 30 frames and refers to the expected mean Word Length. A tonegram
pixel is classified with a boolean high energy indicator if TG(p, t) > EbTG(t).
The high energy regions consist of connected high energy pixels. Regions with
an area lower than 2 ∗WL/5 pixels are deleted. Fig. 2 shows the resulting high
energy regions. In the following, the lth region will be denoted as TGl(p, t).
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Fig. 2. Tonegram TG(p, t) and its corresponding high energy regions with the DTW
lines, tonegram estimate of Maximum Energy Lines (M.E.L) and pitch estimate for the
FCJ 1396Z33A Aurora-2 utterance contaminated with babble noise at 0 dB

3.3 Estimation of Pitch Lines Based on DTW

Due to errors when estimating EbTG, high energy regions can contain more than
only one pitch line or even two or more crossed lines. An approach based on the
maximum at each time in order to estimate the strongest energy line, can result
in a discontinuous trajectory in these situations. Because of this, an approach
based on searching for the path with maximum energy can be more suitable.

In other words, we can estimate a pitch trajectory through a region TGl(p, t)
as the path that maximizes the global accumulated energy along axis t. For the
sake of simplicity, in this section t will be a relative index (t = 1, .., lengthl)
where lengthl is the number of frames covered by the region. In order to find
this path, we employ a method based on Dynamic Programming. The employed
algorithm is quite similar to the well-known standard DTW technique [11], but
introducing certain restrictions that we have found appropriate for pitch trajec-
tory estimation.

Standard DTW is a pattern matching technique that has been used for decades
in speech recognition, as well as in other areas, such as feature alignment in music
[12]. Briefly, given a matrix TGl(p, t), DTW finds the warping path through the
grid (p, t) that represents the “best” mapping between the two axes according to
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TGl(p, t). This path is represented by a pair of warping vectors, pl and tl, which
give the coordinates of the path at every step i, that is, pl = [pl1, p

l
2, . . . , p

l
i, . . . , p

l
I ]

and tl = [tl1, t
l
2, . . . , t

l
i, . . . , t

l
I ], where I is the number of steps in the path. In order

to find the best path among all possible combinations, DTW minimizes the accu-
mulated cost over the entire path. In our case, where TGl(p, t) represents energy
(not cost), the optimal warping path can be defined as the one that maximizes

the quantity
∑I

i=1 TG
l(pli, t

l
i), which measures the accumulated energy along the

path.
In order to obtain a path that represents a meaningful pitch trajectory, some

constraints must be imposed on the warping vectors. Firstly, the path must pro-
vide only a single pitch value for every frame, and secondly, the pitch trajectory
must be smooth and continuous in frequency (and therefore, large hops in pl

should not be allowed). To satisfy both requirements, we impose the following
local continuity constraints:

tl = [1, 2, . . . , lengthl] (3)

pl = [pl1, . . . , p
l
lengthl ] s.t., |pli+1 − pli| ≤ h. (4)

Clearly, the first constraint implies that each time frame will have only a single
pitch, while the second one avoids pitch hops larger than h (in our experiments,
we set h = 3 samples).

Taking into account these constraints, the DTW algorithm for finding the
optimal trajectory through a region TGl(p, t) with size P l × lengthl can be
summarized in two steps:

1. Recursion: For 1 ≤ p ≤ P l and 2 ≤ t ≤ lengthl, compute

D(p, t) = max
p′

[D(p′, t− 1) + TGl(p, t)], (5)

whith initialization D(p, 1) = TGl(p, 1). Here, D(p, t) can be interpreted as
the maximum partial accumulated energy that can be obtained among all
possible paths reaching the point (p, t). Observe that the maximization in
(5) is performed only over the values p′ from which (p, t) can be reached in
a single step, in accordance with the constraint in (4). The best predecessor
for each (p, t) is stored in ξ, i.e.,

ξ(p, t) = argmax
p′

[D(p′, t− 1) + TGl(p, t)]. (6)

2. Termination and Backtracking : Finally, the optimal trajectory pl is the path
with higher global accumulated energy up to the end frame, yielding:

pllengthl = argmax
p

D(p, lengthl), (7)

and the complete path is retrieved backwards as follows:

plt = ξ(plt+1, t+ 1), for 1 ≤ t ≤ lengthl − 1. (8)

Fig. 2 shows the resulting DTW lines corresponding to each TGl(p, t) region.
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3.4 Line Features

Once the pitch lines have been extracted we must store the following data vectors
of length lengthl for every line associated to the region TGl(p, t): tl, pl, El

vectors with the time, pitch positions and instantaneous energy. We will also
note El

mean the mean line energy, and tlmax, t
l
min, p

l
max, p

l
min the corresponding

maxima and minima.

3.5 Selection of Maximum Energy Lines (M.E.L.)

A vector with the line labels, corresponding to maximum mean energy (El
mean)

at each time, is obtained and passed through a mode filter of length WL/10.
This filter avoids including lines which are maximum for a very short time and
its length is related to the temporal masking effect. The different filtered labels
indicate the M.E.L. set. In the case of an energy tie, the line with lower pitch is
selected because we are looking for the lines corresponding to the fundamental
period. This situation will be addressed in Sec. 3.8.

3.6 Octave Estimation

Any line corresponding to a fundamental pitch period should appear repeated at
integer multiples, or horizontally in the tonegram. This can cause octave error
when selecting M.E.L.s. The integer relation between the pitch of a maximum
selected line lm and its fundamental line lm0 will be called the octave of lm
(olm = plm/plm0) and is estimated by a grouping-line approach inspired on
CASA [5] in these four steps:

1. Find horizontal lines close to lm: lines lh which fulfill this condition (tlhmax >
tlmmin & tlhmin < tlmmax) are selected.

2. Measure common movement, limit and intensity between lm and the hori-
zontal lines lh as follows:

clhmov = 1−
σ(p̄lm−p̄lh/f lh)

10
(9)

clhlim = 1− |tlmmin − tlhmin|+ |tlmmax − tlhmax|
lengthlm

(10)

clhint = 1− |Elh − Elm|
Elm

(11)

where p̄lm and p̄lh indicate the common pitch part between lm and lh, and
f lh = μ(p̄lh/p̄lm) is the horizontal factor. Note that the maximum value for
the common measures is always 1.

3. Select octave-related lines: the lines with common movement, limit and inten-
sity bigger than Tho = (0.9, 0.9, 0.9) are the octave-related lines lo to lm. In
case of not grouping lines, we try these other thresholds Tho = (0.7, 0.9, 0.9)
and Tho = (0.9, 0.7, 0.9).



A Robust Pitch Extractor Based on DTW Lines and CASA 203

4. Estimate the octave of maximum line: If horizontal lines have not been se-
lected, octave estimate is ôlm = 1. If horizontal lines have been selected but
not octave-related, ôlm = −1. In other case, we estimate the octave consid-
ering that the f lh of an octave-related line has to be an integer multiple of
1/olm. For example, assuming olm = 2 the observed vector of octave lines
should ideally be f lo = 0.5, 1, 1.5, ... Taking this into account, the octave
estimate is that which minimizes the distance between the observed and the
ideal factor vector of an octave (ôlm = argmino(dist(f

lo, f idealo ))). This dis-
tance is obtained by means of a clustering procedure and increases when
the clustering error and the amount of not matched centroids (elements of
f idealo ) increases. The maximum possible tried octave is always omax = 6.

3.7 Tonegram Estimation of M.E.L.

The tonegram of M.E.L. is estimated as follows: we fill an empty tonegram with
the original M.E.L. of Sec. 3.5 but relocated to their correct new position using
the octave estimate (plm

new = plm
orig/ô

lm) and with the same original instantaneous

energy. Also, the corresponding octave lines are put at integer multiples of plm
new

and with the same energy. The lines with ôlm = −1 are not moved but some
possible octave lines are put at integer multiples and divisions of plmorig and with
the corresponding energy of the original tonegram. We do so because the octave
is unknown. The maximum integer number, for adding octaves, is always limited
to omax in order to avoid the inclusion of too many lines. The features of this
new tonegram are extracted and loaded in a structure as in Sec. 3.4. Fig. 2 shows
this tonegram estimate.

3.8 Mean Pitch Estimation of the Speaker

We select again the M.E.L. from the previous estimated tonegram in a similar
way to Sec. 3.5 and a tonegram with these new M.E.L. is constructed. This
tonegram will be denoted as TGperc and can be considered as a representation
of the perceived tones at each time if we are focusing our attention on maximum
energy tones presented in the auditory scene. The total perceived energy of each
tone (Eperc(p)) is obtained by summing neighboring channels separated one tone
as follows:

Eperc(p) =

nf∑
t=1

[p∗9/8]∑
ρ=[p∗8/9]

TGperc(ρ, t) (12)

where nf is the number of frames and [] the round operator. Considering that,
even at low SNRs, the majority of maximum tones correspond to the target
speaker, we can say that the maximum of Eperc corresponds to the speaker
mean pitch (pmean).

3.9 Final Pitch Selection

If we suppose that the speaker pitch lines are concentrated around an interval
of pmean we can discard many lines from the M.E.L. tonegram of Sec. 3.7, so
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the l lines which do not fulfill this condition (plmax > (2/3)pmean & plmin <
(3/2)pmean) are deleted. In a similar way to Sec. 3.5, we select the M.E.L. of this
deleted-tonegram and the corresponding pitches at each time of the line with
maximum total energy conform our previous pitch estimate.

The previous unvoiced frames are those where pitch has not been detected.
In the case that unvoiced frames are not detected, we suppose unvoiced the first
and last 10 frames. In a similar way to Sec. 3.2 we obtain μEu

TG
and σEu

TG
(the

mean and the standard deviation of the instantaneous energy ETG of unvoiced
frames) in order to obtain an unvoiced background threshold. The instantaneous
energy of the voiced frames (Ev) is smoothed with a mean filter of length WL/10
samples and the frames with Ev < μEu

TG
+ 5 ∗ σEu

TG
are labeled as unvoiced.

Finally, the value of the previous pitch is made null at unvoiced frames and this
is our final pitch estimate py. Fig. 2 also compares this pitch extraction with the
clean pitch (extracted from the corresponding clean utterance).

4 Experimental Framework and Results

4.1 Experimental Framework

The experiments reported here employ the Aurora-2 database which consists of
digit utterances contaminated by different types of noises at different SNRs [9].

The evaluation of the pitch estimate will be done in a novel and useful way
- by means of a pitch-based technique [6] for robust ASR. This technique has
been presented in [7] and combines two complementary noises [a Voice Activity
Detection noise (suitable for silence frames) and a tunnelling noise (suitable for
voiced frames)] to estimate the noise spectrogram. This noise produces a soft
Missing Data (MD) mask which is passed, together with the noisy spectrogram,
to a marginalization MD recognizer. For the sake of simplicity, here, we will
obtain a hard mask [3](instead of soft) which only requires the optimization of
the threshold (and not also of the slope) to decide wether a feature is reliable
or not. Clean train is always done and the HMM model features of the MD
recognizer are the standards of Aurora-2 when the spectrogram is employed (9
Gauss/state, 23-LogMel-static+23-LogMel-delta feature vector, etc.. [7]).

4.2 Experimental Results

Tab. 1 shows the different word accuracies achieved by different systems tested
over the whole (set A, B and C) Aurora-2 database.

FE+CMN is the ETSI Front End (FE) with Cepstral Mean Normalization
and acts on a classical cepstral recognizer [9]. The rest of the systems act on the
MD recognizer explained above with different pitch extractors. PEFAC employs
the pitch extractor proposed in [4] but, in order to improve its results, we apply
the following post-processing: frames with voiced probability lower than 0.8 are
selected as unvoiced. This decision is later passed though a mode filter of length 1
frame. Finally, we make null the pitch at unvoiced frames. Yin uses the extractor
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Table 1. Word accuracies obtained by different systems tested with Aurora-2 (set A,
B and C) for different SNR values

Systems Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean (20-0 dB)

FE+CMN 99.12 97.17 92.53 76.15 44.16 23.02 13.00 66.61

PEFAC pitch 98.67 93.56 84.69 69.29 55.23 37.30 18.31 68.01

Yin pitch 98.89 94.93 89.32 80.07 66.47 39.56 14.36 74.07

DTW-lines pitch (proposal) 98.20 95.07 90.14 80.93 66.15 39.06 14.90 74.27

described in [2]. Frames with a normalized energy threshold lower than 0.8 and
gross aperiodicity bigger than 0.95 are considered unvoiced. DTW-Lines employs
the proposed pitch extractor. The optimum threshold of the masks was −3dB
in all cases, except for the PEFAC approach (0dB).

We can see that our pitch extractor outperforms all the extractors on average.
In clean conditions, our pitch extractor does not obtain as good results as the
others probably because the background energy thresholds of Sec. 3.2 and 3.9
avoid the detection of some weak regions and pitch values respectively.

5 Conclusions

This paper has proposed a pitch extractor for ASR based on the assumption
that the most energetic pitch lines of the tonegram, around a speaker mean pitch
estimate, correspond to the speaker pitch. The pitch lines have been extracted
with a DTW approach and CASA rules have been employed to group and reject
lines. The proposal has been evaluated on a robust ASR system showing high
performance. Regarding future work, the results at clean and noisy conditions
could be improved by means of a better estimation of the background energy
threshold and a better application of CASA rules in the selection of the target
speaker lines. Also we would like to test this scheme on another more robust
tonegram (such as the difference function [2]), and on the two-talker recognition
problem [5] by using the line features (such as the intensity, mean-pitch or even
space-localization) together with high level information (provided by Speech
Fragment Decoding [1,5]) in order to separate the pitch lines of the two speakers.
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Abstract. A speech denoising method based on Non-Negative Matrix
Factorization (NMF) is presented in this paper. With respect to previ-
ous related works, this paper makes two contributions. First, our method
does not assume a priori knowledge about the nature of the noise. Sec-
ond, it combines the use of the Kullback-Leibler divergence with sparse-
ness constraints on the activation matrix, improving the performance of
similar techniques that minimize the Euclidean distance and/or do not
consider any sparsification. We evaluate the proposed method for both,
speech enhancement and automatic speech recognitions tasks, and com-
pare it to conventional spectral subtraction, showing improvements in
speech quality and recognition accuracy, respectively, for different noisy
conditions.

Keywords: Non-Negative Matrix Factorization, Kullback-Leibler Di-
vergence, Sparseness Constraints, Speech Denoising, Speech Enhance-
ment, Automatic Speech Recognition.

1 Introduction

The quality of speech is degraded in the presence of noise. Noisy speech signals
are a common problem in many applications, e.g. Automatic Speech Recogni-
tion (ASR), landline and mobile phone communications, etc. In ASR systems,
the problem is harder because machine understanding is still far from humans
and speech enhancement is sometimes performed as a preprocessing stage for
those systems. In this paper, we have concentrated our efforts on enhancing
speech for both, human consumption and ASR. Several methods for reducing
the influence of noise have been proposed. Among them, it is worth mention-
ing the Wiener filtering technique [1] and Spectral Subtraction (SS) [2], which
consists of subtracting an estimate of the noise spectrum from the noisy speech
spectrum. Both of them produce a more intelligible signal but generate the so
called musical noise as a side effect.

Recently, Non-Negative Matrix Factorization (NMF) has been successfully
used in areas related to speech processing, including speech denoising [3], sound
separation [4], speaker separation [5] and feature extraction [6]. NMF provides a
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way of decomposing a signal into a convex combination of nonnegative building
blocks (also called basis vectors) by minimizing a cost function. Typical cost
functions are the Euclidean distance and the Kullback-Leibler (KL) divergence.
Therefore, NMF is capable of separating sound sources when their corresponding
building blocks are sufficiently distinct, as is the case of speech and noise.

In this paper, we propose a NMF-based method for speech denoising which
is very close to the one developed in [3] for speech enhancement tasks. The
technique in [3] is based on a prior model of speech and noise, and therefore it
assumes a priori knowledge of the type of noise which contaminates speech. In
contrast, our method does not use this explicit information about noise, because
it works with the only-noise segments of the current utterance to be denoised,
after being detected with a Voice Activity Detector (VAD). Besides, we report
results for both, speech enhancement and automatic speech recognition. On the
other hand, several studies point out that it may be useful to explicit control
the degree of sparsity in NMF decompositions for sound and speaker separation
tasks. In this sense, the method for speaker separation proposed in [5] intro-
duces a penalty term in the NMF with Euclidean distance that allows to control
the sparsity of the solution. However, recent NMF-based techniques in speech
processing report better results by using NMF with KL divergence [6], [4]. For
this reason, in this paper, we propose a NMF-based method for speech denois-
ing which combines the use of the KL divergence with sparseness constraints
following the procedure described in [7].

This paper is organized as follows: Section 2 introduces the mathematical
background of NMF; in Section 3 we present the speech denoising process using
NMF. In Sections 4 and 5 we describe the application of the method to speech
enhancement and automatic speech recognition, respectively, and end with some
conclusions in Section 6.

2 Non-negative Matrix Factorization (NMF)

Given a matrix V ∈ R
F×T
+ , where each column corresponds to a data vector,

non-negative matrix factorization (NMF) approximates it as a product of two
matrices of nonnegative low rank W and H , such that

V ≈ WH (1)

where W ∈ R
F×K
+ and H ∈ R

K×T
+ and normally K ≤ min (F, T ). This way,

each column of V can be written as a linear combination of the K basis vectors
(columns of W ), weighted with the coefficients of activation or gain located in
the corresponding row of H . NMF can be seen as a dimensionality reduction of
data vectors from an F−dimensional space to the K−dimensional space. This
is possible if the columns of W uncover the latent structure in the data [8]. The
factorization is achieved by an iterative minimization of a given cost function
as, for example, the Euclidean distance or the generalized Kullbak Leibler (KL)
divergence,
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DKL (V ‖WH) =
∑
ij

(
Vij log

Vij

(WH)ij
− (V −WH)ij

)
(2)

In this work, we consider the KL divergence because it has been recently used
with good results in speech processing tasks, such as sound source separation
[4], speech enhancement [3] or feature extraction [6]. In order to find a local
optimum value for the KL divergence between V and (WH), an iterative scheme
with multiplicative update rules can be used as proposed in [8] and stated in (3)

W ← W ⊗
V

WH HT

1HT H ← H ⊗ WT V
WH

WT 1
(3)

where 1 is a matrix of size V , whose elements are all ones and the multiplications
⊗ and divisions are component wise operations.

The NMF algorithm does not assume any sparsity or mutual statistical in-
dependence between columns of W . However, NMF usually provides sparse de-
composition [8]. There are several ways to achieve some control of the sparsity.
In this paper, we follow the approach proposed in [7] and [9] for KL cost func-
tions, in which the NMF is regularized using non-linear projections based on (3).
Applying this procedure, the regularized learning rules are the following,

W ←
[
W ⊗ [ V

WH HT ]
ω

1HT

](1+αw)

H ←
[
H ⊗ [WT V

WH ]
ω

WT 1

](1+αh)
(4)

where αw and αh are the regularization parameters or sparse factors and ω is
a relaxation parameter which also controls the sparsity and, in addition, speeds
up the algorithm convergence. Note that with the sparse factors, the exponent
of the learning rules are greater than one, which implies that the small values
in the non-negative matrix tend to zero as the number of iterations increase [9].
In this paper, we only consider sparsification on the matrix H.

