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RESUMEN
In this paper, three different techniques for building semi-
continuous HMM based speech recognisers are compared:
the classical one, using Euclidean generated codebooks
and independently trained acoustic models; jointly reesti-
mating the codebooks and models obtained with the clas-
sical method; and jointly creating codebooks and models
growing their size from one centroid to the desired num-
ber of them. The way this growth may be done is care-
fully addressed, focusing on the selection of the splitting
direction and the way splitting is implemented. Results
in a large vocabulary task show the efficiency of the ap-
proach, with noticeable improvements both in accuracy
and CPU consumption. Moreover, this scheme enables
the use of the concatenation of features, avoiding the inde-
pendence assumption usually needed in semi-continuous
HMM modelling, and leading to further improvements in
accuracy and CPU.

1. INTRODUCTION

Along the rest of this Introduction, an overview of
semi-continuous Hidden Markov Models (HMMs), and a
description of the experimental environment can be found.
Follows, on Section 2, a description and comparison of
the three alternatives for training codebooks and acous-
tic models considered. Finally, on Section 3 some conclu-
sions are sketched.

1.1. Semi-continuous HMMs

An HMM is a collection of states. Each frame of voice
can be in one and just one of the states at any time. Each
HMM is formed of two different parts: a transition ma-
trix, along with the initial distribution, and a set of emis-
sion probability functions. The transition matrix of an S-
state HMM is an S × S matrix. Each element of the ma-
trix represents the probability of moving from one of the
states to another. The initial distribution represents the
probability of being at each of the states at the beginning
of the utterance. The transition matrix and initial distri-
bution are common to all kind of HMMs, and are fun-
damental in the time warping capabilities of the method.

Nevertheless, their exact value has shown little influence
on the final results.

Each state in the model also contains an emission prob-
ability function that provides the probability with which
this state generates any frame. There are several ways
of defining emission probability functions, but the most
usual way is by means of mixtures of Gaussian densi-
ties, trained with the expectation maximisation algorithm.
Yet two alternatives are possible: continuous HMMs, and
semi-continuous HMMs.

In continuous HMMs each state is modelled with a
mixture of private Gaussians with diagonal covariance.
As the number of Gaussians rapidly grows when the num-
ber of units and/or states grows, it is usual to tie togeth-
er groups of them. This means that several states of sev-
eral units share some of the Gaussian distributions, but
not the mixture weights, which are still private. In semi-
continuous HMMs all the Gaussians are shared, and form
a vector quantifier. For each frame, the probability densi-
ty of all the Gaussians is calculated, and a score vector is
formed out of the highest of them. The probability of this
frame being in a given state is equal to the sum-product of
the score vector that represents the frame, and the mixture
vector that represents the state.

Being o = o1o2...oT an utterance of length T, λ the
acoustic model corresponding to this utterance, we define
Gk(ot) as the value of the kth Gaussian of the codebook
for frame ot, and csk the mixture weight of this Gaussian
at state s. The likelihood of ot at state s is given, for semi-
continuous HMMs, by:

P (ot/qt = s) =

K
∑

k=1

cskG
k(ot) (1)

The mixture weights csk are usually trained using the
expectation maximisation algorithm. It holds that the like-
lihood is maximised at each iteration if the weights are
updated with the value of the ratio between the expected
number of times at state s and observing symbol k, and
the expected number of times at state s. Defining the con-
tribution of frame ot to the kth symbol at state s, Csk(ot),
as:
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Csk(ot) = αt(s)
cskG

k(ot)
∑

k′ csk′Gk(ot)
βt(s) (2)

Where αt(s) is the forward probability, equal to the
probability of ot at state s given the model and all the
frames of o from the beginning of the utterance until the
current one: αt(s) = P (o1o2 · · · ot−1ot, qt = s/λ); and
βt(s) is the backward probability, equal to the probabil-
ity of ot at state s given the model and all the following
frames until the end of the utterance: βt(s) = P (ot+1ot+2 · · · oT , qt =
s/λ). We have:

c̄sk =

∑T
t=1

Csk(ot)
∑K

k=1

∑T
t=1

Csk(ot)
(3)

1.2. System Overview

Along the rest of the paper some alternatives of code-
book and acoustic models training will be tested. The ex-
perimental framework within which this will be done is
the recognition of a large vocabulary continuous speech
task using RAMSES [1], the speech recognition system
developed at UPC. Its main features are:

Speech is windowed every 15ms with 30ms frame
length. Each frame is parameterised with 12 Mel-
frequency cepstral coefficients (MFCC) and ener-
gy, plus their first and second derivatives. Mean sub-
traction is applied to static parameters. A liftering
window of length 22 is applied to the cepstral coef-
ficients.