3 Speech Denoising Using NMF

NMF-based methods perform speech denoising under the hypothesis that noisy
speech signals are the additive mixture of two sufficiently different sources:
speech and noise. NMF is applied to magnitude spectra as it is assumed that the
short-time magnitude spectra of a noisy signal, |Vmix| can be expressed as a lin-
ear combination of several distinct components, those representing only-speech
spectra (Wspeech) and those representing only-noise spectra (Wnoise). These com-
ponents are called Spectral Basis Vectors (SBV). The NMF representation of a
noisy signal is shown in Fig. 1, wherein the speech SBVs (Wspeech) and their cor-
responding speech activation coefficients (Hspeech) can be used to reconstruct the
clean speech signal (|Vspeech| ≈ WspeechHspeech), while the noise SBVs (Wnoise)
and their corresponding noise activation coefficients (Hnoise) can also be used to
reconstruct the noise signal (|Vnoise| ≈ WnoiseHnoise) if required.
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Fig. 1. NMF representation of noisy speech signals

The speech enhancement process consists of two different stages, training and
denoising itself, as detailed below.

Training Stage. In the training stage, the SBVs representing speech and
noise signals are determined. This is done by separately performing NMF on
clean speech and noise data. First, the spectrum magnitude of both, clean
speech (|Vspeech|) and noise (|Vnoise|) is computed. Afterwards, the KL diver-
gence between the magnitude spectra and their corresponding factored matrices
((WspeechHspeech) and (WnoiseHnoise)) is minimized using the learning rules in
(3). Since it is an iterative algorithm, it is important to perform a proper initial-
ization of the matrices. Note that the spectral basis vectors contained in Wspeech

and Wnoise are used in the next stage as speech and noise models.
For building the speech model, it is assumed that enough clean speech data

is available. For the noise model, we have explored two different alternatives:

– Offline Noise Data (OND). In this approach, a priori knowledge about the
type of the noise is assumed as in [3]. Therefore, a separate noise model for
each of the noise types considered is trained using some offline available noise
data. This approach will provide an upper limit of the proposed NMF-based
denoising method performance.

– Voice Activity Detector Noise Data (VADND). In this approach, a VAD is
used in order to explicit detect the only-noise segments of the utterance to
be denoised. Afterwards, the noise model is built using these noise frames.
Therefore, one noise model is trained for each utterance to be enhanced.
This approach is more computational costly, but it avoids the need of the a
priori knowledge about the type of noise, which it is not always possible.

Denoising Stage. As Wspeech and Wnoise are assumed to be good spectral
basis functions to describe speech and noise, in the denoising stage they are
kept fixed and are concatenated to form a single set of SBVs called Wall. Given
the magnitude spectrum of the noisy speech signal (|Vmix|), we compute its
factorization |Vmix| ≈ WallHall by minimizing the KL divergence between |Vmix|
and (WallHall), updating only the activation matrix Hall with the learning rules
in (4). In order to control the sparseness of Hall, appropriate values for the
regularization parameters (ω and αh) need to be chosen (see subsection 4.2).
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Fig. 2. Block diagram of the speech denoising process using NMF

The magnitude spectrum of the denoised speech is estimated as |Vspeech| ≈
WspeechHspeech, being Hspeech the rows of Hall corresponding to the activation
coefficients of Wspeech. Finally, the spectrogram is recovered using the phase
spectrum of the original noisy signal and the denoised speech signal is trans-
formed into the time domain by means of a conventional overlap-add method.
The whole process of speech denoising is shown in the block diagram of Fig. 2.

4 Application to Speech Enhancement

In this section, the evaluation of the proposed methods (OND and VADND) on
a speech enhancement task is presented.

4.1 Database and Experimental Setup

The evaluation of speech enhancement was conducted on the AURORA-2 data-
base [10], which is based on the TIDIgits database and it contains the recordings
of 52 male and 52 females US-American adults pronouncing sequences of digits.
Originally the database was recorded in clean conditions and subsequently con-
taminated with several types of noises at different SNRs. The sampling frequency
is 8KHz. The database was end-pointed using the G.729 VAD.

For training the speech SBVs we used around 420 clean files belonging to the
clean training set of the AURORA-2 database. In the OND method, the specific
noise models were trained using the corresponding noise signals included in the
database. In the VADND approach, the noise model for each utterance was
trained using the initial only-noise frames detected by the VAD. In order to
perform the study in subsection 4.2 we used 1,200 files from the test set A,
which correspond to different noisy versions of 200 arbitrarily selected files with
car noise added at SNRs from −5dB to 20dB with 5dB step. Finally, experiments
in subsection 4.3 were conducted over 4,800 files from the test set A containing
speech contaminated with subway, babble, car and exhibition hall noises at the
SNRs previously mentioned. These files are noisy versions of 200 arbitrarily
selected speech signals different from the ones used in subsection 4.2.

To evaluate the performance of the proposed methods, we use the so-called
Perceptual Evaluation of Speech Quality (PESQ), which is a measure recom-
mended by the ITU-T for end-to-end speech quality assessment. The PESQ
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score is able to predict subjective quality with good correlation in a very wide
range of conditions (noise, filtering, coding distortions, etc.) [11] and uses a 5-
point scale with 1 the worst and 5 the best values. PESQ values were computed
using the code available in [12] and considering the clean speech signal as the
reference. Results are presented using the following relative measure,

Efrel =
PESQdenoised − PESQnoisy

PESQnoisy
× 100% (5)

where PESQnoisy and PESQdenoised are the PESQ scores before and after ap-
plying the speech enhancement process, respectively. Increments imply a quality
improvement and decrements a degradation with respect to the noisy signal.

4.2 Study on the Influence of the NMF Parameters

This set of experiments was performed in order to study the impact of several
NMF parameters on the quality of the enhanced speech. The considered param-
eters were the analysis window length and the frame shift used for spectrograms
computation, the number of spectral basis vectors and the values of the regu-
larization factors, ω and αh. In all cases, NMF was initialized by running 10
times the Alternating Least Squares NMF (ALS NMF) algorithm [9], in such a
way that the factorization with the smallest euclidean distance between V and
(WH) was chosen for initialization. Then, these initial matrices were refined
by minimizing the KL divergence with sparseness constraints as indicated en
Section 2. Preliminary experiments considering the Euclidean distance as cost
function instead of the KL divergence produced worse results in terms of PESQ.
The main experiments and results are summarized in next paragraphs:

– The window length was varied from 10ms to 45ms with 5ms step. From this
set of experiments, it was observed that PESQ scores decreased with the
window length, obtaining the best results in the range from 25ms to 45ms.

– The frameshift was studied in the range from 1ms to 10ms. In this case,
the speech quality improved as the frameshift became smaller. Best PESQ
scores were found in the range from 1ms to 5ms.

– The number of SBVs was varied from 10 to 80 with 10 step. Results showed
that the quality of the denoised speech degraded when using a small number
of SBVs (below 30), whereas best PESQ scores were obtained in the range
from 40 to 80 SBVs. This result indicates that for an adequate representation
of speech signals in NMF, it seems necessary to consider more than 30 SBVs.

– With respect to the regularization parameters, several experiments were per-
formed varying αh from 0 to 1.2 (fixing ω = 1) and varying ω from 1 to 2.5
(fixing αh = 0). Results for the OND approach are shown in Fig. 3a and
Fig. 3b, respectively. Similar trends were observed for the VADND method.
As it can be observed, PESQ scores degrade when no regularization is used
(this case corresponds to αh = 0 in Fig. 3a and ω = 1 in Fig. 3b). How-
ever, when the values of the regularization parameters increase, the speech
quality improves, being the best performance found for the combination of
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α ω�

(a)                                                                                                 (b)

Fig. 3. Relative PESQ measure for the OND approach and a) ω = 1 with different
values of αh and b) α = 0 with different values of ω

αh around 1 and ω = 1 or the combination of ω around 2 and αh = 0).
Other combinations of these parameters were tried, not obtaining significant
improvements with respect to these PESQ values.

4.3 Experimental Results

In this subsection, we compare the performance of the two NMF-based denoising
approaches (OND and VADND) with the conventional Spectral Subtraction (SS)
in terms of the relative PESQ measure. According to the results achieved in the
previous study, for the NMF-based methods, we used a window length of 40ms,
a frameshift of 2.5ms, 50 SBVs, ω = 1 and αh = 1. For a fair comparison, in SS
we considered the same values for the window length and the frameshift.

Fig. 4 shows the relative PESQ measure with respect to the noisy signal for
the four types of noise considered at several SNRs. For subway, babble and
exhibition hall noises, the NMF-based methods clearly outperform SS at low
and medium SNRs (from -5 dB to 10 dB). For SNR = 15 dB, results obtained
with OND, VADND and SS are rather similar. However, at higher SNR (20
dB), SS produces better results than the NMF-based techniques. For the car
noise, OND is better than SS at low and medium SNRs (-5 dB, 0 dB and 5 dB).
Nevertheless, SS outperforms OND for higher SNRs. VADND produces worse
results than SS at all SNRs, being more noticeable the differences for SNRs over
15 dB. In general, results show that OND and VADND are more suitable than
SS for low and medium ranges of SNR.

With respect to the comparison between OND and VADND, it can be ob-
served that the quality of the enhanced signal is better with OND in all cases.
This result is expectable because OND uses more information than VADND in
the denoising process. In fact, it needs to know the type of noise (not the SNR)
presented in the noisy utterances. Nevertheless, VADND is capable of effectively
denoise the speech signal using only the information contained in the only-noise
segments of each utterance.
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Fig. 4. Relative PESQ measure for SS, OND and VADND techniques

5 Application to Automatic Speech Recognition (ASR)

In this section, we present the evaluation of the proposed techniques on an
ASR task. In this case, firstly noisy signals are denoised using the NMF-based
techniques (OND or VADND) and then, these enhanced signals are fed into the
ASR system.

5.1 Database and Experimental Setup

The experiments were conducted over the AURORA-2 database [10] as for the
speech enhancement task. The recognizer was based on HTK (Hidden Markov
Model Toolkit) software package with the configuration included in the standard
experimental protocol of the database. Acoustic models were obtained from the
clean training set of the database, whereas test files correspond to the complete
test set A. Results are shown in terms of the recognition accuracy.

Acoustic features consist of the conventional Mel-Frequency Cepstrum Coeffi-
cients (MFCC). In particular, twelve MFCCs were computed every 10 ms using
a Hamming analysis window of 25 ms long and 23 mel-spaced spectral bands.
The log-energy of each frame and the corresponding delta and acceleration coeffi-
cients were also computed and added, yielding feature vectors of 39 components.
Finally, cepstral mean normalization (CMN) was applied.

5.2 Experimental Results

Fig. 5 shows the recognition results achieved by the different NMF-based denois-
ing techniques as well as for Spectral Subtraction (SS) and the baseline system
(without denoising). For SS, OND and VADND, the same configuration parame-
ters as in the case of speech enhancement were used, except for the regularization
parameters, that were set to ω = 1.25 and αh = 0.2, after a preliminary experi-
mentation.
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Fig. 5. Recognition Rates (%) for the baseline, SS, OND and VADND techniques

As it can be observed, for subway, babble and exhibition hall noises, both
NMF-based techniques achieve better results than SS and the baseline for low
and medium SNRs (from -5 dB to 10 dB). For higher SNRs, all the algorithms
present a similar behaviour except for SS in the babble noise. In this case, the
recognition accuracy obtained with SS is lower than the other techniques (in-
cluding the baseline), probably due to the distortions introduced by SS in the
denoising process. For the car noise, similar results are achieved with all tech-
niques. On the other hand, comparing the two NMF-based methods for all noises,
OND outperforms slightly VADND in most cases, being these performance dif-
ferences less noticeably than in the speech enhancement task.

Table 1. Average Recognition Rates (%) for the four types of noise

Noise OND VADND SS Baseline

Subway 77.12 76.62 73.95 65.34

Babble 70.19 69.66 65.35 66.83

Car 75.29 74.94 75.72 63.86

Exhibition Hall 71.81 70.66 68.83 62.23

Table 1 shows the recognition rates averaged over all SNRs for each type of
noise. It can be observed that OND and VADND outperforms SS for all noises,
except for the car noise in which the results are very similar.

6 Conclusions and Future Work

In this paper we have presented a NMF-based method for speech denoising which
combines the use of the Kullback-Leibler divergence with sparseness constraints
on the activation matrix and it does not assume a priori knowledge about the
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nature of the noise. In addition, an exhaustive study on the influence of different
NMF parameters (window length, frameshift, number of spectral basis vectors
and regularization parameters) on the quality of the enhanced speech has been
carried out. We have compared the proposed method to conventional spectral
subtraction for both, speech enhancement and automatic speech recognitions
tasks, under different noisy conditions, obtaining significant improvements espe-
cially at low and medium SNRs.

For future work, we plan to experiment on real noisy signals instead of the
artificially distorted ones used in this paper. Other future lines include the un-
supervised learning of auditory filter banks by means of NMF and the use of the
activation coefficients as acoustic parameters in ASR tasks.
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Abstract. This paper proposes a novel compensation technique devel-
oped in the log-spectral domain. Our proposal consists in a minimum
mean square error (MMSE) estimator derived from an occlusion model
[1]. According to this model, the effect of noise over speech is simpli-
fied to a binary masking, so that the noise is completely masked by the
speech when the speech power dominates and the other way round when
the noise is dominant. As for many MMSE-based techniques, a statistical
model of clean speech is required. A Gaussian mixture model is employed
here. The resulting technique has clear similarities with missing-data
imputation techniques although, unlike these ones, an explicit model of
noise is employed by our proposal. The experimental results show the
superiority of our MMSE estimator with respect to missing-data impu-
tation with both binary and soft masks.

Keywords: robust ASR, feature reconstruction, MMSE estimation, oc-
clusion model.

1 Introduction

Automatic speech recognition (ASR) is currently moving toward new ubiqui-
tous and pervasive applications where it allows an efficient and natural way for
human-machine interaction. However, these scenarios may reduce the perfor-
mance of ASR systems due to several reasons. Undoubtedly, an adverse acoustic
environment and, in particular, environmental noise, is the main of these rea-
sons. Thus, the robustness of ASR systems against noise is a desirable feature
that must be addressed.

In order to reduce the effect of the acoustic noise over speech recognizers there
exist multiple approaches, but two of them stand out from others [2]: feature
compensation and model adaptation. While the first one tries to denoise the
speech features employed for recognition, the second one modifies the acoustic
model parameters to reduce the mismatch with the noisy input features. The
advantages of feature compensation is that it can be developed independently
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from the recognition engine and, also, that it can be implemented more efficiently
than adaptation.

This paper proposes a novel compensation technique developed in the log-
spectral domain. Our proposal consists in a minimummean square error (MMSE)
estimator derived from an occlusion model [1]. According to this model, the ef-
fect of noise over speech is simplified to a binary masking, so that the noise
is completely masked by the speech when the speech power dominates and the
other way round when the noise is dominant. In order to model the clean speech
log-spectra, we follow the classical approach based on a Gaussian mixture model
(GMM). Section 2 is devoted to present and derive the proposed estimator. We
will see that the application of MMSE along with the hard-decision occlusion
model will yield a graceful soft-decision estimate which is a linear combination
of the observed (noisy) feature vector and an estimate of the clean feature vec-
tor for the case of speech totally occluded by noise. The resulting estimator will
resemble other techniques derived from a missing-data (MD) framework. The
similarities and differences with these techniques are discussed is section 3. Sec-
tion 4 is devoted to the experimental results. A summary of this work can be
found in section 5.

2 MMSE Estimation from an Occlusion Model

2.1 Occlusion Model

We will note as y the feature vectors corresponding to the observed (noisy) log-
Mel filterbank energies. Also, x and n will represent the same type of spectral
features for the clean speech and the noise, respectively. The relationship between
these variables is accurately represented by the following model [3],

y = x+ log
(
1+ en−x

)
+ r (1)

where r is a residual vector that depends on the phase relationship between
clean speech and noise.

Although accurate, the above distortion model does not allow an easy deriva-
tion of the MMSE estimator that we want to obtain, so some approximations
must be introduced. In the case of the occlusion model (OM), the residual r is
neglected and, also, the log-max approximation (that is, log(ea+eb) ≈ max(a, b))
is applied to (1) (see [4] for a detailed derivation of this model). The resulting
model can be finally expressed as,

y ≈ max(x,n) (2)

where operator max is applied feature by feature.
This model was first proposed in [1] and involves that some parts of the clean

speech spectrogram are completely masked by noise, while others are almost
unaffected (noise is masked by speech). Our proposal uses this assumption and
the spectral correlations represented by the GMM to provide clean speech feature
estimates.
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2.2 MMSE Estimation Based on the Occlusion Model

MMSE estimation is a Bayesian tool frequently employed in feature compen-
sation techniques. The MMSE estimate of the clean feature vector given the
observed (noisy) one can be expressed as,

x̂ = E[x|y] =
∫ ∞

−∞
xp (x|y) dx (3)

In first place, the MMSE estimator requires a clean feature model λX which
allows the computation of the posterior needed in (3). This is usually carried
out through a mixture of pdf’s defined by,

p(x|λX) =

M∑
k=1

P (k|λX)p(x|k, λX) (4)

The typical choice is a GMM where the pdf’s p(x|k, λX) = pX(x|k) are Gaus-
sians N (x;μk,Σk) with means μk and covariances Σk (k = 1, . . . ,M).

The proposed MMSE estimator will also require an statistical model λN of
noise. We will do the common assumption that the noise statistics are available
at every instant. These statistics must be obtained from a previous estimation
applied to the observed utterance. We will consider a single Gaussian model (for
every time instant),

p (n|λN ) = pN(n) = N (n;μN ,ΣN ) (5)

The posterior p(x|y) ≡ p(x|y, λX , λN ) required in equation (3) can be derived
from (4) and (5),

p (x|y, λX , λN ) =
M∑
k=1

p (x|y, k, λX , λN )P (k|y, λX , λN ) (6)

so the MMSE estimate can be finally expressed as,

x̂ =
M∑
k=1

P (k|y, λX , λN )

∫
xp (x|y, k, λX , λN ) dx︸ ︷︷ ︸

E[x|y,k,λX ,λN ]

(7)

As usual in MMSE feature compensation, the above estimate requires the compu-
tation of the posterior P (k|yu, λX , λN ) and the partial estimate E[x|y, k, λX , λN ]
for every Gaussian component k. In both cases, we have to solve multivariate
integrals. We will see next how the OM model can help us to do this. As pre-
viously mentioned, this model keeps the maximum between x and n feature by
feature. Thus, in order to ease its application to our estimation problem, we
will assume statistical independence among features. That is, all Gaussians in
λX and λN will be diagonal and the required integrals can be correspondingly
factorized. Statistical independence between speech and noise is also assumed.

For the sake of simplicity, models λX and λN will be removed from the nota-
tion. In the case that not both but only one model applies, this will be indicated
with the corresponding subscript (pX(·) or pN (·)).
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Posterior Computation. In order to obtain the required posterior, we first
apply the Bayes’ rule,

P (k|y) = p (y|k)PX(k)∑M
k′=1 p (y|k′)PX(k′)

(8)

Therefore, our problem becomes that of computing p(y|k). If we now apply the
statistical independence assumptions, this pdf can be factorized into the product
of probabilities p(y|k), where y represents a given observed feature.