Spectral parameters are quantified to 512 diagonal
Gaussian centroids; energy ones are quantified to
128. Only the 32 highest scores are considered for
spectral parameters; 8 in the case of energy ones.

Demiphones are used as acoustic unit [2]. Each of
them represents half phoneme with its closest neigh-
bour explicitly considered. Contexts across words
are not. 1000 demiphones are selected using a min-
imum entropy decision tree.

Each demiphone is modelled with three states. The
first and second states are possible entries to the
model, and the second and third states are possible
exits from it.

Several pruning configurations are tested at recog-
nition time. On the final results, only those leading
to the highest accuracy at each level of CPU con-
sumption are kept.

1.3. The Recognition Task

The task used is the recognition of free speech tele-
phonic dialogues in a tourism information retrieval se-
mantic domain. Both the training and the test material

used were recorded inside the scope of the European Com-
mission funded project LC-STAR [3], which is devoted
to collecting lexica and corpora for automatic speech-to-
speech translation.

The corpus is composed of 211 dialogues (422 differ-
ent speakers), of which 16 define the standard test materi-
al. The remaining 195 dialogues are used for training the
acoustic models. In mean, each dialogue lasts 9 minutes
and is composed of 45 utterances, each of about 30 words.
In total, 8418 utterances (29h45m, 230,000 words) were
used for training, and 1040 utterances (3h40m, 28,000
words) were used as test material. Neither segmentation
nor silence detection were carried by hand.

The objective of the task is recognising the words pro-
nounced during the tourism information retrieval dialogues.
The vocabulary of the task is composed of 7466 words,
and the grammar perplexity is around 70. Both vocabu-
lary and grammar were obtained from the training mate-
rial. The test material presents an out-of-vocabulary rate
over 1 %. For the results presented in this paper, the mar-
gins for a 95 % confidence in the error rates is around half
a point.

2. THE DIFFERENT ALTERNATIVES

2.1. The Classical Approach: Using Euclidean Code-
books

In their classical implementation, codebooks and HMMs
are trained in two phases: first we generate the codebooks,
and then the HMMs are trained using them. The genera-
tion of the codebooks is done using the Lloyd algorithm
in order to minimise the mean Euclidean distortion. The
Gaussians of the final codebook are modelled with the
means and variances of the clusters obtained in this way.
During all the process of construction of the codebook
each frame is quantified discretely, i.e. only to the closest
centroid. At training and recognition times each frame is
quantified to all the centroids in the codebook although, as
just the highest are usually relevant, the lowest are usually
discarded in order to alleviate the CPU load.

This approach has several advantages. Mainly its ro-
bustness, simplicity and low CPU consumption. Its main
drawback is that it relies heavily on the Euclidean dis-
tance defined on the parameter space. This means that
this space must be designed in a way that this distance is
meaningful in terms of phonetic similarity. For instance,
Euclidean distance is sensitive to the individual variance
of each component in the feature vector, but this variance
does not necessarily account for phonetic information, it
may just account for a greater magnitude of this compo-
nent respect to the rest of the vector. For instance, liftering
of the cepstral coefficients leads to improvements of more
than half a point in the experiments herein presented, and
it is just a scaling of the cepstral coefficients, that should
be neutralised by the Gaussian modelling.

A way to improve the effectiveness of the Euclidean
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codebook modelling is to linearly transform the feature
space in such a way that differences between components
really reflect phonetic differences. Several strategies have
been proposed—PCA, LDA, etc.—but either their imple-
mentation is too difficult, or it is not clear the benefits
we may get. Actually, any linear transformation of the
space should be almost completely voided by the Gaus-
sian mixture modelling. If we used full covariance Gaus-
sians, such a transformation would lead to new means
and variances, but the probabilities given to each point
of the space would be the same. In the case of using diag-
onal covariance Gaussians, the linear transformation al-
so changes the component independence assumption, but
this change should not have a remarkable effect if conve-
nient estimation of the Gaussians is done. It is not the case
if Euclidean codebooks are used, because they assume co-
variance equal to the identity.

The error rate achieved with this strategy at differ-
ent CPU consumption levels is plotted on top of Fig. 1
(classic). This kind of system was soon superseded be-
cause of the mentioned limitations. We include it in this
paper because it presents some benefits that make it in-
teresting for certain applications. For instance, this kind
of training is useful when different tasks are added to the
system, and we do not want to train again all the rest of
tasks. The use of a common, blind codebook enables us
to simply train the mixture weights of the task specific
models, without affecting the rest of them. In the rest of
systems studied in this paper, the addition of a new task
represents training again the acoustic models of the rest
of tasks. Besides, the CPU consumption of the training
phase is much lower than for the rest of alternatives—
using Euclidean codebooks, the whole system used in this
paper is trained in less than one day; the best results pre-
sented in this paper needed almost three weeks—.

2.2. The Baseline: Joint Re-Estimation of Codebooks
and HMMs.

A first approach to mitigate the blind nature of the
Euclidean distance based quantisation used in the clas-
sical system is the joint re-estimation of codebooks and
HMMs. In this case, an initial codebook is used to train
initial acoustic models as in the classical system, but then
another optimisation process is performed where both the
acoustic models and the Gaussians are re-estimated us-
ing expectation maximisation. The mixture weights re-
estimation is performed in the same way as before. The
formulae for reestimating the means and variances of the
Gaussians are, using the contributions defined in (2):

µ̄k =

∑S
s=1

∑T
t=1

Csk(ot) · ot
∑S

s=1

∑T
t=1

Csk(ot)
(4)

σ̄2
k =

∑S
s=1

∑T
t=1

Csk(ot) · (ot − µk)(ot − µk)t

∑S
s=1

∑T
t=1

Csk(ot)
(5)

Equation (5) provides the full covariance matrix of

each Gaussian distribution, in the experiments done in this
paper, as well as in most of usual speech recognition sys-
tems, just the diagonal components of the covariance are
considered, what is equivalent to supposing component
independence.

Results using joint re-estimation of codebooks and
HMMs are better than the ones achieved using the clas-
sical method in all cases (see Fig. 1, joint). Error rate
decreases at all CPU levels by about two points, and it
is clear that the system performs faster than the classical
one.

Although the used of re-trained Gaussians, with means
and variances adjusted to the shape of the feature space,
should make the system immune to any scaling of the
components, the use of liftering carries on to have a no-
ticeable effect, of about half a point in the error rate. We
think that this is due to the difficulty of moving the cen-
troids from their original place. Somehow, the system can-
not forget the initial codebook.

2.3. The alternatives: HTK/Julius

The above mentioned baseline system is the one that
we have been using at UPC as a reference in our research
work during the last times. It has been used in the recogni-
tion of a variety of tasks (from isolated words to continu-
ous speech), of recording conditions (from recording stu-
dio to noisy GSM environments), and of languages (some
8 different languages, plus several dialectal variants of
Spanish). In many of these tasks, parallel independent teams
carried the same task using alternative recognition sys-
tems (HTK/Julius, Sphinx, Janus, etc.) Although direct
comparison is very difficult, results were in general quite
similar, particularly when CPU consumption limitations
appeared. For instance, an independent team carried out
the recognition of the task presented in this paper, with
similar parameterisation and language model, but using
HTK for building the acoustic models [4], and Julius for
performing the recognition [5]. Their goal was to min-
imise the error rate at around 1’5 times real time on a
Pentium Xeon at 3GHz.