Thus, we focus now on the computation of,

p (y|k) =
∫∫

p (x, n, y|k) dxdn (9)

=

∫∫
p(y|x, n, k)pX(x|k)pN (n)dxdn (10)

where x and n denote the corresponding clean speech and noise feature, respec-
tively. In this equation, densities pX(x|k) and pN (n) are known, but p(y|x, n, k)
must be determined. Since the occlusion model forces y to be the maximum of
x and n, it can be expressed as,

p(y|x, n, k) = p(y|x, n) = δ (y −max(x, n)) (11)

where δ(·) is the Dirac delta function.
On the other hand, the joint speech-noise space {(x, n)} can be split into two

subsets,

X = {(x, n)|x ≥ n}
N = {(x, n)|n > x}, (12)

which yields the following expression for (10),

p (y|k) =
∫∫

X
δ(y − x)pX(x|k)pN (n)dxdn+

∫∫
N
δ(y − n)pX(x|k)pN (n)dxdn

Now, the integrations over variables x and n can be separated,

p (y|k) =
∫ ∞

−∞
pX(x|k)δ(y − x)dx

∫ x

−∞
pN (n)dn

+

∫ ∞

−∞
pN(n)δ(y − n)dn

∫ n

−∞
pX(x|k)dx

and it is finally obtained that

p (y|k) = pX(y|k)CN (y) + pN (y)CX(y|k) (13)

where CX(y|k) and CN (y) are the cumulative density functions (cdf) correspond-
ing to pX(y|k) and pN (y), respectively. Since, in our case, pX(y|k) and pN (y) are
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Gaussians, these cdfs can be easily computed through the corresponding error
functions as,

CX(y|k) = Φ

(
y − μk

σk

)
, CN (y) = Φ

(
y − μN

σN

)
. (14)

It must be pointed out that the resulting posterior of eqn. (13) is the same as
that proposed by Varga and Moore in [1] to perform speech recognition in noise.
However, while Varga and Moore propose a 3-dimensional Viterbi algorithm to
decode speech employing separate hidden Markov models (HMMs) for speech
and noise, our proposal is oriented to feature compensation.

Partial Estimate Computation. Now, we must obtain the partial MMSE
estimate E[x|y, k] (defined in (7)) applying the OM model. Considering the
statistical independence assumptions, we must solve the following expectation,

E [x|y, k] =
∫ ∞

−∞
xp (x|y, k) dx =

∫∫
xp (x, n|y, k) dxdn (15)

In this case, the pdf required for the integration is p (x, n|y, k), which can be
suitably developed by applying the Bayes’ rule as,

p (x, n|y, k) = p (y|x, n) pX (x|k) pN (n)

p (y|k) (16)

The integration can be now carried out in a similar way as performed for poste-
rior P (k|y), that is, considering p(y|x, n) = δ (y −max(x, n)) and splitting the
speech-noise space (and, therefore, the integral) into the same subsets X and N
as those defined in (12). Thus, it is finally obtained that,

E [x|y, k] = wky + (1− wk)μ̃k(y) (17)

where

wk =
pX(y|k)CN (y)

p(y|k) (18)

1− wk =
pN(y)CX(y|k)

p(y|k) (19)

μ̃k(y) =

∫ y

−∞
x
pX(x|k)
CX(y|k)dx = μk − σk

pX(y|k)
CX(y|k) (20)

Discussion. The partial estimate of eqn. (17) is a linear combination of two
feature estimates. The first one is the observed feature y, which can be inter-
preted as an estimate of the clean feature for high SNR values. The second one
μ̃k(y) can be interpreted as an estimate of the clean speech when it is completely
masked by noise. In this case, we only know that the clean feature is somewhere
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between −∞ and y, so μ̃k(y) is the mean value of Gaussian pX(x|k) truncated
at y. Probability wk acts as a weight which indicates how much y is affected by
noise.

The final feature estimate can be expressed as,

x̂ =

(
M∑
k=1

P (k|y)wk

)
y +

M∑
k=1

P (k|y)(1 − wk)μ̃k(y) (21)

which reflects again a linear combination of the observed feature and an esti-
mate for the case of speech completely masked by noise. This former estimate is
obtained as linear combination of the truncated Gaussian means.

3 Comparison with Related MD Techniques

The OM model has already been employed for feature compensation in previ-
ous works. This section is devoted to the comparison between these previous
techniques and our proposal. In particular, we will focus on missing-data (MD)
imputation techniques where the OM model is employed for spectral reconstruc-
tion [5,6,7].

The starting point of the MD techniques is a binary mask representing the
reliability of the observed features. This mask has the same size as the input ut-
terance spectrogram and each pixel m in it indicates whether the corresponding
feature y is reliable (m = 1) or not (m = 0). Considering the OM model, m = 1
means x ≥ n while m = 0 means that the corresponding feature is completely
occluded by noise, that is, n > x. Then, the conditional probability of eqn. (11)
can be compactly written now as,

p (y|x, n) = mδ(y − x) + (1 −m)δ(y − n) (22)

so that p(y|k), which is required to compute P (k|y) in (8), can be obtained as,

p (y|k) = mpX(y|k)CN (y) + (1 −m)pN (y)CX(y|k) (23)

The expected value of eqn. (7) can be derived in a similar way,

E [x|y, k] = my + (1−m)μ̃k(y) (24)

The feature estimate can be finally obtained as,

x̂ = my + (1−m)

M∑
k=1

P (k|y)μ̃k(y) (25)

Let us compare now the MMSE estimator defined by eqns. (23)-(25) with that
obtained in the previous section (eqns. (13), (17) and (21)). It is clear that
the MD approach introduces a hard decision (reliable / not reliable) which is a
consequence of the binary mask. On the other hand, our proposal avoids this and
introduces a soft decision by considering the probability of feature occlusion. As
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a result, it can be expected that the proposed technique will be more robust to
errors in noise estimation since, in the case of MD, this may lead to erroneous
masks and, therefore, to incorrect feature reliability classification.

The perjudicial effect that erroneous masks have over recognition performance
is usually mitigated through soft masks [8,9] where m ∈ [0, 1]. This involves that
m ∈ [0, 1], that is, a continuous degree of reliability from 0 (fully unreliable)
until 1 (fully reliable). Formulae (22)-(25) can be kept for this case and can be
also found in [8].

We can observe that when soft masks are applied in the MD approach, the
resulting estimator has clear similarities with the proposed one, although it must
be noticed that our OM-based technique does not require any a priori knowledge
about the feature reliability (that is, the mask). In particular, comparing the
MD and OM estimators of equations (21) and (25), we could consider that our
proposal provides a method to estimate the soft mask values as,

m =

M∑
k=1

P (k|y)wk (26)

This last equation allows a direct comparison of (21) and (25). In both equations
we have an estimate y (with weight m) for the case of speech-masking-noise
which is linearly combined with an estimate for the case of noise-masking-speech.
Although the terms on y are equivalent in both estimators, the comparison also
reveals that the noise-masking-speech terms are clearly different.

Fig. 1 shows examples of log-Mel spectrograms for clean and noisy versions
of the utterance eight six zero one one six two extracted from the Aurora-2
database [10]. Subway noise at 0dB was artificially added to the clean utterance
in order to obtain the noisy one. Noise was estimated through linear interpo-
lation of initial noise estimates obtained from the first and last frames of the
utterance. It can be seen that the proposed technique effectively compensate
for the noise degradation (enhanced speech plot) and also it is able to estimate
feature reliability (estimated mask plot).

4 Experimental Results

In order to test our proposal and other reference techniques, we have employed
the Aurora-2 [10] (connected digits) and Aurora-4 [11] (sentences from WSJ)
databases and experimental frameworks. Aurora-2 has 3 test sets: A, B and
C. Sets A and B consist of speech artifically contaminated by 4 different types
of additive noise in each case (set A: the same noises as in training; set B:
different from the training ones), and at 7 different SNRs (-5 to 20 dB, plus
clean condition). Set C uses only two types of additive noise and also introduces
channel distortion. Aurora-4 is a large vocabulary database with 14 test sets.
The first seven sets (T-01 to T-07) artificially add six different noise types (T-01
is the clean condition) with SNR values between 5 dB and 15 dB. The last seven
sets are obtained in the same way, but the utterances have been recorded with
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Fig. 1. Example of speech reconstruction and mask estimation (eqn. (26)) from the
proposed OM- MMSE-based estimator

microphones different than those of training. For both databases, the acoustic
models are trained with the usual scripts provided with the databases and using
only clean speech.

The final feature vector employed for recognition consist of 13 Mel-frequency
cepstral coefficients (MFCCs) (C0 is included instead of log-Energy) enlarged
with Δ and ΔΔ coefficients. Feature compensation is carried out over the 23 log-
outputs of the Mel filterbank, which are DCT-transformed to obtain MFCCs.
Also, cepstral mean normalization (CMN) is applied in order to mitigate channel
distortions.

The clean spectral features were modeled with a 256-component GMM with
diagonal covariance matrices, which has been trained through the expectation-
maximization algorithm over the corresponding training set. The required noise
estimates are obtained as follows: the first and last T frames (T = 20 for Aurora-
2, T = 35 for Aurora-4) of every utterance have been averaged and the estimates
for the intermediate frames are obtained through linear interpolation between
the former ones. The noise model at every frame is completed with a covariance
matrix fixed for all frames and computed from the first and last frames.

In order to assess our proposal in comparison with other techniques, the MD
estimators described in the previous section has been also evaluated. Both, bi-
nary and soft masks have been considered. The binary masks are simply obtained
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Table 1. Word accuracy results (%) for Aurora-2 at different SNRs

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.

Baseline 99.11 97.29 92.55 75.56 42.82 22.69 12.92 66.18
Oracle 99.11 99.01 98.74 97.84 95.72 89.64 73.79 96.19
BMD 98.88 97.45 95.32 90.01 78.47 54.99 25.55 83.25
SMD1 98.90 98.04 96.51 92.15 80.62 56.70 26.89 84.80
SMD2 98.91 97.91 96.32 91.74 79.77 55.30 26.20 84.21
SRO 98.91 98.08 96.69 92.77 82.18 58.76 27.21 85.70

by SNR thresholding at 0 dB. Soft masks are obtained by two different meth-
ods: a relaxation of the binary mask through a sigmoid function (its center and
slope parameters has been optimized for a validation subset) and the mask de-
fined by equation (26) and based on the proposed models (OM as well as clean
speech and noise models). This last mask allows a direct comparison between
MD imputation and MMSE estimation (both based on the occlusion model).

The word accuracy results for Aurora-2 are shown in table 1. The baseline
corresponds to MFCCs with CMN. Three MD imputation techniques with three
different types of masks are considered: masks obtained from the actual noise
(Oracle), binary masks (BMD) and soft-masks (SMD1 and SMD2 for sigmoid-
based and model-based masks, respectively). The oracle results can be considered
an upper bound of the MD techniques (since the feature reliability is perfectly
known). Our spectral reconstruction based on the OM model will be denoted as
SRO. The results correspond to the average score over sets A, B and C for every
SNR. Also, the average (Avg.) for SNRs from 0 to 20 dB is shown.

As it could be expected, the Oracle experiment achieves the best performance,
but SRO provides the best results with estimated noise. Therefore, since the dif-
ferent techniques can be all considered variants of MD imputation which mainly
differ in the way the mask values are computed (as explained in the previous
section), we can say that SRO is more robust against noise estimation errors
and, therefore, to mask errors. In this regard, the worst behavior corresponds
to BMD. In this case, when a mask error ocurrs, an unreliable feature can be
classified as reliable and the other way round. In the first case, the observed
unreliable feature is kept. The second case is even worse, since it involves that
reliable feature are treated as unreliable, being degraded by the estimation pro-
cessing. In the case of MD with soft masks, the use of a mask looks redundant
with the estimation based on a noise model as it is evident in equations (22)
and (23), since the estimator can obtain its own mask (eqn. (26)). SMD1 yields
results slightly better than SMD2 since SMD1 involves an optimization of the
sigmoid parameters while the masks in SMD2 are completely extracted from
statistical and OM models.

The results for Aurora-4 can be found in table 2. The proposed SRO technique
outperforms again the MD imputation techniques with binary or soft masks, with
relative improvements of 10.90 % and 1.77 %, respectively.
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Table 2. Word accuracy results (%) for the different test sets of Aurora-4

T-01 T-02 T-03 T-04 T-05 T-06 T-07 T-08 T-09 T-10 T-11 T-12 T-13 T-14 Avg.

Baseline 87.69 75.30 53.24 53.15 46.80 56.36 45.38 77.04 64.24 45.30 42.07 36.15 47.43 36.67 54.77
Oracle 87.69 86.74 84.46 84.44 83.19 85.90 82.38 79.13 77.86 74.03 73.45 70.48 75.04 71.77 79.75
BMD 86.96 80.78 58.47 52.74 59.63 56.14 61.42 79.39 74.13 54.83 46.76 50.55 51.26 56.17 62.09
SMD2 87.52 83.65 66.62 63.78 63.48 69.19 65.31 81.00 75.64 60.98 55.02 54.89 62.39 57.74 67.66
SRO 87.54 83.28 69.23 64.49 64.88 70.63 66.93 80.52 76.48 63.53 55.67 56.62 63.87 60.38 68.86

5 Conclusions

In this workwe have proposed a technique for theMMSE estimation of log-spectral
features corrupted by additive noise. The starting point is a simplification of a
general noise distortion model through the log-max approximation, which yields
the so-called occlusion model. This modeling involves that either the speech fea-
ture dominates the noise or, on the contrary, the speech is completely masked by
noise. The resulting estimator has clear similarities with some MD imputation
techniques. Indeed, it can be considered anMD technique or equivalently, a way of
computing soft masks for MD imputation. Our experimental results have shown
the superiority of our proposal over the reference MD techniques.
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Abstract. Conventional Automatic Speech Recognition systems solely rely on 
acoustic information, making them susceptible to problems like environmental 
noise, privacy, information disclosure and also excluding users with speech im-
pairments. An Ultrasonic Doppler Sensing (UDS) based interface may be used 
to tackle these issues since it does not rely on audio signal information. This 
paper describes the first speech recognition experiments based on UDS for Eu-
ropean Portuguese (EP). The work here presented analyzes the UDS signal and 
explores the recognition of EP digits and minimal pairs of words that only differ 
on nasality of one of the phones. The results of our experiments show a best 
word error rate of 27.8% using data collected with the device at different dis-
tances from the speaker in an isolated word recognition problem. 

Keywords: Ultrasonic Doppler Sensing, Silent Speech, European Portuguese, 
Nasality.  

1 Introduction 

Ultrasonic Doppler Sensing (UDS) of speech is one of the approaches reported in 
literature that is suitable for implementing a Silent Speech Interface (SSI) [1]. A SSI 
performs ASR in the absence of an intelligible acoustic signal and can be used to 
tackle problems such as environmental noise, privacy, information disclosure and in 
aiding users with speech impairments. This technique is based on the emission of a 
pure tone in the ultrasound range towards the speaker’s face that is received by an 
ultrasound sensor tuned to the transmitted frequency. The reflected signal will contain 
Doppler frequency shifts proportional to the movements of the speaker’s face. Based 
on the analysis of the Doppler signal, patterns of movements of the facial muscles, 
lips, tongue, jaw, etc., can be extracted [2]. The main advantages of this approach are 
the following: Non-invasive nature, since the device is completely non-obtrusive and 
it has been proven to work without requiring any attachments; the signal is not af-
fected by environment noise in the audible frequency range; no acoustic audio signal 
is required, since this technique is based on the signal that contains Doppler frequency 
shifts caused by facial movements; the hardware used on this approach is commer-
cially available and is very inexpensive.  
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The work here presented is a follow up of a preliminary analysis presented in [3] 
and focus on the development of an SSI on ultrasonic sensors for European Portu-
guese. We start by describing the used hardware and analyzing the obtained signal. 
Afterwards, we conduct several recognition experiments where we analyze the use of 
the sensor in two distinct positions and also the detection of nasality. Nasality is a 
relevant characteristic of EP and, as previous studies with different approaches have 
shown [4], it can be a relevant source of error. 

The remainder of this document is structured as follows: Section 2 presents a de-
scription of previous work in ASR based on ultrasonic sensors. Section 3 describes 
the methodology used in this experiment. Section 4 describes an exploratory analysis 
of the signal and multiple recognition experiments. Finally, in Section 5 the conclu-
sions of this paper are presented.  

2 Background 

Doppler Effect is the modification of the frequency of a wave when the observer and 
the wave source are in relative motion. If vୱ and v୭ are the speed of the source and the 
observer measured on the direction and sense observer-source, c is the propagation 
velocity of the wave on the medium and f0 the source frequency, the observed fre-
quency will be: ݂ ൌ ܿ  ܿݒ  ௦ݒ ݂ (1) 

Considering a standstill observer ݒ ൌ 0 and ݒ௦ ا c  the following approximation is 
valid: ݂ ൌ ቀ1 െ ௩ೞ ቁ ݂ or  ∆݂ ൌ െ ௩ೞ ݂ (2) 

We are interested in echo ultrasound to characterize the moving articulators of a Hu-
man speaker. In this case a moving body with a speed ݒ  (positive when the object is 
moving towards the emitter/receiver) reflects an ultrasound wave which frequency is 
measured by a receiver placed closely to the emitter. The observed Doppler shift will 
then be the double:  ∆f ൌ 2vc f (3) 

Considering ܿ ൌ 340m/s as the sound air speed, a maximum articulator speed of 
1m/s and 40 kHz ultrasound primary wave, the maximum frequency shift will be 
235Hz.  
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2.1 State-of-the-Art 

Ultrasonic sensors are used in a variety of applications that range from industrial auto-
mation to medical ultrasonography. In the area of speech, UDS have been previously 
used in voice activity detection [5], speaker identification [6], and synthesis [2]. Regard-
ing speech recognition, ultrasonic devices were first applied to ASR in 1995 using an 
ultrasonic lip motion detector by Jennings and Ruck [7]. In this work, an experiment 
where the “Ultrasonic Mike”, as they call it, is used as an input to an automatic lip read-
er with the aim of improving ASR in noisy environments by combining it with a con-
ventional ASR system. The used hardware is constituted by an emitter and a receiver 
based on piezoelectric material and a 40 KHz oscillator to create a continuous wave 
ultrasonic signal. In the feature extraction phase, 10 LPC cepstral coefficients are ex-
tracted from the acoustic signal. The classification is based on Dynamic Time Warping 
(DTW) distances between the test utterances and the ones selected as ground truth. Best 
results for this work include an accuracy of 89% for the ultrasonic input alone using 4 
template utterances, in a speaker dependent isolated digit recognition task, considering 5 
test sessions and each session containing 100 utterances. For the cross-session scenario 
no higher than a 12.6% accuracy was achieved.  

It was only a few years later, in 2007, that UDS was again applied to speech recog-
nition by Zhu [8]. In their work an ASR experiment is conducted based on a statistical 
approach and a continuous speech recognition task are considered. In terms of hard-
ware, Zhu, used an ultrasonic transmitter and receiver tuned to a resonant frequency 
of 40 kHz. The received signal is then multiplied by a 35.6 kHz sinusoid causing it to 
be centered at 4.4 kHz. This study collected 50 sequences of ten random digits of 
twenty speakers at a 15.2 cm distance relative to the sensors. For what feature extrac-
tion is concerned, the authors split the signal in frequency and magnitude sub bands 
and then features based on energy-band frequency centroids and frequency sub-band 
energy averages are extracted for each frame. The features were later projected to a 
lower dimensional space using Principal Component Analysis. The experiments were 
conducted using a landmark-based speech recognizer. The accuracy results for the 
ultrasonic approach were very similar across multiple noise levels, with a best result 
of 70.5% Word-Error Rate (WER). 

In 2010, Srinivasan et al. [1], was able to improve previous results and achieved an 
overall accuracy of 33% also on a continuous digit recognition task. In this work Sri-
nivasan et al. use similar hardware to the one previously described, however it added 
the synchronization of the two-channel (audio and ultrasound) output, the carrier was 
located at 8kHz and the sensor was positioned at 40.46cm. In terms of features, the 
authors have applied a FFT over the pre-processed signal and applied a Discrete Co-
sine Transform to the bins corresponding to the frequencies between 7 kHz and 9.5 
kHz. For classification, HMM models with 16 states and one Gaussian per state were 
used. Best results for fast speech presented an accuracy of 37.75% and 18.17% for 
slow speech. 