The best result, 44’5 % at 1’53 times real time, was
achieved when 4,000 context dependent triphones were
modelled with 32 tied Gaussians per state. This result is
also plotted in Fig. 1 (HTK/julius), and falls between the
results of the classical system and our baseline [6].

2.4. Joint Growth of Codebooks and HMMs.

An alternative to first building an Euclidean codebook,
then training initial acoustic models, and finally reesti-
mating both codebook and models together is to grow
Codebooks and HMMs together. The idea is similar to
the Lloyd algorithm, and has been applied in the training
of continuous HMMs:

1. An initial one centroid codebook is generated.
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2. Models and codebook are trained using the expec-
tation maximisation algorithm.

3. Each centroid in the codebook, as well as the cor-
responding weights in the models, is splitted into
two.

4. The process is iterated from step 2 until the desired
codebook size is reached.

The key question is how to split codebooks and mod-
els. In our work we divide the problem in two parts: se-
lecting the direction of splitting, and performing the split-
ting itself.

2.4.1. Selection of the splitting direction

The main objective of the splitting is to generate two
new centroids out of each previous one. The usual way of
doing this is selecting the direction of splitting and mov-
ing forward and backward from the mean of the old cen-
troid along this direction. In the classical Lloyd algorithm
the direction of splitting is random, because the Euclidean
discrete quantisation is very robust and this initialisation
is not much relevant. In the joint growth of codebooks and
HMMs we wish the split to be as effective as possible,
while minimising the perturbation of the models at each
step. A bad election of the splitting direction is readily
passed to the HMMs weights, and the expectation max-
imisation algorithm may not be able to move the centroids
to convenient positions.

The addressed problem is that of finding the direction
of splitting that provides the maximum gain of informa-
tion. Different criteria may be defined to find this direc-
tion [7]. A convenient way is selecting the direction where
the separation between classes is maximised. In our case,
the different classes can be defined by the states of the
HMMs. In a space where the variance is equal in all the
directions, the variance of the means of the classes is in-
dicative of their separability using linear classification.

For each centroid, two different covariance matrices
can be built using the contributions defined in (2): the
overall covariance, Gk is the covariance matrix of all the
contributions of each centroid; and the interclass covari-
ance, Ik, the covariance of the means of each class:

µk =

∑S
s=1

∑T
t=1

Csk(ot) · ot
∑S

s=1

∑T
t=1

Csk(ot)

Gk =

∑S
s=1

∑T
t=1

Csk(ot) · (ot − µk)(ot − µk)t

∑S
s=1

∑T
t=1

Csk(ot)
(6)
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Figura 1. Word error rate in the recognition of the LC-
STAR Spanish tourism retrieval task versus the CPU con-
sumption.

µsk =

∑T
t=1

Csk(ot) · ot
∑T

t=1
Csk(ot)

fsk =

T
∑

t=1

Csk(ot)

Ik =

∑S
s=1

fsk · (µsk − µk)(µsk − µk)t

∑S
s=1

fsk

(7)

The product G−1/2T
k Ik G

−1/2

k , is equal to the covari-
ance of the means in a variance-normalised space, so it
reflects how much of the total variance is due to the sepa-
ration between classes. In each direction, its value is com-
prised between zero and one, meaning zero that none of
the variance in this direction is due to the separation be-
tween classes, and being close to one if most of the vari-
ance is due to it. The most effective linear split of the
cluster, in the sense of reducing this variance, is follow-
ing the hyperplane normal to the eigenvector of highest
eigenvalue.

Notice that this product is insensitive to any linear
transformation applied to the whole feature space, because
it will be appear in all the terms of the product and can-
cel out. This includes any scaling of the coefficients, such
as liftering, principal component analysis and linear dis-
criminant analysis.

2.4.2. Performing the splitting

Chosen the direction of splitting, say d∗k, performing
it is not a trivial task. In previous experiments centroids
were splitted by generating two new centroids whose vari-
ance and mixture weights were the same as before, and
the means were the previous one moved a certain amount
forward and backward following the selected splitting di-
rection. The problem was that, if a small movement was
done, codebooks and models were too similar before and
after the splitting, and the method converged to too close
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centroids with little discrimination capabilities. On the
contrary, if the movement was large, models and code-
books were too much disturbed at each step, and even
convergence was compromised.