In the literature several other types of sensors that enable ASR in noisy environments 
or Voice Activity Detection (VAD) can be found such as, Bone conduction micro-
phones, Physiological microphones (P-mics), throat microphones and the non-acoustic 
glottal electromagnetic sensors (GEMS). However, these devices have the drawback of 
needing to be mounted on the jaw bone, speaker’s face or throat, restricting their appli-
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cability or leaving the user uncomfortable. Hence, when compared with other secondary 
sensors the Ultrasonic Doppler sensors have the advantage of not needing to be 
mounted on the speaker and although their measurements is not as detailed as in P-mics 
or GEMS [9], the results for mutual information between UDS and acoustic speech 
signals is very similar to the ones reported for the other secondary devices [9]. When 
compared with vision devices such as, cameras, these sensors present a much lower 
cost, since an ultrasonic sensing setup can be arranged for less than $10. 

The results for ultrasound-only approaches are still far from audio-only perfor-
mance. Nonetheless, latest studies reveal viability and margin for improvement of this 
approach. 

3 Methodology 

3.1 Corpora 

The European Portuguese UDS data collected in this study can be split into 2 corpora 
which we named: PT-DIGIT-UDS and PT-NW-UDS. The first corpus is similar to 
what was used in previous studies [1, 8] that address ASR based on UDS and consists 
in ten digits – um [ũ], dois [dojʃ], três [tɾeʃ], quatro [kwatɾu], cinco [sĩnku], seis 
[sɐjʃ], sete [sεtɨ], oito [ojtu], nove [nɔvɨ], dez [dεʃ] - with the difference that we are 
using EP digits instead of English and that only isolated digits are considered. The 
second corpus consists in 4 pairs of EP common words that only differ on nasality of 
one of the phones (minimal pairs, e.g. Cato/Canto [katu]/[kɐ ̃tu] or Peta/Penta 
[petɐ]/[pẽtɐ] – see [4] for more details). For the first corpus we have recorded 6 
speakers – 4 male and 2 female - and each speaker recorded an average of 6 utter-
ances for each prompt. For the second corpus we have recorded the same 6 speakers 
and each speaker recorded 4 observations for each prompt, giving a total of 552 utter-
ances for both corpora. Most of the recordings occurred at a distance of approximate-
ly 40cm from the speaker to the sensor with exception for an extra session of 40  
utterances using the PT-DIGIT-UDS prompts which was recorded at a distance of 
12cm for comparison and analysis. 

3.2 Simultaneous Acquisition of Speech and Doppler 

To study the Doppler effect of a speaker a dedicated circuit board was developed 
based on the work of Zhu [8]. It includes 1) the ultrasound transducers (400ST and 
400SR working at 40kHz) and a microphone to receive the speech signal; 2) a crystal 
oscillator at 7.2MkHz and frequency dividers to obtain 40 and 36 kHz; 3) all amplifi-
ers and linear filters needed to process the echo signal and the speech. The board is 
placed in front of the speaker and the echo signal is the sum of the contributions of all 
the articulators. If the ultrasound generated is a sine wave ߨ2݊݅ݏ ݂ ݐ, an articulator 
with a velocity ݒ will produce an echo wave that can be characterized by: x୧ ൌ a୧sin2πf ቆt  2c න v୧୲

 dτ  φ୧ቇ (4) 
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a୧, φ୧ are parameters defining the reflection and are function of the distance. Although 
they are also function of time they are slow varying and are going to be considered 
constants. The total signals will be the sum for all articulators and the moving parts of 
the face of the speaker x ൌ  a୧sin2πf ቆt  2c න v୧୲

 dτ  φ୧ቇ୧  (5) 

The signal is a sum of frequency modulated signals. It was decided to make a fre-
quency translation: multiplying the echo signal  by a sine wave of a frequency ݂ܽ ൌ  and low passing the result it is obtained a similar frequency modulated ݖܪ36݇

signal centered at ݂1 ൌ ݂0 – ݂ܽ ,i.e., ݂1 ൌ  ݖܪ4݇

d ൌ  a୧sin2πfଵ ቆt  2c න v୧୲
 dτ  φ୧ቇ୧  (6) 

This operation is made on the board and it was used an analog multiplier AD633. The 
Doppler echo signal and speech are now digitized at 44.1 kHz and the following 
process is digital and implemented in Matlab. 

3.3 Signal Pre-processing 

After some exploratory analysis and based on previous work [1] the acquired signal is 
first zero-meaned, then the signal is passed through a 3 sample moving average filter 
to suppress the 4 kHz carrier and later a difference operator is applied. Fig. 1 shows 
the resulting spectrogram after this preprocessing. 

 

Fig. 1. Signals for the EP word Cato, from top to bottom: Acoustic signal, raw ultrasonic signal 
and spectrogram of the pre-processed ultrasonic signal 
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3.4 Feature Extraction and Classification 

Before conducting feature extraction, we preprocess the signal as described earlier. 
After the pre-processing stage, we split the signal into 50ms frames and extract a set 
of features based on the work of Srinivasan et al. [1]. We start by calculating a Discrete 
Fourier transform (DFT) with second-order Goertzel algorithm over the preprocessed 
signal for the interval of 3500 Hz to 4750 Hz. Finally, a DCT is applied to the DFT 
results to de-correlate the signal and extract the first 38 coefficients, which contain 
most of the signal energy. 

In our recognition pipeline, we start by pre-processing the acquired UDS signal 
and extracting the features described in the previous section. After the feature extrac-
tion phase we need to classify to which class they belong. Based on the number of 
available observations and considering the limited vocabulary, we have chosen to use 
DTW, a technique which was also employed by 7 to classify this type of signals. The 
classification algorithm uses a 10-fold cross-validation for partitioning the data and 
for each observation from the test group, compares the representative example and 
selects the word that provides the minimum distance in the feature vector domain. 

4 Experimental Results 

The following section describes the first recognition experiments based on UDS 
which are not applied to English. These experiments analyze the recognition of EP 
digits, the minimal pairs described in section 3.1, and a combination of both based on 
a fixed group of features. Results regarding the effect of the sensor distance to the 
speaker are also reported. 

4.1 Exploratory Analysis 

After the pre-processing stage, a first exploratory analysis of the signal shows a clear 
difference between EP digits. If a discriminative analysis of the signal depicted in Fig. 
2 is performed, it is noticeable that the digits that require more movement from visible 
articulators present a more distinguishable signal. For example, if we compare an 
observation of um (one) with an observation of quatro (four) a clear magnitude differ-
ence is visible across time.  

 

Fig. 2. Spectrogram of the pre-processed signal for 6 EP digits and frequencies between 3500 
and 4750 for a single speaker 
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Fig. 3 shows a similar analysis performed for the words “cato” and “canto”, a mi-
nimal pair where the only difference is the presence of nasality. In this case, dissimi-
larities are more subtle, but nonetheless they seem to be present between the two 
words. Regarding the cross speaker signals, the signals seem to have relevant differ-
ences between them.  

 

Fig. 3. Spectrogram of the words “Cato” and “Canto” for 3 speakers 

 

Fig. 4. Distance comparison between the word canto and cato for different speakers using the 
Matlab algorithm from [10]. The white line represents the lower DTW distances found across 
time. 

If we analyze the signal using Dynamic Time Warping (DTW), which provides 
temporal alignment to time varying signals that have different durations, differences 
between minimal pairs can be noticed.  In Fig. 4, the DTW is applied to several pairs 
of words observations and we depict the DTW distance results, by means of gray 
scale coding of such results. The similarity between two words is given by the  
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smallest DTW distance between them across time, thus when two words are the same, 
the lowest distance will lay in the image’s diagonal. A highest discrepancy is found 
when we compare different speakers, again showing that the signal is highly depen-
dent of the speaker. We have also noticed that these differences are more accentuated 
when we compare different genders. 

4.2 Recognition Results 

Table 1 presents the results of three test conditions differing on the used corpus. 

Table 1. Classification results for the following sets of data: PT-DIGITS-UDS, PT-NW-UDS 
and a combination of both 

 PT-DIGITS-UDS PT-NW-UDS Both 

Word Error Rate 36.1% 42.7% 45.3% 

 
Results show that we are able to achieve the best word error rate of 36.1% for a 

vocabulary of 10 digits (PT-DIGITS-UDS) on an isolated word recognition problem. 
It is also noticeable that if we consider a smaller vocabulary with only 8 words based 
on minimal pairs (PT-NW-UDS) the error rate increases to 42.7%. If we analyze the 
confusion matrix for this run depicted in Table 2, a large error incidence can be found 
in the minimal pairs. For instance, in the case of the word mato, 87.5% of the incor-
rect observations were classified as manto. The reverse case (manto being classified 
as mato) is also noticeable since 75% of the incorrect observations were classified as 
mato. This problem is also evident for the case of cato being confused with canto and 
for the pair peta/penta. Nonetheless, for the minimal pair tito/tinto this is not verified. 

Additionally, we have also run an experiment using a joint vocabulary of 18 words, 
based on the previous two vocabularies, obtaining a slight worse error rate of 45.3%. 
A considerable part of the error stills occurs in the mato/manto and peta/penta minim-
al pairs (for the case of mato 42.9% of the incorrect observations were classified as 
manto and for the case of penta 55.6% of the incorrect observations were classified as 
peta). 

Table 2. Confusion matrix for the recognition experiment with the PT-NW-UDS corpus 
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4.3 Distance Effect 

As mentioned before, we have also recorded an extra session considering a closer 
distance with the device positioned 12cm from the speaker. The goal is to investigate 
the mismatch effect caused by the distance change in the traininig patterns and the test 
conditions, further analysing distance limitations. Thus, we have ran the previous 
experiment using the following data distributions: 1) Use only the PT-DIGIT-UDS 
data recorded at 12cm; 2) Use the PT-DIGIT-UDS data recorded at 12cm as a test 
group, creating a mismatch between train and test; 3) Use the PT-DIGIT-UDS data 
from the previous experiment plus the PT-DIGIT-UDS data recorded at 12cm for 
train and test. The obtained results are presented in Table 3. 

Table 3. Classification results for three data sets: 1) Only PT-DIGIT-UDS data recorded at 
12cm. 2) Use only PT-DIGIT-UDS data recorded at 12m in the test group and data recorded at 
40cm in the train group. 3)  Use all PT-DIGIT-UDS data for classification. 

 
12cm data only 12cm data as test All data 

Word Error Rate 35.0% 35.0% 27.8% 

 
Results for this experiment include 35% error rate for the first two data distribu-

tions and 27.8% for the last distribution using all acquired data. 

4.4 Discussion 

The exploratory analysis of the signal has shown differences between the selected 
words, especially in those where the articulators’ movement is more intense. It is also 
visible a difference across speaker, which corroborates the results achieved by Jen-
nings and Ruck [7] where the performance of the system has a drastic performance 
reduction when cross-speaker recognition is considered. 

Previous recognition results have achieved a WER of 67% in a continuous speech 
recognition task of 10 English digits. Although in our case we are considering an 
isolated digit recognition task on the same vocabulary size and the tests conditions are 
not the same, if a direct comparison was made with the best result of 27.8% WER, we 
find a relative improvement of 58.6%. Additionally, the error analysis seems to indi-
cate that minimal pairs such as mato/manto and peta/penta may cause recognition 
problems for an interface based on this approach. The results show viability for a 
vocabulary increase beyond the 10 words previously presented. The distance compar-
ison experiment seems to indicate that data collected at 12cm and 40cm present simi-
lar features since the error rate was close to the recognition experiment that only used 
40cm data when using the 12cm data for testing and the 40cm data for training. It is 
also worth noting the relative improvement in the error rate of 23.1% by joining both 
types of data.  
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5 Conclusion and Future Work 

In this work, a first experiment of UDS-based speech recognition for EP is presented. 
It describes the device used in the acquisition of this type of data and an analysis to 
the signal that shows viability for using this type of approach in speech recognition 
experiments for EP. The results can be arguably placed at the level of the state of the 
art, with a best word error rate of 27.8% in an isolated word recognition problem 
across several speakers. This result was achieved using data acquired at different dis-
tances, also demonstrating that UDS data collected with the device at closer distances 
might be beneficial for the recognition performance. 
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Abstract. In this paper we present the integration of a state-of-the-art
ASR system into the Opencast Matterhorn platform, a free, open-source
platform to support the management of educational audio and video
content. The ASR system was trained on a novel large speech corpus,
known as poliMedia, that was manually transcribed for the European
project transLectures. This novel corpus contains more than 115 hours
of transcribed speech that will be available for the research community.
Initial results on the poliMedia corpus are also reported to compare the
performance of different ASR systems based on the linear interpolation
of language models. To this purpose, the in-domain poliMedia corpus was
linearly interpolated with an external large-vocabulary dataset, the well-
known Google N-Gram corpus. WER figures reported denote the notable
improvement over the baseline performance as a result of incorporating
the vast amount of data represented by the Google N-Gram corpus.

Keywords: Speech Recognition, Linear Combination, Language Mod-
eling, Google N-Gram, Opencast Matterhorn.

1 Introduction

Online educational repositories of video lectures are rapidly growing on the ba-
sis of increasingly available and standardized infrastructure. Transcription and
translation of video lectures is needed to make them accessible to speakers of dif-
ferent languages and to people with disabilities. Automatic transcription in these
domains is however a challenging task due to many factors such as unfavourable
recording quality, high rate out-of-vocabulary words or multiplicity of speak-
ers and accents. Therefore, human intervention is needed to achieve accurate
transcriptions. Recently, approaches to hybrid transcription systems have been
proposed based on fully manual correction of automatic transcriptions, which
are not practical nor comfortable to the users who perform this time-consuming
task. In this paper we present an intelligent user interactive semi-automatic
speech recognition system to provide cost-efficient solutions to produce accurate
transcriptions. This speech recognition system is being developed within the
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framework of the European transLectures project [1], along the lines of other
systems, such as JANUS-II [2], UPC RAMSES [3] or SPHINX-II [4]. Resulting
transcriptions may be translated into other languages, as it is the case of the
transLectures project, or other related project, such as SUMAT [5].

Initial results are reported on the recently created poliMedia corpus using a
linear combination of language models [6,7,8,9]. This linear combination aims
at alleviating the problem of out-of-vocabulary words in large-scale vocabulary
tasks with a great variety of topics. The baseline automatic speech recogni-
tion (ASR) system is based on the RWTH ASR system [10,11] and the SRILM
toolkit [12], both state-of-the-art software in speech and language modeling, re-
spectively. In this work, we present significant improvements in terms of WER
over the baseline when interpolating the baseline language model with a language
model trained on the well-known Google n-gram dataset [13]. Furthermore, de-
tails about the integration of this speech recognition system into the open-source
videolecture platform Matterhorn are also provided. The integration into Mat-
terhorn enables user-assisted corrections and therefore, it guarantees high quality
transcriptions.

The rest of this paper is organised as follows. First, the novel freely available
poliMedia corpus is presented in Section 2. Secondly, the Opencast Matterhorn
platform is introduced in Section 3. In Section 4, the backend RWTHASR system
is described, and initial results are reported in Section 5. Finally, conclusions are
drawn and future lines of research are depicted in Section 6.

2 The poliMedia Corpus

poliMedia [14] is a recent, innovative service for creation and distribution of mul-
timedia educational content at the Universitat Politècnica de València (UPV).
It is mainly designed for UPV professors to record courses on video lectures
lasting 10 minutes at most. Video lectures are accompanied with time-aligned
slides and recorded at specialised studios under controlled conditions to ensure
maximum recording quality and homogeneity. As of today, poliMedia catalogue
includes almost 8000 videos accounting for more than 1000 hours. Authors re-
tain all intellectual property rights and thus not all videos are accessible from
outside the UPV. More precisely, about 2000 videos are openly accessible.

poliMedia is one the two videolectures repositories along with Videolec-
tures.NET1 that are planned to be fully transcribed in the framework of the
European project transLectures2. To this purpose, 704 videolectures in Span-
ish corresponding to 115 hours were manually transcribed using the tool Tran-
scriber [15], so as to provide in-domain dataset for training, adaptation and in-
ternal evaluations in the transLectures project (see Table 1). These transcribed
videolectures were selected so that authors had granted open access to their con-
tent. This fact guarantees that the poliMedia corpus can be used by the research
community beyond the scope of the transLectures project.

1 http://videolectures.net
2 http://translectures.eu

http://videolectures.net
http://translectures.eu
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Most of the videos in poliMedia were annotated with topic and keywords.
More precisely, 94% of the videos were assigned a topic and 83% were described
with keywords. However, these topics and keywords were not derived from a
thesaurus, such as EuroVoc. Speakers were also identified for each transcription.

Table 1. Basic statistics on the poliMedia corpus

Videos 704
Speakers 111
Hours 115
Sentences 40K
Running words 1.1M
Vocabulary (words) 31K
Singletons (words) 13K

3 The Opencast Matterhorn Platform

Matterhorn3 is a free, open-source platform to support the management of ed-
ucational audio and video content. Institutions will use Matterhorn to produce
lecture recordings, manage existing video, serve designated distribution channels,
and provide user interfaces to engage students with educational videos.

Matterhorn is an open source; this means that the product is fully based
on open source products. The members of the Opencast Community have se-
lected Java as programming language to create the necessary applications and
a Service-Oriented Architecture (SOA) infrastructure. The overall application
design is highly modularised and relies on the OSGi (dynamic module sys-
tem for Java) technology. The OSGi service platform provides a standardised,
component-oriented computing environment for cooperating network services.

Matterhorn is as flexible and open as possible and further extensions should
not increase the overall complexity of building, maintaining and deploying the
final product. To minimise the coupling of the components and third party prod-
ucts in the Matterhorn system, the OSGi technology provides a service-oriented
architecture that enables the system to dynamically discover services for collab-
oration. Matterhorn uses the Apache Felix [16] implementation of the OSGI R4
Service Platform [17] to create the modular and extensible application.

The main goal in transLectures is to develop tools and models for the Matter-
horn platform that can obtain accurate transcriptions by intelligent interaction
with users. For that purpose, an HTML5 media player prototype has been built
in order to provide a user interface to enable interactive edition and display of
video transcriptions (see Figure 1). This prototype offers a main page where
available poliMedia videolectures are listed according to some criteria. Auto-
matic video transcriptions are obtained from the ASR system when playing a
particular video.

3 http://opencast.org/matterhorn

http://opencast.org/matterhorn
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Since automatic transcriptions are not error free, an interactive transcrip-
tion editor allows intelligent user interaction to improve transcription quality.
However, as users may have different preferences while watching a video, the
player offers two interaction models depending on the user role: simple user and
collaborative user (prosumers).

Fig. 1. HTML5 player and interactive transcription editor for collaborative users

Simple users are allowed to interact in a very simplistic manner, just showing
their liking about the transcriptions. However, collaborative users may provide
richer feedback to correct transcriptions. As shown in Figure 1, collaborative
users have an edit transcription button available on the player control bar that
enables the transcription editor panel. The editor panel is situated next to the
video. It basically contains the transcription text, which is shown synchronously
with the video playback. Clicking on a transcription word or sentence enables
the interactive content modification. User corrections are sent to the speech
recognition module through a web service, so corrections are processed and new
transcription hypothesis are offered back to the user. Some other user-friendly
features such as keyboard shortcuts and useful editing buttons are also available.
Simple users have no edit transcription button available as they are not expected
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to be working on transcription editing. Instead, a low quality transcription button
appears so they can report that the transcription quality is not good enough.

The current HTML5 prototype is a proof-of-concept version that works with
pre-loaded transcriptions, however the version currently being developed com-
municates with the ASR system through a web service implemented for that
purpose. Figure 2 illustrates the system architecture and the communication
process.

Fig. 2. HTML5 player and ASR system communication

The next step is to integrate the developed interactive ASR system into the
Matterhorn infrastructure. There are many different approaches to perform this
integration. Our proposal lets an external system manage all the transcriptions,
so there will not be necessary to add nor store them in any way into the current
Matterhorn system4. In addition, two primary tasks are involved in the inte-
gration process into Matterhorn. Both of them require an interface to enable
communication between Matterhorn and the ASR system. For that purpose, a
RESTful Web Service has been implemented to allow media uploading, retrieve
the processing status of a particular recording, request a video transcription,
send transcription modifications and other functionalities.

The first task would be to define a new Matterhorn workflow operation to
transfer the audio data of the new media to the ASR system through the REST
service mentioned before, so as to obtain automatic transcriptions for every
recording uploaded to the Matterhorn platform. This task will involve the im-
plementation of a new Matterhorn service.

The second part is to replace or adapt the Matterhorn Engage Player to
enable transcription edition, along the lines of the HTML5 player prototype
indicated previously. The player must obtain and transmit every transcription-
related information through the REST Web Service in a similar way as the
HTML5 prototype did (see Figure 2). Here the main problem is the addition of
new features to the Flash-based Matterhorn player, since it is not straightforward
to implement the transcription functionalities provided by the HTML5-based
player. Our solution is to use an alternative open-source Matterhorn engage
player based on HTML5 called Paella Engage Player5.

4 http://opencast.jira.com/wiki/display/MH/MediaPackage+Overview
5 http://unconference.opencast.org/sessions/

paella-html5-matterhorn-engage-player

http://opencast.jira.com/wiki/display/MH/MediaPackage+Overview
http://unconference.opencast.org/sessions/paella-html5-matterhorn-engage-player
http://unconference.opencast.org/sessions/paella-html5-matterhorn-engage-player
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4 The RWTH ASR System

Our baseline ASR system is the RWTH ASR system [10,11] along with the
SRILM toolkit [12]. The RWTH ASR system includes state-of-the-art speech
recognition technology for acoustic model training and decoding. It also includes
speaker adaptation, speaker adaptive training, unsupervised training, a finite
state automata library, and an efficient tree search decoder. SRILM toolkit is a
widespread language modeling toolkit which have been applied to many different
natural language processing applications.

In our case, audio data is extracted from videos and preprocessed to extract
the normalized acoustic features obtaining the Mel-frequency cepstral coefficients
(MFCCs) [18]. Then, triphoneme acoustic models based on a prebuilt cart tree
are trained adjusting parameters such as number of states, gaussian components,
etcetera on the development set. The lexicon model is obtained in the usual man-
ner by applying a phonetic transliteration to the training vocabulary. Finally,
n-gram language models are trained on the transcribed text after filtering out
unwanted symbols such as punctuation marks, silence annotations and so on.

In this work, we propose to improve our baseline system by incorporating
external resources to enrich the baseline language model. To this purpose, we
consider the linear combination of an in-domain language model, such as that
trained on the poliMedia corpus, with an external large out-domain language
model computed on the Google N-Gram corpus [13]. A single parameter λ gov-
erns the linear combination between the poliMedia language model and the
Google N-Gram model, being optimised in terms of perplexity on a develop-
ment set.

5 Experimental Results

In order to study how the linear combination of language models affects the
performance, in terms of WER, of an ASR system in the poliMedia corpus, a
speaker-independent partition in training, development and test sets was defined.
The statistics of this partition can be found in Table 2. Topics included in the
development and test sets range from technical studies such as architecture,
computer science or botany, to art studies such as law or marketing.

The baseline system, including acoustic, lexicon and language models, was
trained only on the poliMedia corpus. System parameters were optimised in
terms of WER on the development set. A significant improvement of more than
5 points of WER was observed when moving from monophoneme to triphoneme
acoustic models. Triphoneme models were inferred using the conventional CART
model using 800 leaves. In addition, the rest of parameters to train the acoustic
model were 29 components per Gaussian mixture, 4 iterations per mixture and 5
states per phoneme without repetitions. The language model was an interpolated
trigram model with Kneser-Ney discount. Higher order n-gram models were also
assessed, but no better performance was observed.

Provided the baseline system, a set of improvements based on the language
model were proposed and evaluated. The baseline language model solely trained
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Table 2. Basic statistics on the poliMedia partition

Training Development Test

Videos 559 26 23
Speakers 71 5 5
Hours 99 3.8 3.4
Sentences 37K 1.3K 1.1K
Vocabulary 28K 4.7K 4.3K
Running words 931K 35K 31K
OOV (words) - 4.6% 5.6%
Perplexity - 222 235

on poliMedia corpus was interpolated with the Google N-Gram corpus [13]. To
this purpose, we unify all Google N-Gram datasets, which are initially splitted
by years, in a single, large file. Then, we train a trigram language model us-
ing Google N-Gram that was interpolated with the poliMedia language model.
These two language models were interpolated to minimise perplexity on the de-
velopment set. This interpolation was performed using a particular vocabulary
in the case of Google N-Gram, ranging from that vocabulary matching that of
poliMedia (poliMedia vocab), over the 20.000 most frequent words in the Google
N-Gram corpus (20K vocab), to the 50.000 most frequent words (50K vocab). In
this latter experiment, approximate values of interpolation weights are 0.65 for
the poliMedia language model and 0.35 for the Google N-Gram language model.

The idea behind these experimental setups was to evaluate the effects, in
terms of WER, of an increasing vocabulary coverage using external resources
in the presence of a comparatively small in-domain corpus such as poliMedia.
Experimental results are shown in Table 3.

Table 3. Evolution of WER above the baseline for the RWTH ASR system, as a result
of interpolating the poliMedia language model with an increasingly larger vocabulary
language model trained on the Google N-Gram corpus

System WER OOV

baseline 39.4 5.6%
poliMedia vocab 34.6 5.6%
20K vocab 33.9 4.4%
50K vocab 33.7 3.5%

As reported in Table 3, there is a significant improvement of 5.7 points of
WER over the baseline when considering a language model trained with the
50K most frequent words in the Google N-Gram corpus. As expected, the de-
crease in WER is directly correlated with the number of Out-Of-Vocabulary
words (OOVs) in the test set, since the Google N-Gram corpus provides a better
vocabulary coverage.
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A similar trend is observed when comparing perplexity figures between the
baseline and poliMedia vocab systems. Perplexity significantly drops from 235
to 176 just by interpolating our baseline poliMedia language model with the
Google N-Gram language model that only considers the poliMedia vocabulary.
Perplexity figures with 20K and 50K vocab are not comparable to the previous
ones, since the size of the vocabulary is not the same. Note that by adding more
vocabulary from the Google N-Gram dataset, the number of OOVs is reduced,
but also more useless words are added to the final language model. This causes
that the improvement in terms of WER is not so significant when going from
20K to 50K vocabulary. Further experiments with 2-gram and 4-gram language
model were carried out. WER figures with 2-gram were two points below on
average, while 4-gram results were similar to those obtained with 3-grams.

6 Conclusions and Future Work

In this paper we have presented the integration of a state-of-the-art ASR system
into the Opencast Matterhorn platform. This system was trained on a novel
large speech corpus, known as poliMedia, that was manually transcribed for the
European project transLectures. This novel corpus contains more than 115 hours
of transcribed speech that will be available for the research community.

Initial results on the poliMedia corpus are also provided to compare the perfor-
mance of different systems based on the linear interpolation of language models.
To this purpose, the in-domain poliMedia corpus was linearly interpolated with
an external large-vocabulary dataset, the well-known Google N-Gram corpus.
WER figures reported denote the notable improvement over the baseline per-
formance as a result of incorporating the vast amount of data contained in the
Google N-Gram corpus.

Regarding the backend ASR system, various aspects need to be considered
for future research. A simple manner to improve our initial results is to per-
form an intelligent data selection from the Google N-Gram corpus based on a
chronological criteria such as the year of publication, or inspired on a simple, yet
effective, method such that presented in [19]. In this latter case, only infrequent
n-grams in poliMedia will be enriched with counts computed in large external
resources such as the Google N-Gram corpus. Obviously, the extension of the
vocabulary size to 100K words or greater may provide little reductions in WER
values, but not significants compared to the computational cost required to run
such an experiment.

In any case, ASR accuracy is still far from producing fully automatic high-
quality transcriptions, and human intervention is still needed in order to improve
transcriptions quality. However, user feedback can be exploited to minimise user
effort in future interactions with the system [20]. New features need to be devel-
oped and integrated into the Matterhorn platform to achieve an effective user
interaction. The resulting prototype will not only be evaluated under controlled
laboratory conditions, but also in real-life conditions in the framework of the
transLectures project.
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Abstract. This paper proposes a new variant of the least square autore-
gressive (LSAR) method for speech reconstruction, which can estimate
via least squares a segment of missing samples by applying the linear
prediction (LP) model of speech. First, we show that the use of a single
high-order linear predictor can provide better results than the classic
LSAR techniques based on short- and long-term predictors without the
need of a pitch detector. However, this high-order predictor may reduce
the reconstruction performance due to estimation errors, especially in the
case of short pitch periods, and non-stationarity. In order to overcome
these problems, we propose the use of a sparse linear predictor which
resembles the classical speech model, based on short- and long-term cor-
relations, where many LP coefficients are zero. The experimental results
show the superiority of the proposed approach in both signal to noise
ratio and perceptual performance.

Keywords: Speech reconstruction, error concealment, sparse linear
prediction, least squares, autoregressive model.

1 Introduction

Speech Reconstruction is a subject that has been widely treated in the speech
community and which has a number of applications. Thus, we can mention audio
restoration, where short signal segments completely degraded must be recovered
from adjacent segments as it frequently occurs in old recordings. Also, in Voice-
over-IP (VoIP) systems based on intraframe codecs, the real time constraints
imposed by the transmission protocols may cause a packet loss problem which
finally results in the loss of speech segments.

In order to perform the reconstruction of a lost signal segment, some sort of sam-
ple interpolation or extrapolation using adjacent and correctly received samples
must be applied [1]. This can be a difficult task. Fortunately, in the case of speech
there exists a well-known signal production model based on linear prediction (LP)
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which is employed bymany reconstructionmethods. Thus,we have the least square
autoregressive (LSAR) method [2], which carries out an iterative interpolation of
the lost samples from the adjacent ones applying the LPmodel and a least squares
(LS) estimation. Other methods also based on LP focus on the estimation of the
LP excitation (LP residual) [3,4]. Also, the LP spectrum has been combined with
sinusoidal models of the excitation for signal extrapolation [5].

In this paper we will focus on the class of LSAR signal interpolators, where
the missing samples are LS-estimated according to a previous estimation of the
LP model. Although the basic LSAR [2] just uses a short-term predictor, better
results can be obtained when long-term prediction is also considered as it is
common practice in speech coding [6]. A first drawback of this approach is that
it requires the use of a pitch detector which may be affected by detection errors.
This can be avoided using a single high-order predictor which accounts for both
short- and long-term correlations. The prediction order must be large enough
as to cover the longest possible correlations (due to the longest possible pitch).
Although this approach increases the computational cost, we will show that it
results in a better reconstruction performance.

The use of a single high-order predictor for LSAR is a simple and compact
solution. However, it does not follow the classical speech model based on short-
and long-term predictors. This involves that many LP coefficients that are forced
to be zero by this speech model can have now non-zero values, which can be
interpreted as a sort of estimation noise. Also, it must be considered that a
high-order predictor may be more affected by non-stationarity. For example,
and as it is shown later, this effect can degrade the performance for the case
of relatively small pitch values since the LP order is likely much larger than
necessary. This problem has been recently addressed by the application of sparse
linear prediction (SLP) [7,8]. The SLP idea consists in the optimization of a single
high-order linear predictor which maintains as much as possible the high sparsity
level involved by the classical speech model. The underlying philosophy of SLP is
that of predicting the missing samples by employing as few adjacent samples as
possible. This idea has already been successfully applied by the authors to video
packet loss concealment [9] and will be adapted here to speech reconstruction
by LSAR methods.

The paper is organized as follows. Section 2 is devoted to the review and
analysis of LSAR techniques. Then, the proposed SLP method is developed in
Section 3 and the simulation results are shown and commented in Section 4.
Finally, the main conclusions are summarized.

2 Least Square Autoregressive (LSAR) Interpolation

Let us review now the basic LSAR interpolation algorithm of reference [2]. Ac-
cording to the linear prediction model of speech signals, a sample x(m) is mod-
eled as,

x(m) =

P∑
k=1

akx(m− k) + e(m) (1)
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Fig. 1. Matrix form of the residual for the LSAR algorithm

where ak are the model coefficients and e(m) is a zero mean excitation signal.
Let us assume that a received signal segment x = (x(0), x(1), ..., x(N − 1))T

contains a series of lost (unknown) samples xUk = (x(k), ..., x(k +M − 1)). The
objective is to reconstruct the missing samples xUk using the remaining known
samples and the LP model of the signal (1). Rearranging the LP model and
expanding it to a matrix notation we obtain the formulation displayed in Fig. 1,
which can be rewritten in a compact notation as,

e(xUk,a) = x−Xa (2)

The missing samples xUk are then reconstructed by minimizing the squared error
expressed as

ε = ‖e‖22 = eT e = xTx+ aTRxa− 2aTrx (3)

where Rx = XTX and rx = XTx. Note that ε is a function of two unknown
variables, the predictor coefficients a and the unknown segment xUk, whose re-
construction is the objective of this problem. Since (3) involves unknown terms
of fourth and cubic order, solving the problem by differentiating ε with respect
to the unknown vectors xUk and a would be mathematically impractical. An
estimation-maximization (EM) procedure is used instead. First, Eq. (2) is lin-
earized by setting the unknown samples to zero (estimation). This makes the
squared error e to be a function of the LP-coefficients a only. The coefficients
are then computed by minimizing ε, that is, by solving the usual set of normal
equations, which yields,

â = R−1
x rx. (4)

Finally, the unknown samples are reconstructed using the estimated LP coeffi-
cients. This approach can be iterated several times, although in most cases very
few iterations are needed.
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Fig. 2. SNR performance of LSAR (red) and Extended LSAR (blue). The Extended
LSAR is applied with P = 10 and Q = 1.

Given that voiced speech signals are quasi-periodic, a speech sample is highly
correlated with the neighboring ones as well as with the samples shifted by
one (or several) pitch period. In order to exploit these longer correlations, a
modification of the basic LSAR (Extended LSAR) which introduces a long-term
predictor was proposed in [6]. The speech model involved by the Extended LSAR
is,

x(m) =
P∑

k=1

akx(m− k) +

Q∑
k=−Q

pkx(m− T − k) + e(m), (5)

where Q is the order of the long term LP and T is the pitch period. This is the
underlying speech model employed somehow by many speech codecs and can be
solved again through the corresponding set of normal equations. An interesting
feature of this model is that we can consider that equation (5) contains a single
predictor with a high level of sparsity. This feature will be exploited in our
proposal.

As mentioned in the introduction section, the long-term correlations can be
also exploited by the basic LSAR if a prediction order P , large enough to cover
the longest possible correlations, is used. The main advantage of this solution is
that no pitch estimation is needed.

In order to asses both the basic LSAR and the Extended LSAR, Fig. 2 shows
the average SNR values obtained by both techniques for gaps of 6 ms separated
30 ms. The corresponding experimental setup will be described in Section 4. The
basic LSAR performance is plotted versus the LP order P , while the extended
one is only shown for typical values (P = 10, Q = 1, 13 coefficients). A first
comparison can be made for this typical LP orders. In this case, the Extended
LSAR not only outperforms LSAR for P = 10, but also for 20 coefficients. This
makes clear the need of including long-term correlations. However, it is also
observed that the performance can be meaningfully increased with the basic
LSAR by simply increasing the LP order. The order increase does not make
sense for the Extended LSAR since this would simply imply that the short-term
predictor would absorb the long-term one.
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The main conclusion that can be extracted from the above discussion is that
the basic LSAR must be employed if there are no strong computational con-
straints. However, it still has two problems:

1. Many LP coefficients, which are forced to be zero when the classical speech
model is applied, can have now non-zero values. In principle, this may es-
pecially affect the inter-pitch and post-pitch coefficients and could be inter-
preted as a sort of estimation noise.

2. When a large order P is applied, the estimated coefficients can be more af-
fected by the non-stationarity of the speech signal since more autocorrelation
coefficients are used in (4).

The effect of these problems over the SNR plot of Fig. 2 is a SNR decay for the
higher LP orders. In average, this decay starts after the average pitch value of
the speech corpus (57.80 samples).

In this paper, we propose a modification of the LSAR algorithm oriented
to mitigate the above problems by applying sparse linear prediction (SLP) for
LP predictor estimation. We can consider that this proposal combines the best
features of the basic LSAR with large P and Extended LSAR since it uses a
single compact predictor which does not require pitch estimation and tries to
keep the sparsity of Extended LSAR. SLP and the proposed modification to
LSAR are presented in the next section.

3 LSAR by Sparse Linear Prediction

As discussed in the previous section, our goal is the development of a new variant
of LSAR with a single large-order predictor which is, at the same time, highly
sparse. Thus, we have to minimize the squared error in (3), with respect to a,
with a sparsity constraint, that is,

minimize ε(a) =
∥∥aTRxa− 2aTrx

∥∥2
2

subject to ‖a‖0 ≤ δ0.
(6)

where the term xTx is not included in the optimization procedure since it com-
prises the DC component of the squared error. The main problem that arises
when solving (6) is that the �0-norm is non convex so that the global minimum is
usually found by exhaustive search and is therefore computationally prohibitive.
This problem has been thoroughly studied in compressive sensing theory and
can be efficiently solved by applying convex relaxation [10], i.e.

minimize ε(a) =
∥∥aTRxa− 2aTrx

∥∥2
2

subject to ‖a‖1 ≤ δ1.
(7)

The objective function, as well as the constraints, are both convex and the opti-
mization problem can be efficiently solved by a convex optimization algorithm.
In our simulations, we apply the primal-dual interior point (IP) method [11].
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The LP-coefficients obtained in the previous step are then used to re-estimate
the unknown samples xUk. This is carried out by inserting the obtained coef-
ficients a into Eq.(2) and minimizing the squared error ε with respect to xUk,
which is the only unknown variable the squared error now depends on. Note
that only the equations within the dashed lines in Fig. 1 are involved in the
minimization since the remaining ones are constant with respect to xUk. These
equations can be rearranged so that the excitation signal is a combination of
known and unknown samples:

e = A1xUk +A2xKn (8)

where the matrices A1 and A2 are both constructed using the LP-coefficients
a and xKn = (x(k − P ), . . . , x(k +M + P − 1))T (see ref. [2] for more details).
The total squared error is then given by,

‖e‖22 = eTe = (A1xUk +A2xKn)
T (A1xUk +A2xKn) (9)

The unknown samples xUk that minimize the squared error are obtained by
setting the derivative of the squared error function with respect to xUk to zero

∂eTe

∂xUk
= 2AT

1 A1xKn + 2AT
1 A2xKn (10)

Finally, from Eq.(10) we have

x̂Uk = −(AT
1 A1)

−1(AT
1 A2)xKn (11)

The sparsity restriction does not make sense in this case since xUk is not sparse
in general, although it can be solved via convex optimization with no restrictions.

In order to better illustrate the differences between the sparse approach and
the classic LSAR, let us analyze two particular cases of missing segment recon-
struction. The first case involves a voiced segment with pitch period equal to
32 samples. The pitch period is calculated over the clean (original) signal using
the Yin pitch detector [12]. In the second case, an unvoiced segment is recon-
structed. For both cases, we perform a reconstruction with 100 LP-coefficients
using LSAR and the proposed technique. The results are shown in Fig. 3. Figure
3(a) shows the obtained coefficients for the voiced segment. As expected, the
SLP-coefficients are much sparser than the coefficients obtained by LSAR while
providing a reconstruction with lower squared error. Moreover, the significant
elements of the LP-vector are concentrated around the position of 32, 64 and a
small contribution around 96. Note that the pitch period of the original signal
has been determined to be 32. Thus, the proposed SLP predictor adaptively
encounters the pitch value. The case of the unvoiced segment reconstruction is
shown in Fig. 3(b). Again, the LSAR coefficients vector is much less sparse while
generating a reconstruction with larger squared error. In this case, SLP automat-
ically concentrates the weights in the close proximity of the lost segment which
is coherent with the assumption that in unvoiced segments the most correlated
samples are the closest ones.
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(a)

(b)

Fig. 3. Example of distribution of the LP-coefficients obtained by LSAR (red) and
SLP (blue). (a) Voiced segment. (b) Unvoiced segment.