In order to maximally separate the centroids without
perturbing too much codebooks and models, an addition-
al step was introduced in the training procedure. In this
step the contributions needed in (3) and (4) for reestimat-
ing the parameters of the grown codebooks and models
are calculated as before, using the original size system.
The difference is that the contribution is assigned to one
of the two new centroids using linear classification along
the splitting direction. In this way the separation between
the two new centroids is maximised because each contri-
bution is assigned to one or the other. At the same time,
the system is minimally perturbed because the contribu-
tions are calculated using the original parameters, and the
splitting of one cluster does not interfere with the rest of
clusters.

ηk = d∗k
t
µk

δ2k−1(ot) =

{

1 d∗k
t
ot > ηk

0 otherwise (8)

δ2k(ot) = 1− δ2k−1(ot)

c̄s2k =

∑T
t=1

δ2k(ot)Csk(ot)
∑K

k=1

∑T
t=1

δ2k(ot)Csk(ot)

µ̄2k =

∑S
s=1

∑T
t=1

δ2k(ot)Csk(ot) · ot
∑S

s=1

∑T
t=1

δ2k(ot)Csk(ot)
(9)

σ̄2
2k =

∑S
s=1

∑T
t=1

δ2k(ot)Csk(ot) · (ot − µk)t(ot − µk)
∑S

s=1

∑T
t=1

δ2k(ot)Csk(ot)

The formulae for c̄s2k−1, µ̄2k−1, and σ̄2
2k−1

, are simi-
lar as above for c̄s2k, µ̄2k, and σ̄2

2k, except that δ2k−1(ot)
should be used instead of δ2k(ot).

2.4.3. Experimental results using joint growth

The system built jointly growing codebooks and mod-
els achieved the lowest error rate of all the tested so far, re-
ducing in more than one and a half points the error rate of
the baseline, while also reducing even more the CPU con-
sumption (see Fig. 1, growth). As expected, the system is
now completely immune to liftering. Moreover, the result
is almost identical whether linear discriminant analysis is
used or not—we do not dispose of results using LDA on
the previously described systems—.

2.5. Training the Whole Feature Vector Using Joint
Growth of Codebooks and HMMs.

The fact that joint training of models and codebooks is
able to increase the separability of the acoustic classes—
as reflected by the improvement in both accuracy and speed—
, and that it is immune to linear transformations of the fea-
ture space, encouraged us to undertake a rather difficult

task: training semi-continuous models of high dimension
features, namely the concatenation of the different energy
and spectral features into one vector. The main implica-
tion of using this kind of feature is that different elemental
features are no longer supposed to be independent.

Historically, using the whole vector with semi-continuous
HMMs was impossible, or almost, because constructing a
blind quantifier is increasingly difficult as the number of
components grows. For instance, in order to ensure that
each component in a vector of size P is split into at least
two clusters, the size of the codebook should be 2P . This
is 4096 for a typical cepstral vector of size 12, but grows
up to 500× 109 when the whole vector of 39 components
is used.

This problem does not appear in continuous HMMs.
because they do not use a blind codebook, but phonetical-
ly guided mixtures instead. The same holds for the herein
proposed algorithm—certainly, our system is very similar
to a continuous system with all the Gaussians tied—. The
results achieved when the whole vector was added to the
former six ones are plotted on bottom of Fig. 1 (whole).
As it stands out, it is not only possible to train such kind
of information, but it still improves significantly both ac-
curacy and speed. This is the best result we have ever
achieved in this task using RAMSES or any other system.

3. DISCUSSION

The results presented in this paper clearly show that
the classical ways of training semi-continuous HMMs can
be improved by jointly growing models and codebooks
from scratch. This technique also enables us to use high
dimension feature vectors such as the concatenation of
elementary features. The high performance obtained in
this way is not only interesting from a recognition per-
formance point of view. It is also interesting because the
fact that a codebook of such dimension can be built opens
a lot of possibilities in several other fields of speech pro-
cessing such as text to speech synthesis or speech coding.
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