4 Simulation Results

The speech utterances used for testing comprise a subset of 400 sequences ex-
tracted from the geographic corpus of the Albayzin database [13]. All the speak-
ers, used for recording the database, are also present in our tested subset. Figure
4 shows a comparison of LSAR and the proposed SLP-based algorithm in terms
of SNR. The average SNR value over the 400 utterances is shown for different
LP orders. The proposed SLP technique is also tested for different levels of spar-
sity (controlled with parameter δ1). Moreover, the comparison is carried out for
missing segment lengths (Tgap) of 6 ms and 8 ms. The losses are produced every
30 ms and a 32 ms window, centered over the missing segment, is used for es-
timating the predictor. The window is eventually extended (up to the required
length) in cases where the sum of LP order and the duration of the gap is larger
than the 32 ms window. Finally, two iterations are employed for both cases.

The simulations reveal that the larger the LP order, the sparser it should be
in order to obtain better quality reconstructions. The average pitch period of
the tested subset is 57,80 so, for shorter LP orders, there is no need to impose
sparsity over the LP estimator. Note that weak sparsity restrictions approximate
the LSAR behavior for low order LP estimators. For LP orders above the aver-
age pitch period, the performance of the LSAR technique starts to decay while
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(a)

(b)

Fig. 4. Performance comparison, in terms of SNR, of LSAR and SLP with different
values of δ. Both algorithms are tested for different values of LP order and two iterations
are applied. (a) Tgap = 6 ms. (b) Tgap = 8 ms.



Speech Reconstruction by Sparse Linear Prediction 255

our proposal eventually rises and then practically maintains the reconstruction
quality (with a very slight decay). This results confirm that the basic LSAR with
large prediction order may be affected by noise estimation and non-stationarity
and that the sparsity constraint helps to palliate these problems. Also, we can
conclude that the sparsity parameter δ1 could be set according to the LP order,
although in this paper we focused on obtaining a fixed estimator suitable for the
majority of pitch periods. Thus, a high order and highly sparse (small δ1) LP
estimator is preferred.

Table 1 shows the average values of SNR and PESQ (Perceptual Evaluation
of Speech Quality) obtained for different lengths of lost segments. The LP order
is set to 100 in order to include all possible pitch values in the database and
5 iterations are used. The proposed method outperforms the basic LSAR in all
cases and the difference in perceptual quality has an increasing trend with the
gap length.

Table 1. Average SNR and PESQ values for SLP and LSAR for different lost segment
lengths. The simulation is carried out for P = 100 with 5 iterations.

SNR Tgap = 4ms Tgap = 6ms Tgap = 8ms Tgap = 10ms
SLP 18.10 15.13 13.03 11.38
LSAR 17.47 14.41 12.34 10.67

PESQ
SLP 4.00 3.81 3.63 3.47
LSAR 3.91 3.72 3.51 3.34

5 Conclusions

We have proposed a modification of the LSAR speech reconstruction algorithm
which uses sparse linear prediction. The proposed approach has several advan-
tages as avoiding the use of pitch detectors, a better approximation to the sparse
classical model employed in speech coding, a better behavior for large pitch val-
ues (reducing the estimation noise) and less sensitivity to non-stationarities.
Applying convex relaxation allows to solve the minimization problem with spar-
sity constraint in a relatively efficient way. The proposed technique outperforms
the classic LSAR both at objective and perceptual level. Future work includes
the dynamic adaptation of the sparsity parameter δ1 to the instantaneous pitch
values and the LP order.
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Domingo López-Oller1, Angel M. Gomez1, José Luis Pérez Córdoba1,
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Abstract. This paper presents an ACELP-based speech transmission
scheme that is robust to frame erasures.The scheme is based on the stegano-
graphic transmission of media-specific FEC codes. These FEC codes are
intended to prevent the adaptive codebook desynchronization frequently
found in the decoder after a frame erasure. They are based on a multi-
pulse representation of the previous frame excitation. Bymeans of stegano-
graphic methods, the FEC codes are embedded into the codec bitstream,
thus causingnobit rate increase. In particular, anACELP-specfic steganog-
raphy approach exploits the inefficiencies in the ACELP codebook search
and imposes certain algebraic restrictions which allow the hiding of data
in the ACELP codewords. Effectively, side information can be transmitted
without compromising the codec speech quality. The performance of our
proposal is evaluated with the well-known AMR ACELP codec, both in
terms of speech quality and intelligibility. To this end, objective measures,
i.e. PESQ and STOI, are applied. The proposed coding scheme achieves a
noticeable improvement over the legacy codec under adverse channel con-
ditions without consuming any additional bit rate.

Keywords: ACELP, speech coding, data hiding, steganography, multi-
pulse, frame erasure.

1 Introduction

Modern speech codecs are based on the CELP [1] paradigm that provides a high-
quality synthesis at a remarkably low bit-rate. Nevertheless, due to the extensive
use of predictive filtering, CELP codecs are relatively vulnerable to the frame
erasures which frequently appear in packet-based transmissions. One of these fil-
ters, the long-term prediction (LTP) filter, which is used to build up the adaptive
codebook (ACB), can exceed frame boundaries and it is primarily responsible
for undesired error propagation effects, cf. [2–4]. Error propagation occurs when
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the excitation samples within a lost speech frame are synthetically replaced with
the help of a concealment algorithm. Such erroneous excitation patterns cause
a desynchronization of the ACB at the decoder. Until synchronicity is regained,
degradations in the synthesized speech can propagate over several frames [3, 4].
Indeed, error propagation is currently being considered as a notable source of
degradation and several authors have proposed a number of techniques to min-
imize or even avoid it in packet-switched telephony, e.g. [5–8]

In [3], we have proposed a novel FEC technique to alleviate such propagation
error problems. This technique was derived from a multipulse encoding approach
and consists of the computation and transmission of a pulse-based representation
of the previous frame excitation. Hence, an alternative representation of ACB
is available after a frame loss. Nevertheless, those pulses (position-amplitude
pairs) are transmitted in the form of media-specific FEC bits, causing a small
but unavoidable increase of the transmitted bit rate. The resulting bitstream
format is therefore incompatible with the original codec standard.

In order to avoid this overhead and eventual incompatibilities, we propose to
use data hiding or steganography to embed the FEC information into the bit-
stream, allowing a similar protection to that achieved with FEC codecs but with-
out any bit rate increase. Bitstream data hiding has typically been performed
for various media coding schemes such as JPEG [9], H.264 [10] or MPEG2 [11]
with different purposes. Regarding speech transmission, the principles of CELP-
oriented data hiding were proposed by Z.M. Lu et al. [12] where a rather low
steganographic capacity of 37 bit/s was achieved. This capacity was further ex-
tended by the steganographic ACELP codec proposed in [13] allowing bit rates
of several 100bit/s without compromising the quality of the coded speech sig-
nal. Here, we will exploit a recently proposed data hiding technique for ACELP
codecs [14, 15], which allows to embed various bit rates from 200 bit/s up to
2 kbit/s.

The remainder of this paper is organized as follows. Sections 2 and 3 explain
the fundamentals of the FEC codes based on multipulse resynchronization and
the steganographic method used to embed them into the ACELP bitstream,
respectively. In Section 4 we present our experimental framework and results.
Finally, in Section 5 conclusions are drawn.

2 Basic Multipulse Approach for Propagation Error
Recovery

Modern speech codecs are based on the linear prediction model. Under this
model, speech is obtained by filtering an excitation signal, e(n), by means of
the inverse short-term linear prediction (LP) filter, i.e. with the system function
1/A(z). In CELP codecs, the excitation e(n) is the result of a long-term predic-
tion (LTP) filter which applied over a residual signal, also known as the code
vector, ec(n). Formally, the excitation signal, e(n), is obtained as:

e(n) = ga

(q+1)/2∑
k=−(q−1)/2

pke(n− (T + k)) + gcec(n) = gaea(n) + gcec(n), (1)
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where T , pk, ga and gc are the parameters of the LTP filter (q is the prediction
order), namely lag-delay, long-term coefficients, and adaptive and code gains,
respectively. Those parameters are chosen in order to minimize the (spectrally
weighted) error between the synthesized speech signal and the original one. Al-
ternatively, the excitation signal can be seen as a weighted sum of two different
components, ec(n), chose from a fixed codebook, that represents the residual sig-
nal remaining after removing the long-term redundancy, and ea(n) an adaptive
codebook (ACB), that models the long-terms correlations in excitation.

When a frame erasure happens, a concealment algorithm tries to minimize the
degradation on the perceptual quality by extrapolating and gradually muting (in
case of consecutive lost frames) the speech signal. The excitation corresponding
to this concealment is used by the LTP filter to compute the excitation in the
next frame. Since the concealed signal is not identical to the transmitted one,
the decoder gets desynchronized from the encoder and a distortion appears that
can propagate over several subsequent correctly received frames.

In order to alleviate this problem we proposed a media-specific FEC coding
scheme to combat the aforementioned error propagation effect. This FEC code
represents the previous excitation as in multipulse coding [16], that is, by a few
pulses with different amplitudes and positions. Thus, after a frame loss, this
alternative excitation is used instead of that provided by the previous packet
loss concealment algorithm in order to prevent the LTP desynchronization.

The proposed FEC is computed by considering the previous frame samples
as a memory where some pulses can be set. By means of a procedure derived
from multipulse coding, the position and amplitude of the pulses are optimized
in order to minimize the least square error (LSE) between the synthesized signal
and the original one [4]:

ε =
N−1∑
n=0

(s(n)− ŝ(n))2 =
N−1∑
n=0

(s(n)− h(n) ∗ ê(n))2 (2)

with ê(n) = f(T, ga, gc, ec(n), b0, p0, b1, p1, ..., bL−1, pL−1, n), (3)

where h(n) is the impulse response of the LP filter, s(n) is the target signal and
N the number of samples per frame. It can be shown [3, 4] that contributions
from perceptual filtering (commonly used in CELP coding) and code vector (i.e.
gc and ec(n)) can be removed from the target vector s(n), easing the computation
of the pulses. Here, only the perceptual filter contribution is considered while
the code vector one will be neglected. This is because the algebraic code remains
unknown until steganography has been applied, see Section 3.

2.1 Pulse Computation and Coding

In many CELP-based codecs, frames are split into subframes applying different
filters in each one so the resulting coefficients are variable in time [17, 18]. Due
to this, for a complete frame we deal with a linear but time variant system.
Given a unit pulse at position p producing an output hLT (n, p), the same pulse
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with amplitude b will provide the same output but scaled by b. Therefore, we
can relate the excitation with the sum for every L pulse contribution as:

ê(n) =
L−1∑
l=0

blhLT (n, pl) (4)

where we will refer to hLT (n, pl) as shape signals that are obtained by placing a
unit pulse at position pl in the previous frame (filter memory) and LTP filtering
the current frame with a zero excitation. Here we are assuming that e(n) only
depends on LTP filter, i.e. the adaptive gain and pulses, as the perceptual filter
is removed from the target signal and the code vector contribution is neglected
as previously mentioned. Then, it can be proved [3] that the synthesized signal
is given by:

ŝ(n) =

L−1∑
l=0

bl · gpl
(n) (5)

with gp(n) = h(n) ∗ hLT (n, p)

where gp(n) is the LP response to the shape signal at position p (in the LTP
filter memory) and can also be computed on a subframe basis so we can cope
with the existence of different LP sets for each subframe.

It can be proved [4] that, provided a set of pulse positions pk, optimal ampli-
tudes bk are obtained by means of the following set of equations:

L−1∑
k=0

b∗kφpkpj = cpj (6)

where

φpkpj = Φ[k, j] =

N−1∑
n=0

gpk(n)gpj (n)

cpj = c[j] =
N−1∑
n=0

s(n)gpj (n) (7)

Since the LSE can be also obtained from s(n) and gp(n), pulse positions could
be found by choosing that combination which provides the lowest error (with
optimal amplitudes). However, this solution is impracticable due to the high
number of possible combinations of L pulses in the LTP filter memory. In order
to reduce complexity, we can consider only a single pulse, as in [4], so the set of
equations (6) reduces to:

b∗ · φpp = cp (8)

In addition, the LSE between the original signal and the synthesized one, ob-
tained from a single pulse at position p with optimum amplitude b∗, is given as
[4]:



Steganographic Pulse-Based Recovery for Robust ACELP 261

ε∗ =

N−1∑
n=0

s2(n) + b∗2φpp − 2b∗cp =

N−1∑
n=0

s2(n)− c2p/φpp (9)

As we can see, we only require the diagonal elements of Φ (φii = Φ[i, i]), and
the position which provides the optimal pulse-position i∗ and its corresponding
optimal amplitude b∗i are finally obtained as:

i∗ = argmax
i

(c2i /φii), b∗i = ci∗/φi∗i∗ (10)

After obtaining the position and amplitude, we can jointly quantize them in order
to be transmitted as a FEC. This pulse is used in the decoder to regenerate the
excitation when the previous frame is lost.

3 Steganography for ACELP Codecs

In CELP coders, steganography is generally realized by embedding the stegano-
graphic bits in the less important parts of the encoded bitstream, i.e., for the
AMR codec, in the fixed codebook (FCB) contribution. For the application of
data hiding to CELP coders, it turns out to be advantageous to integrate the wa-
termarking procedure into the analysis-by-synthesis loop for the fixed codebook
(FCB) search. The embedding of K steganographic bits per frame is achieved
by partitioning the fixed excitation code book C into M = 2K disjoint sub-
codebooks Cm. If we consider that m is the message to be embedded, c ∈ Cm are
the examined candidate codevectors, and X (c) is the CELP cost function, the
FCB search with information-embedding can be formulated as [14]:

X (c) = ||v||2 − (vTHc)2

||Hc||2

ĉ = argmin
c ∈ Cm

X (c) (11)

with the target vector v (pitch removed prediction residual) and the perceptually
weighted filter matrix H . The hidden message is decoded by identifying the sub-
codebook that contains the received vector ĉ:

m = m′ : ĉ ∩ Cm′ = ĉ (12)

Considering the described embedding scheme, the number of examined FCB en-
tries is decreased by a factor ofM for each frame, and the inevitable consequence
would be a decreased quality of the coded speech. So in order to maintain the
speech quality, a joint implementation of the speech encoding and data hiding
operations must be used [19].

The key to this ACELP steganographic technique is a modified search strategy
for the ACELP codebook since typically only a small heuristically selected subset
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C′ ⊂ C is examined during FCB search. If we introduce additional FCB entries
in every sub-codebook Cm, i.e. |Cm| ≥ |C′|, M ”equally good” sub-codebooks
can be established and the data hiding procedure will not degrade the resulting
speech quality. In this paper we will use the implementation in [14], which mod-
ifies the FCB search procedure for the 12.2 kbit/s mode of the AMR codec. The
alternative steganographic search strategy allows different hidden data rate from
200bit/s to 2 kbit/s. For our purposes, 4 steganographic bits are transmitted per
5-ms subframe, i.e. the obtained steganographic bit rate is 4 bits/5ms=800bit/s.
Therefore, a concrete message m is defined as a 4 bit binary sequence whose in-
dividual bits are denoted by, (m)k with k = 0, . . . , 3. To enable the transmission
of K = 4 steganographic bits per subframe, the FCB is partitioned into M = 2K

sub-codebooks that uniquely identify the selected messagem. Based on the stan-
dard ACELP search method from [17], the proposed steganographic algorithm
has been derived in two steps:

1. Codebook Partitioning. First, M disjoint sub-codebooks are established
by appropriately restricting the set of admissible codevectors. In particular,
a specific parity condition is imposed on certain parts of the AMR bitstream:

(m)k =

[
G
(
� ik
5
�
)
⊕ G(� ik+5

5
�)
]

mod 2 (13)

for the ACELP pulse positions ik with k ∈ {0, ..., 3}, where X ⊕ Y is the
bitwise exclusive disjunction (XOR) of two binary strings and G represents
the standardized Gray encoding of the ACELP pulse position codewords. At
the decoder, the hidden information can be retrieved directly from the AMR
bitstream using (13). Solving the above bitstream parity condition for the
position ik+5 of the second pulse in ACELP track k, the admissible indices
(and thus the possible positions) for this pulse can be computed:

� ik+5

5
� = G−1(G(� ik

5
�)⊕ (m)k + 2 · j) (14)

with j ∈ {0, . . . , 3}. Hence, the first four (out of five) pulse tracks are re-
stricted to have four (out of eight) admissible pulse positions. The fifth pulse
track is not restricted here.

2. Search Space Expansion. Based on the chosen codebook partitioning,
an FCB search strategy is devised that provides a good trade-off between
speech quality and computational complexity. Thereby, the admissible values
for the pulse positions ik+5 can be computed using (14). More details on this
steganographic FCB search can be found in [14].

4 Experimental Framework and Results

In order to evaluate the performance of our proposal we use the PESQ (Perceptual
Evaluation of Speech Quality) algorithm [20] and the STOI (Short-Term Obje-
tive Intelligibility) [21] test with the AMR 12.2 kbit/s standard speech codec. The
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speech corpus is a subset of TIMIT database [22] downsampled at 8 kHz, com-
posed by a total of 1328 sentences uttered by a balanced number ofmale and female
speakers. The scores obtained for every test sentence are weighted by their rela-
tive length in the overall score. Finally, frame erasures are simulated by a random
packet lossmodel with a frame per packet, that provides 9 channel conditions with
packet loss rates from 0% to 23%. Although this approach is known to be insuf-
ficient in modelling realistic packet loss scenarios in packet-switched networks, it
has been used in this work as in many other papers [2–5, 7], since we are interested
in the error propagation after a frame erasure, and not in the loss itself.

In this paper we have tested three different schemes (see Fig. 1), the AMR
codec at 12.2 kbit/s mode, as baseline (AMR), the same AMR codec but with ad-
ditional FEC information comprising a recovery pulse as described in Section 2,
and the steganographic codec embedding the same FEC information into the
bitstream. We encode the recovery pulse with 10bits, which results in a bit rate
increase of 500 bits/s. The steganographic transmission with 800bits/s therefore
leaves some headroom, e.g. for additional error protection.

Fig. 1. Schemes of transmission for the implemented experiments: (a) AMR legacy
codec (AMR), (b) AMR codec plus a FEC code (AMR+FEC) and (c) AMR codec
using data hiding for the FEC code (STEGO)

4.1 Speech Quality

In this paper, an objective quality measurement tool has been selected in order
to exhaustively evaluate the proposed schemes. The ITU PESQ algorithm [20] is
one of the most popular algorithms for speech quality assessment. It is applied
over each utterance in the testing database, providing a score about the speech
signal quality within a range from 0.5 (bad) to 4.5 (excellent). Table 1 shows the
results obtained by the PESQ test for the considered channel conditions.
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Table 1. Average PESQ scores obtained for AMR 12.2 kbit/s (AMR) codec and the
multipulse (AMR+FEC) and steganographic (STEGO) approaches under different
channel conditions

bit rate
Frame erasure ratio

0% 4% 7% 10% 13% 16% 18% 21% 23%

AMR 12.2 4.003 3.212 2.936 2.690 2.531 2.321 2.200 2.108 2.024
AMR+FEC 12.75 4.003 3.417 3.193 2.997 2.878 2.720 2.626 2.556 2.497
STEGO 12.2 3.991 3.398 3.170 2.974 2.852 2.693 2.597 2.527 2.466

We can observe that, in case of frame losses, the STEGO technique achieves a
better performance than the BASE AMR. Therefore, the use of steganography
in case of packet loss, using the multipulse technique as FEC information allows
an improved performance compared with the results of BASE AMR, with the
advantage in the STEGO technique of not increasing the bit rate and without
incurring in a significant performance loss in comparison with the AMR+FEC
technique (average difference 0.026).

4.2 Speech Intelligibility

Improving quality might not necessarily lead to improvements in terms of intel-
ligibility. In fact, it is well known that some speech processing algorithms which
achieve a significant improvement in quality might be accompanied by a decrease
in intelligibility [23]. Due to this, it is noteworthy to also perform an intelligi-
bility test to our techniques. To this end, we will use an objective metric, the
Short-Time Objective Intelligibility metric (STOI) [24]. This technique has been
recently proposed for speech intelligibility assessment and it is based on the lin-
ear correlation between a time-frequency representation of clean and damaged
speech over time frames. STOI provides a very high correlation (> 0.9) with
intelligibility scores provided by human listeners [24, 25], allowing us to make
reasonable conclusions.

We have applied this algorithm over each utterance in the testing database,
providing a score about the speech signal quality within a range from 0 (unin-
telligible) to 1 (fully intelligible). Table 2 shows the results obtained by STOI
tests for the considered analyzed channel conditions.

Table 2. STOI scores obtained for base AMR 12.2 kbit/s (AMR) codec and the mul-
tipulse (AMR+FEC) and steganographic (STEGO) under different channel conditions

bit rate
Frame erasure ratio

0 4% 7% 10% 13% 16% 18% 21% 23%

AMR 12.2 0.908 0.862 0.829 0.796 0.769 0.731 0.707 0.687 0.667
AMR+FEC 12.75 0.913 0.891 0.874 0.857 0.843 0.824 0.810 0.800 0.789
STEGO 12.2 0.914 0.888 0.871 0.855 0.841 0.822 0.808 0.798 0.788
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We can observe that STEGO technique also achieves a better performance in
terms of intelligibility than BASE AMR experiment. From the obtained results
we can draw similar conclusions as from the previous PESQ test.

5 Conclusions

In this paper we have presented a robust speech transmission scheme that com-
bines an steganographic technique for ACELP codecs with media-specific FEC
codes. The aim is to reduce detrimental error propagation effects in CELP-based
speech codecs. FEC codes are based on a multipulse representation of the previ-
ous excitation frame, allowing to retrieve the ACB codebook synchronicity after
a frame erasure. On the other hand, steganography enables this data overhead to
be hidden within the algebraic code, causing no bit rate increase and maintaining
full bitstream compatibility with the codec standard.

Two objective metrics have been used to test the performance of the proposed
scheme, one referred to speech quality, the PESQ algorithm, and the other re-
ferred to the speech intelligibility, the STOI measure. Both metrics confirm a
significant increase in terms of robustness in adverse channel conditions with
frame losses. Similar scores are obtained by the non-steganographic FEC code
transmission and by the steganographic transmission, despite the fact htat the
latter does not take the code vector contribution into account, as the algebraic
code is modified by the steganographic procedure itself (cf. Section 2). In addi-
tion, the proposed scheme achieves almost identical performance to that offered
by the legacy codec in clean channel conditions.
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Abstract. Visual speech animation, or lip synchronization, is the process of 
matching speech with the lip movements of a virtual character. It is a challeng-
ing task because all articulatory movements must be controlled and synchro-
nized with the audio signal. Existing language-independent systems usually re-
quire fine tuning by an artist to avoid artefacts appearing in the animation. In 
this paper, we present a modular visual speech animation framework aimed at 
speeding up and easing the visual speech animation process as compared with 
traditional techniques. We demonstrate the potential of the framework by de-
veloping the first automatic visual speech automation system for European Por-
tuguese based on the concatenation of visemes. We also present the results of a 
preliminary evaluation that was carried out to assess the quality of two different 
phoneme-to-viseme mappings devised for the language.  

Keywords: visual speech animation, phoneme-to-viseme mapping, European 
Portuguese, virtual characters.  

1 Introduction 

Speech is the most natural way of conveying the ideas and thoughts of the personality 
of a virtual character. However, speech communication is not only composed of 
sounds but also of the corresponding articulatory movements and facial expressions. 
These poses and expressions have an important impact on the naturalness and belie-
vability of virtual characters. If speech animation is not done well, i.e. if the facial 
movements of the virtual character are not human-like or if the synchronization of lip 
movements with the audio is poor, viewers will find the animation awkward, even if 
they are not able to pinpoint the source of the problem. 

Speech is commonly represented as a sequence of discrete sounds, or phones 
(‘beads-on-a-string’) [1]. Each phone and its abstract definition (phoneme) can be 
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associated with a viseme, i.e. the position and orientation of the visible part of the 
vocal tract articulators comprising the lips, teeth, jaw, tongue and cheeks. All articula-
tors can influence the production of a given phone but not all changes are visible; 
therefore different phones may be associated with the same viseme. In computer ani-
mation, when manually animating speech events, digital artists have to create each 
viseme by hand. Later, they can concatenate the visemes according to the utterances 
they want to animate, using an interpolation scheme. Thus, manual speech animation 
is time-consuming and tedious. As a result, several automatic approaches have been 
proposed for synchronizing the audio with the visemes and for modeling co-
articulation [2]. 

Visual speech animation can be divided into two main areas according to the way 
the speech input and the articulatory movements are mapped to each other: (i) pho-
neme-to-viseme mapping and (ii) sub-phonetic mapping. In the first case, the pho-
nemes are obtained using text or audio analysis, mapped to visemes and organized in 
a timeline. The actual mapping between phonemes and visemes is important for the 
end result; if it is not good, the animation can appear exaggerated or have unexpected 
visual effects. However, a good mapping is not sufficient for high-quality speech 
animation, and techniques relying on diphones and triphones [3, 4] have been pro-
posed for solving the co-articulation problem – at the cost of larger visual speech 
databases. Another common technique to tackle this problem involves creating a 
model for simulating the co-articulation effect [2, 5]. Sub-phonetic approaches, on the 
other hand, try to simulate continuous co-articulated speech by automatically mapping 
speech (represented, for instance, as feature vectors) to articulatory movements [6, 7, 
8]. Using such automatic approaches makes visual speech automation faster because 
the individual phonemes in speech do not need to be identified as the approaches rely 
on a regular discretization of the continuous signal. The main problem with sub-
phonetic approaches is their high sensitivity to noise. Some work in the area of visual 
speech animation has been done for Brazilian Portuguese [9]. However, to the best of 
our knowledge, research in the area has not yet been published for European Portu-
guese (hereafter EP). 

Current challenges in the field of visual speech animation include the selection of 
visemes, their synchronization with audio and the modeling of co-articulation. To try 
to tackle any of these issues, a researcher typically has to implement a visual speech 
animation system from scratch, which is laborious and time-consuming process [10]. 
Sutton et al. [11] and Berger et al. [10] introduce the first steps towards creating mod-
ular visual speech animation frameworks.  Our contribution in this area involves in-
troducing a new concept in visual speech animation, by dividing the process into sev-
eral modules. We also present the first steps towards the definition of a visual speech 
animation system for EP. The remainder of this paper is organized as follows. In sec-
tion 2, we present two different schemes of phoneme-to-viseme mappings for EP. In 
section 3, we introduce our proposal for a modular visual speech animation  
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framework. In section 4, we present results of a preliminary evaluation study that 
analyzed user preferences of the two mappings proposed in section 2. Finally, in sec-
tion 5, we draw our conclusions and discuss our lines for further research. 

2 Phoneme-to-Viseme Mapping 

Phonemes are the smallest units of speech that can form contrasts between utterances. 
For instance, in the English minimal pair “pie” and “bye” (pronounced /paɪ/ and 
/baɪ/, respectively), the first consonantal sounds cause the two words to have different 
meanings. Therefore, we can assume that they are two distinct phonemes. The same 
concept can be applied in the visual domain. The visual counterpart of a phoneme is 
the viseme, which describes the facial and oral postures during the production of a 
phone. Visemes are related to the production of specific phones and are influenced by 
their features. Some of those features are distinctive during the production of a phone, 
but irrelevant in the visual domain. Nasality and voicing are examples of such fea-
tures [12]. Thus, phonemes usually have a “many-to-one” relationship with visemes. 

In this section, we describe our approach of mapping a 35-symbol phoneme set for 
EP to several classes of consonantal and vocalic visemes. Following different strate-
gies, we created two mappings with different numbers of visemes. 

The first mapping (Table 1) grouped consonants into nine different viseme classes, 
distinguishable primarily by the place and manner or articulation. In an attempt to 
reduce the number of visemes, we also created a second mapping (Table 2), which 
was mainly based on the place, rather than the manner, of articulation. The guttural 
phonemes (Table 2, Class E), whose place of articulation is near the back of the 
mouth, were all mapped to the same viseme, since their place and manner of articula-
tion do not produce any relevant changes in the visual domain. The first mapping 
attempted to group the following types of vowels together: back vowels (Table 1, 
Class N), close front vowels (Table 1, Class J), close central vowels (Table 1, Class 
K), close-mid front and open/open-mid central vowels (Table 1, Class L), and open 
and open-mid front vowels (Table 1, Class M). In the second mapping, we grouped 
close and close-mid vowels together (Table 2, Class F), while maintaining the distinc-
tion between open-mid (Table 2, Class I) and open (Table 2, Class H) vowels. For the 
back vowels, we grouped close and close-mid vowels together (Table 2, Class G), and 
kept the open vowel separate (Table 2, Class J). This resulted in a slightly different 
classification of vowels, although the number of vocalic viseme classes remained 
unchanged. In both mappings, glides were grouped with their vocalic counterparts. 
So, we grouped the glide /j/ with /i/ and the glide /w/ with /u/. A final viseme, appear-
ing as a class of its own, was considered to represent a neutral stance, or silence. 

The visemes themselves were created by an experienced digital artist based on the 
articulatory movements made when uttering a given phoneme both on its own and in 
the context of other phonemes.  
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Table 1. First phoneme-to-viseme mapping 

Viseme 
Class 

Phonemes 

A /m/, /b/, /p/ 
B /f/, /v/ 
C /d/, /n/, /t/ 
D /s/, /z/ 
E /ʃ/, /ʒ/ 
F /ɾ/ 
G /l/, /ʎ/, /ɲ/ 
H /g/, /k/ 
I /ʀ/ 
J /ĩ/, /j/, /i/ 
K /ɨ/ 
L /ɐ/, /ɐ̃/, /e/, /ẽ/ 
M /a/, /ɛ/ 
N /ɔ/, /o/, /õ/, /u/, /ũ/, /w/ 
S silence/neutral 

Table 2. Second phoneme-to-viseme mapping 

Viseme 
Class 

Phonemes 

A /m/, /b/, /p/ 
B /f/, /v/ 
C /d/, /n/, /t/, /l/, /ɾ/, /s/, /z/ 
D /ʃ/, /ʒ/ 
E /g/, /k/, /ʎ/, /ɲ/, /ʀ/ 
F /ɨ/, /e/, /ẽ/, /i/, /ĩ/, /j/ 
G /o/, /õ/, /u/, /ũ/, /w/ 
H /ɐ/, /ɐ̃/, /a/ 
I /ɛ/ 
J /ɔ/ 
S silence/neutral 

3 Framework Description 

Manually animating a talking 3D character that synchronizes facial movements with 
an audio signal quickly becomes impractical when the length of the utterances to be 
animated increases. We have created a system that can automatically handle utter-
ances of different lengths based on a new framework for visual speech animation (see 
Figure 1 for the data pipeline). 
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Fig. 1. Overall data pipeline of the framework. After receiving the input (audio, text or both), 
the speech processing tool generates the animation data and, through the plug-in, passes it on to 
the graphics engine that generates the animation.  

The visual speech animation authoring process begins with a 3D face model in its 
neutral pose along with the 3D visemes, all created by a digital artist, and the utter-
ances that we want the character to say (in the form of audio, text or both). The utter-
ance-related information is used as direct input for animating the 3D face. The 
framework that makes this possible is divided into two main components: a speech 

Fig. 2. Framework architecture overview. The framework is divided into the speech processing 
component (left) and the plug-in embedded in the animation engine (right). 
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processing component and a plug-in embedded in a 3D animation engine. The speech 
processing component analyses the utterance-related information and generates the 
data that drives the animation, while the plug-in acts as an external interface to the 3D 
animation engine. This division allows a clear distinction between the processing of 
the speech data and the animation of the virtual character. Thus, integrating different 
animation engines in our system is possible through the adaption of the plug-in. Fig-
ure 2 illustrates the modules that constitute the conceptual framework architecture. It 
is important to note that the framework is independent of the system we created with 
it as a basis.  

3.1 Speech Processing Component 

The speech processing component deals with the creation of the animation data. Cen-
tral to it is the flow management module that administrates the data interaction be-
tween the different modules. The input module gets the data (audio, text or both) that 
will drive the animation. Phrase processing uses automatic speech recognition (ASR) 
to obtain the phonetic transcriptions of the input utterances. The current version of our 
system uses Microsoft Speech API (SAPI 5.4) [13] together with an EP phonetic lex-
icon developed at Microsoft. The language model of the ASR engine is essentially 
based on unigrams, bigrams and trigrams of common words, as well as telephone 
numbers, person names, business names and addresses specific to the Portuguese 
market. The synchronization of the audio and the visemes is handled by the phone 
alignment module, which guarantees that the speech is matched correctly with the lip 
movements. If the visualization is not correct, the animated utterances may become 
less understandable [14]. Techniques used in ASR and speech synthesis (TTS) are 
commonly used for synchronization. With ASR, for instance, a time-aligned phonetic 
transcription can be obtained by means of a forced alignment. It aligns a speech signal 
with a predefined sequence of acoustic models associated with the phonemes in ques-
tion. Our current approach, on the other hand, relies on the statistical duration of pho-
nemes; the total estimated duration of the phonemes in an utterance is normalized to 
be the same as the duration of the corresponding speech signal. However, in the future 
we intent to improve this module by changing the current approach to force align-
ment. The EP phone durations were obtained from a database of 100 hours of Portu-
guese speech provided by Microsoft. 

The speech synthesis module is necessary when the input is text-based. To gener-
ate the audio from text input data, the current version of our system uses the EP TTS 
engine that comes with SAPI. 

The visual selection module plays a crucial role in the framework as it is responsi-
ble for choosing the animation curves and the visemes that the virtual character will 
employ. There are two possible techniques that can be applied: a sub-phonetic ap-
proach or a phoneme-to-viseme mapping.  In the current system, we map the pho-
nemes directly to the corresponding visemes. The visemes were created by an artist 
from directly observing the mouth movements of a person speaking each phone inde-
pendently. If the sub-phonetic approach is desired, only this module needs to be 
changed.  
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Finally, the communication module sends the animation data (stored in an external 
file) to the plug-in so that it can be displayed by the animation engine. 

3.2 Animation Engine 

The animation engine is divided into the plug-in and the rendering engine. The plug-
in encapsulates the animation data that is sent from the communication module. The 
data is later translated into the final animation by the 3D rendering engine. As an 
animation engine, the current version of our system uses Maya, a 3D modeling and 
animation authoring system [15]. A cartoon character was created in Maya that relies 
on a bone based rig. An artist changed the default pose to create all the visemes, wich 
are then concatenated based on the data given by the speech processing component 

4 Preliminary Evaluation 

In order to analyze the impact introduced by a new phoneme-to-viseme mapping, we 
carried out a preliminary subjective user evaluation. The following section describes 
the evaluation experiment and its results. 

4.1 Experiment 

The evaluation was carried out using a total of 38 subjects recruited at a student fair 
(20 subjects) and at a multimedia systems class at the University of Porto (18 sub-
jects) in Porto, Portugal. The subjects did not have any problems with their vision or 
hearing, and only 3 of them had expertise in the area of visual speech animation. They 
were between 11 and 69 years of age, and 79% of them were male. 

The evaluation was carried out using the following three phonetically rich sen-
tences presented to all of the subjects: 

 
S1: A fala é um importante meio de comunicação.  
     ‘Speech is an important means of communication.’ 
S2: Depois do Zé, o Ricardo joga xadrez com o Daniel. 

‘After Zé, Ricardo plays chess with Daniel.’ 
S3: O velho hoje não vê nenhum barco no mar.  
     ‘The old man does not see any ships at sea today.’ 

 
Each phonetically rich sentence was animated using the two phoneme-to-viseme 
mappings described in Section 3. A video with all the animations can be seen in 
http://youtu.be/0zZwoakx6LE. Each of the animation pairs were shown three times to 
the subjects, who then filled out a questionnaire according to their preferences. Cor-
responding to the first and second mapping, respectively, the subjects had to choose 
one of the following alternatives for each sentence: 

L1: Strongly prefer the first animation 
L2: Slightly prefer the first animation 
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L3: Neutral 
L4: Slightly prefer the second animation 
L5: Strongly prefer the second animation   

4.2 Results and Discussion 

Figure 3 summarizes the distribution of the preferences collected during the  
experiment.  

 
Fig. 3. The distribution of preferences for the three test sentences. L1 represents a strong prefe-
rence for the first mapping and L5 a strong preference for the second mapping. 

We can see from Figure 3 that the subjects slightly preferred the second mapping 
for S1 and S3 and that, in the case of S2, the first mapping was preferred. We can 
infer that the reduction in the number of viseme classes had little importance for the 
quality of S1 and S3, for which most users preferred the second mapping, but that it 
had a negative impact on the quality of S2.  

The fact that the vast majority of the preferences are centered around the more neu-
tral alternatives (L2-L4) shows that the differences in the phoneme-to-viseme map-
pings affected the animations less than one might expect The differences between the 
two animations were rather small and, hence, our results are not fully conclusive. We 
can, however, conclude that the use of different mappings does influence the quality 
of speech animation.  

5 Conclusions and Future Work 

It is challenging to accurately generate a talking 3D character based on speech input 
or text (or both) and obtain human-like facial movements. The main contribution of 
this paper is the creation of the first fully automatic – albeit technologically still re-
quiring improvements – system capable of generating visual speech for European 
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Portuguese. The modular structure of a new visual speech animation framework 
makes it simple to integrate new tools into existing animation pipelines and can con-
siderably speed up the overall visual speech animation process. Together with the 
framework, we also propose two different phoneme-to-viseme mappings for Euro-
pean Portuguese. Our preliminary evaluation experiments show that, during anima-
tion, the differences between the two mappings cause noticeable but still inconclusive 
changes to the quality of the animation. 

In future work, we intend to improve the animation by modeling and finding a so-
lution for the co-articulation problem, taking into account the specificity of EP. A 
clear starting point would be to understand the relationship between speech intensity 
and the visual weight distribution between visemes. As a weight model by itself is not 
enough to tackle the problem of co-articulation, we will also implement a co-
articulation model, such as the Cohen-Massaro model [2]. We are also looking into 
the possibility of devising a sub-phonetic mapping method that would implicitly mod-
el co-articulation. As soon as the co-articulation problem is tackled for the case of EP, 
with sufficient and scientifically sound results, we will also design new objective and 
subjective user evaluation experiments, to validate our approach. 
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Abstract. Whenever the quality provided by a machine translation system is not
enough, a human expert is required to correct the sentences provided by the ma-
chine translation system. In this environment, the human translator is generating
bilingual data after each translation has been marked as correct, and expects the
system to be able to learn from the errors made. In this paper, we analyse the ap-
propriateness of discriminative ridge regression for adapting the scaling factors of
a state-of-the-art machine translation system within a conventional post-editing
scenario and also within an interactive machine translation setup. Results show
that the strategies applied in the former setup cannot be directly applied in the lat-
ter framework. Hence, the discriminative ridge regression is revised and adapted
for the interactive machine translation framework, with encouraging results.

Keywords: Machine translation, online learning, interactive machine
translation.

1 Introduction

Machine translation is not only needed in fields where the amount of data is overwhelm-
ing, but also in fields where bilingual data is less abundant, but translation quality is
critical. In these scenarios, machine translation systems need to collaborate closely with
human experts, with the purpose of achieving high quality translations efficiently, giv-
ing rise to the popularisation of the computer assisted translation (CAT) [1] paradigm.
In such paradigm, the statistical machine translation (SMT) [2] system proposes a hy-
pothesis to a human translator, who amends the hypothesis to obtain an acceptable target
sentence. Two different user interaction schemes will be considered in this paper. The
first one, post-editing (PE), is being embraced by more and more human translators as
an efficient way of generating high-quality translations. In PE, the SMT system pro-
vides an initial translation, and then the user modifies such translation so as to correct
it. The second one, interactive machine translation (IMT) [3,4], is a more cutting-edge
technology which has been receiving an increasing amount of attention. The IMT sys-
tem attempts to predict the text the user is going to input. Whenever such prediction
is wrong and the user provides feedback to the system, a new prediction is performed.
Such process is repeated until the translation is considered correct.

One important problem which SMT systems need to tackle with when used for a
CAT purpose is adaptability. In these scenarios, the user expects the system to learn

D.T. Toledano et al. (Eds.): IberSPEECH 2012, CCIS 328, pp. 277–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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dynamically from its own errors, so that errors corrected once do not need to be cor-
rected over and over again. Hence, the models need to be adapted online, i.e. without a
complete retraining of the model parameters, since such retraining would be too costly.

The grounds of modern SMT were established in [5], by formulating the SMT prob-
lem as follows: given an input sentence x in a certain source language, the best transla-
tion ŷ in a certain target language is to be found:

ŷ = argmax
y

Pr(y | x), (1)

where Pr(y | x) is modelled directly by the so-called log-linear models [6], yielding

ŷ = argmax
y

M∑
m=1

λmhm(x,y) = argmax
y

λ · h(x,y) = argmax
y

g(x,y), (2)

where hm(x,y) represents an important feature for the translation of x into y, M is the
number of models (or features) and λm are the weights acting as scaling factors of the
score functions. g(x,y) represents the score of a hypothesis y given an input sentence
x, and is not treated as a probability since the normalisation term has been omitted.
Common feature functions hm(x,y) include translation models, re-ordering models
or the target language model. Typically, h and λ are estimated by means of training
and development sets, respectively. However, the domain of such sets has an important
impact on the final translation quality [7], and adaptation arises as an efficient way of
alleviating this fact by using very limited amounts of in-domain data. In this paper, only
λ will be adapted, although the same methods could also be applied to adapt h [8].

This paper is structured as follows. Next section briefly reviews related work. Then,
in Sec. 3, a short introduction to IMT is presented. Sec. 4 reviews discriminative ridge
regression and the modifications needed to apply it within IMT. Experiments are de-
scribed in Sec. 5, and the last section is reserved for conclusions and future work.

2 Related Work

Batch adaptation (as opposed to online) is a very broad field that has been receiving
a large amount of attention. In [9], adaptation in speech recognition is confronted by
means of the maximum likelihood framework. In [10], the maximum likelihood frame-
work is expanded so as to obtain maximum a posteriori estimators. In [11], adaptation is
confronted as a classification problem, by extending the set of features by an additional
tag. In [12], Bayesian predictive adaptation is applied for adapting λ in a batch setup.

However, there are also cases where there is no adaptation data at all available before-
hand, and the system needs to adapt itself online without falling into an excessive time
burden. Such problem led, among others, to the development of an incremental version
of the Expectation-Maximisation algorithm [13]. This algorithm has been successfully
applied in an IMT scenario in [14], where the models involved are incrementally up-
dated as the user feedback is received.

In [8], an in-depth comparison of four online adaptation algorithms, i.e. passive-
aggressive, perceptron, discriminative ridge regression and Bayesian predictive adap-
tation are studied for their application in a post-editing scenario. Both λ and h are
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p) ( )
(ŝ) To switch on:

ITER-1

(p) To
(k) power
(ŝ) on the printer:

ITER-2

(p) To power on the printer:
(k) (#)
(ŝ) ( )

FINAL (p ≡ y) To power on the printer:

Fig. 1. IMT session to translate a Spanish sentence into English. Non-validated hypotheses are
displayed in italics, whereas accepted prefixes are printed in normal font.

adapted, alternatively, presenting the most promising results when adapting the scaling
factors λ. In the present paper we study the application of the best-performing algo-
rithm, namely discriminative ridge regression, within an IMT framework, showing that
such algorithm may not be applied directly, and propose an alternative approach.

3 Interactive Machine Translation

In IMT, the purpose is to use fully-fledged SMT systems to produce full target sen-
tence hypotheses, or portions thereof, which can be partially or completely accepted
and amended by a human translator [3]. Fig. 1 illustrates a typical IMT session. Ini-
tially, the user is given an input sentence x to be translated. The reference y provided is
the translation that the user would like to achieve. At iteration 0, the IMT system has to
provide an initial complete translation ŝ, as if it were a conventional SMT system. Next,
the user validates a prefix p (word “To”) and introduces a new word k. This being done,
the system suggests a new suffix ŝ. Again, the user validates a new prefix, introduces
a new word and so forth. The process continues until the whole sentence is correct. In
this example, a potential user of the IMT system would have typed only one word out
of five, i.e., a potential effort reduction of 80% with respect to translating the whole
sentence from scratch. If a PE environment is assumed as baseline, the user would have
typed three words, versus only one in the case of IMT: an effort reduction of 66%.

Formally, IMT is specified as an evolution of the SMT framework. However, Eq. 1
needs to be modified according to the IMT scenario in order to take into account the
part of the target sentence that is already translated, that is p and k:

ŝ = argmax
s

Pr(s|x,p, k) (3)

where the maximisation problem is defined over the suffix s. This allows us to rewrite
Eq. 3, by eliminating constant terms, achieving the equivalent criterion

ŝ = argmax
s

Pr(p, k, s|x). (4)

An example of the intuition behind these variables is shown in Fig. 1.
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Note that, since (p k s) = y, Eq. 4 is very similar to Eq. 1. The main difference
is that the argmax search is now performed over the set of suffixes s that complete
(p k), instead of complete sentences (y in Eq. 1). This implies that we can use the same
models if the search procedures are adequately modified [3].

Typically, the IMT system makes use of the word graph generated for a given sen-
tence in order to complete the validated prefixes [15]. Specifically, the system finds the
best path in the word graph associated with a given prefix. A word graph is a weighted
directed acyclic graph, where each node represents one or more partial translation hy-
potheses. The edges represent transitions between such nodes, and are labelled each
with one word of the target sentence, and weighted by a score which evaluates how
likely it is to emit such word after having already emitted the current prefix.

4 Discriminative Ridge Regression

The main purpose of discriminative Ridge regression [8] (DRR) is that good hypothesis
within a given N -best list score higher, and bad hypotheses score lower. It implements
the estimation of λ as a regression problem between g(x,y), with y ∈ nbest(x), and
the translation quality of y.

In an online learning framework, the learning algorithm processes observations se-
quentially. The purpose is then to modify the prediction mechanisms according to the
user’s feedback in order to improve the quality of future translations. Considering that
the user’s feedback is the reference translation yτ , Eq. 2 is redefined as follows

ŷt = argmax
y

λt ·h(xt,y), (5)

where the log-linear weights λt vary according to samples (x1,y
τ
1), . . . , (xt−1,y

τ
t−1)

seen before time t. To simplify notation, we will omit subindex t from input sentence x
and output sentence ŷ, although it is always assumed. Either ht or λt can be adapted,
or even both at the same time. However, in this paper, we focus on adapting only λt.

The hypothesis ŷ that maximises the likelihood is not necessarily the hypothesis
with the highest quality from a human perspective or in terms of a certain quality mea-
sure. Let y∗ be the hypothesis with the highest quality, but which might have a lower
likelihood1. Our purpose is to adapt the model parameters so that y∗ is rewarded and
achieves a higher score according to Eq. 2.

We define the difference in translation quality between the proposed hypothesis ŷ
and the best hypothesis y∗ in terms of a given quality measure μ(·):

l(ŷ) = |μ(ŷ)− μ(y∗)|, (6)

where the absolute value has been introduced in order to preserve generality. The score
difference between ŷ and y∗ is related to φ(ŷ), which is defined as

φ(ŷ) = g(x,y∗)− g(x, ŷ). (7)

1 y∗ does not necessarily match the reference translation yτ due to eventual coverage problems.
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Ideally, we would like differences in l(·) to correspond to differences in φ(·): if hy-
pothesis y has a translation quality μ(y) that is very similar to the translation quality
of μ(y∗), we would like this to be reflected in translation score g, i.e., g(x,y) is very
similar to g(x,y∗). Hence, the purpose of our online procedure should be to promote
this correspondence after each sample (xt,y

τ
t ).

For computing the new scaling factors λt, the previously learnt λt−1 is combined,
for a certain learning rate α, with an appropriate update step λ̌t, yielding [8]:

λt = (1− α)λt−1 + αλ̌t. (8)

Although adapting λ is a coarse-grained strategy, its effect cannot be underestimated,
since it implies adjusting the importance of every single model in Eq. 2.

4.1 Discriminative Ridge Regression in Post-editing

In a conventional post-editing scenario where the hypotheses are provided by a regular
SMT system, the DRR algorithm requires an N -best list of hypotheses in decreasing
order of likelihood. Let nbest(x) be such a list computed by our models for sentence
x. For adapting λ, we define an N ×M matrix Hx, where M is the number of features
in Eq. 2, containing the feature functions h of every hypothesis:

Hx = [h(x,y1), . . . ,h(x,yN )]
′
. (9)

Additionally, let H∗
x be a matrix such that

H∗
x = [h(x,y∗), . . . ,h(x,y∗)]′ , (10)

where all rows are identical and equal to the feature vector of the best hypothesis y∗

within the N -best list. Then, Rx is defined as

Rx = H∗
x −Hx . (11)

The key idea is to find a vector λ̌t such that differences in scores are reflected as differ-
ences in the quality of the hypotheses. That is,

Rx · λ̌t ∝ lx , (12)

where lx is a column vector of N rows such that

lx = [l(y1) . . . l(yn) . . . l(yN )]′ , ∀yi ∈ nbest(x). (13)

The objective is to find λ̌t such that

λ̌t = argmin
λ

|Rx · λ− lx| (14)

= argmin
λ

||Rx · λ− lx||2, (15)

where || · ||2 is the Euclidean norm. Although Eqs. 14 and 15 are equivalent (i.e. the λ̂
that minimises the first one also minimises the second one), Eq. 15 allows for a direct
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implementation thanks to the ridge regression2, such that λ̌t can be computed as the
solution to the overdetermined system Rx · λ̌t = lx, given by

λ̌t = (R′
x · Rx + βI)

−1
R′

x · lx , (16)

where a small β is used as a regularisation term to stabilise R′
x ·Rx. β = 0.01 was used

in the experiments described in this paper.

4.2 Discriminative Ridge Regression in Interactive Machine Translation

When attempting to apply DRR within an IMT setting, the quality metric that is used
in IMT is no longer inherent to a single hypothesis, but to a complete wordgraph. It is
quite common to measure the quality of a given IMT system by computing the amount
of interactions required in order to modify the system’s hypothesis so that it matches
the reference. Once a single word has been introduced, the IMT system modifies the
suffix, which implies that the number of interactions cannot be computed as a function
of the hypothesis, but must be computed by first simulating the interaction procedure
and is a function of a given wordgraph. Hence, DRR, as described in previous section,
cannot be directly applied within an IMT framework. One would think that optimising
a certain translation quality metric would also optimise the amount of interactions re-
quired. However, experimental results detailed in Sec. 5 show that this assumption is
not completely true. Hence, since the metric to be optimised by online learning does
not depend on a single-best hypothesis, the formulation of DRR needs to be reviewed.

At this stage, it would be reasonable to consider instead of a list of N -best hypothesis
a list of N -best wordgraphs. However, the concept of N -best wordgraph is somewhat
fuzzy. For this reason, instead of computing a true list of N -best wordgraphs we will
obtain a set of N scaling factors λ obtained at random, Λ = {λ1, . . . ,λn, . . . ,λN},
and compute the wordgraph Wλn(x) associated to a given input sentence x and ob-
tained for a certain set of scaling factors λn. Of course, since the weights have been
obtained at random, the resulting wordgraphs will not constitute a true list of possible
N -best wordgraphs. However, since the purpose of DRR is to reward those hypotheses
(in this case wordgraphs) that score well, and penalise those that score worse, what is
really important is to have wordgraphs (i.e., samples of λ) which score well, and word-
graphs (samples of λ) which score bad. Hence, ly will be a column vector of N rows
such that

ly = [l(Wλ1(x)) . . . l(Wλn(x)) . . . l(WλN (x))] (17)

Another aspect that needs to be taken care of when considering DRR within an IMT
setting is that matrix Hx also needs to be redefined, since the features that need to be
considered in this case no longer correspond to those of the hypotheses in the N -best
list, but to the wordgraphs generated with Λ. Since a certain wordgraph Wλn(x) does
not have a single set of features, but rather one feature vector for each one of the paths
through the wordgraph, we will consider for building Hx the feature vector h of the
best path in Wλn(x), i.e., the feature vector of the best hypothesis in Wλn(x). Abusing

2 Also known as Tikhonov regularisation.
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Table 1. Characteristics of the Europarl corpus and NC11 test set. OoV stands for “Out of Vo-
cabulary” words, k stands for thousands of elements and M for millions of elements.

Spanish English
Europarl Sentences 1.4M

Training
Run. words 29.9M 28.9M
Vocabulary 129.8k 85.3k

Europarl Sentences 2000

Development
Run. words 60.6k 58.7k
OoV. words 164 99

NC11 test Sentences 3003
Run. words 79.4k 74.7k
OoV. words 1549 1708

notation and with the purpose of keeping notation unclogged, let hλn be such feature
vector. Then, Hx is defined for the IMT case as

Hx = [hλ1 , . . . ,hλN ]
′
. (18)

Equivalently, H∗
x is defined in this case as

H∗
x = [hλ∗ , . . . ,hλ∗ ] , (19)

with hλ∗ being the feature vector of the best hypothesis of wordgraph Wλ∗(x), and
Wλ∗(x) being that wordgraph with the best performance according to the IMT metric
used, from among those computed using the random set of weights Λ.

5 Experimental Results

Given that a true CAT scenario is very expensive, since it requires a human translator to
correct every hypothesis, such scenario will be simulated by using the reference of the
test set. Such reference will be fed one at a time, following an online setting.

Translation quality will be assessed by means of Translation Edit Rate (TER) [16]
and Word Stroke Ratio (WSR) [4]. TER is an error metric that computes the minimum
number of edits required to modify the system hypotheses so that they match the refer-
ences. Possible edits include insertion, deletion, substitution of single words and shifts
of word sequences. Hence, TER is an automatic metric which intends to measure the
effort required to post-edit the hypotheses provided by a SMT system. WSR measures
the amount of words (interactions in this case) a human translator would require to type
within an IMT framework to correct the system’s hypothesis. Both TER and WSR are
measured in percentage, i.e., both are normalised by the total amount of words of the
reference, multiplied by 100. Also in both cases, lower TER and WSR rates are better.

As baseline system, we trained a SMT system on the Europarl English–Spanish
training data, in the partition of the Workshop on SMT of the EMNLP 2011 [7]. The
Europarl corpus [17] (Table 1) is built from the transcription of European Parliament
speeches published on the web. We used the open-source MT toolkit Moses [18]3 in

3 Available from http://www.statmt.org/moses/
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Fig. 2. Effect of the α learning rate on the effort within a PE and an IMT scenario, as measured
by TER and WSR. DRR was implemented according to Sec. 4.1. N -best size was set to 1000.

its standard non-monotonic setup (including the msd-reordering-femodel [19]),
and estimated λ using MERT [20] on the Europarl development set. The set of weights
Λ described in Sec. 4.2 was obtained by sampling from a Gaussian distribution with
mean vector the λ obtained by MERT and variance 0.01, following preliminary inves-
tigation. We also estimated a 5-gram LM with interpolation and Knesser-Ney smooth-
ing [21]. Moses was also used for the purpose of building the required wordgraphs.

Since our purpose is to analyse the performance of an online adaptation strategy, in
addition to Europarl we also considered a different test set that does not belong to the
parliamentary domain, such as the News Commentary4 (NC) 2011 test set. The News
Commentary corpus was obtained from different news feeds and was used as test set
for the 2011 EMNLP shared task on SMT [7]. See Table 1 for NC test set statistics.

As a first step, we carried out the experimentation according to Sec. 4.1, i.e., opti-
mising a typical SMT evaluation metric which is ought to minimise post-editing effort.
Such results can be seen in Fig. 2. The plot on the left displays TER, i.e., the amount
of edits required in a PE scenario, whereas the plot on the right displays WSR, i.e., the
amount of interactions required in an IMT setting. As shown, DRR achieves to provide
improvements when the α learning rate is about 0.001 within the PE scenario, but fails
to obtain the same results within the IMT setting. This is so because DRR, as described
in Sec. 4.1, was implemented using TER as translation quality metric l. However, it
would be quite risky to assume that minimising the number of edits within a PE setting
would also lead to minimising the number of interactions within the IMT framework,
and this fact is indeed reflected by the behaviour of WSR in the right plot of Fig. 2. It is
important to point out that experiments using other translation quality metrics, such as
BLEU [22], lead to similar results as the ones displayed here with TER.

After verifying that DRR, as described in Sec. 4.1, is not valid for its application in
an IMT setting, we carried on implementing the version of DRR described in Sec. 4.2,
and the results can be seen in Fig. 3. In this case, the approach proposed improves the
amount of interactions required to correct a hypothesis, as measured by WSR. However,
improvements obtained are not mirrored in the PE setting, where TER is only slightly
improved for a very small α, and is actually higher with α values that do improve WSR.

4 This corpus is available from http://www.statmt.org/wmt11/
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Fig. 3. Effect of α on the effort in PE and IMT, as measured by TER and WSR. DRR was imple-
mented according to Sec. 4.2. The amount of random weights obtained was set to 500.

Table 2 sums up the results above, with the purpose of providing more precision.

Table 2. TER and WSR scores for the two optimisation methods described in Sec. 4

Optimisation method α TER WSR
baseline – 55.5 60.2
DRR (Sec. 4.1) 0.001 54.4 60.4
DRR (Sec. 4.2) 0.01 56.2 59.9

6 Conclusions and Future Work

In the present paper, we have analysed the applicability of discriminative Ridge re-
gression within a simulated CAT environment. In the experiments reported, DRR was
applied to update the log-linear weights of a state-of-the-art SMT system, both within a
post-editing scenario and an interactive machine translation scenario. Results show that
an implementation of DRR which optimises a traditional SMT evaluation metric and
provides improvements within a PE scenario may fail to provide improvements in an
IMT setting. Hence, a modification of DRR was carried out for its application in IMT,
where the evaluation metric is not associated to a single hypothesis but to a complete
wordgraph. Experiments with such modification present encouraging results.

As future work, we would like to study other possible ways of obtaining the set of
random weights Λ. An interesting possibility would be to obtain such weights by means
of Markov chain Monte Carlo. In addition, the size of Λ might also be important, since
the more weights sampled the higher the possibility of obtaining appropriate log-linear
weights for a specific test sentence. We also intend to analyse this in future work.
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Rodŕıguez-Fuentes, Luis Javier 69
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