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ABSTRACT

In this work we try to estimate a posteriori probabilities
needed for speech recognition by the K-Nearest-Neighbors
rule (KNN), using a Multi-Layered Perceptrom (MLP) to
obtain the distances between neighbors. Thus, we can
distinguish two different works: on the one hand, we es-
timate a posteriori probabilities using KNN with the aim
of using them in a speech recognition system [1][2]; and,
on the other hand, we propose a new distance measure,
MLP-distance.

1. INTRODUCTION

Typical Automatic Speech Recognition (ASR) systems
use features obtained from short-term spectrum, like Mel-
Frequency Cepstral Coefficients (MFCC) or Perceptual
Linear Prediction (PLP). Phoneme posterior probabilities
can also be used as features, being more stable and robust
[1][2].

There are several types of non-parametric methods of
interest in pattern recognition. Some of them estimate the
density functions p(x|ωj) - the class-contidional proba-
bility density function (probability density function for x
given that the state of nature is ωj)- from sample patterns.

Some other alternatives directly estimate the a poste-
riori probabilities P (ωj |x) - the probability of the state of
nature being ωj given that feature value x has been mea-
sured. This is closely related to non-parametric design
procedures, such as the nearest-neighbor rule, which by-
passes explicit probability estimation and goes directly to
decision functions. Besides, there are also non-parametric
procedures for transforming the feature space in the hope
that it may be possible to employ parametric methods in
the transformed space.

The KNN classifier is a very simple non-parametric
method for classification. Despite the simplicity of the al-
gorithm, it performs very well and is an important bench-
mark method. The KNN classifier, as described by [3],
requires a distance metric d, a positive integer k, and the
reference templates Xn of n labeled patterns.

Euclidean or Mahalanobis distances have been typi-
cally used as local distance between vectors. In this work
we investigate the use of MLP-distance as a measure of
local similarity between two vectors since the a posteriori
probabilities vector can be seen as a distribution over the
phoneme space.

This work must be considered as an experiment to
evaluate the effectiveness of the KNN algorithm for es-
timating a posteriori probabilities, but about all, it must
be considered as a preliminary experiment to evaluate the
potential usefulness of an MLP as distance measurer be-
tween vectors. So, we are going to train an MLP with
only two input vectors and one output, predicting whether
or not (0/1 output) the two input vectors belong to the
same class. Using the softmax output of the MLP, we will
obtain some kind of non-linear ’distance’ between input
vectors, which can be used to replace the usual Euclidean
distance used in KNN.

In Figure 1 is shown a block diagram of the system,
which can be divided into 3 main blocks. The first, fea-
ture extraction (for obtaining a posteriori probabilities),
in which we do not get into details, can be replaced by
other or even omitted, using for example directly PLP fea-
tures. And the second and third blocks, proposed MLPd

(an MLP as distance measurer) and KNN probabilities a
posteriori estimation, are described in detail in sections 3
and 2, respectively.

The document is organized as follows: Section 2 descri-
bes the KNN rule and its application as posterior probabili-
ties estimator, Section 3 introduces the proposed MLP-
distance, Section 4 shows experiments and results and
finally, Section 5 gives conclusions and some ideas for
future work.

2. KN -NEAREST-NEIGHBORS ESTIMATION

To estimate p(x) from n training vectors or prototypes,
we can center a cell about x and let it grow until it cap-
tures kn samples, where kn is some specified function of
n (distance function). These samples are the kn nearest
neighbors of x. It the density is high near x, the cell will
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Figure 1. Block diagram of the system.

be relatively small, which leads to good resolution. If the
density is low, it is true that he cell will grow large, but it
will stop soon after it enters regions of higher density. In
either case, if we take

pn(x) =
kn/n

Vn
(1)

We want kn to go to infinity as n goes to infinity,
since this assures us that kn

n will be a good estimate of the
probability that a point will fall in the cell of volume Vn.
However, we also want kn to grow sufficiently slowly that
the size of the cell needed to capture kn training samples
will shrink to zero. Thus, it is clear from (1) that the radio

must go to zero. Although we shall not supply a proof, it
can be shown that the conditions lim n→∞kn = ∞ and
lim n→∞kn/n = 0 are necessary and sufficient for pn(x)
to converge to p(x) in probability at all points where p(x)
is continuous. If we take kn =

√
n and assume that pn(x)

is a reasonably good approximation to p(x) we see from
(1) that Vn ≈ 1√

np(x)
.

2.1. Estimation of a posterior probabilities

The technique discussed in the previous section can be
used to estimate the a posteriori probabilities P (ωj |x)
from a set of n labeled samples by using the samples to
estimate the densities involved. Suppose that we place a
cell of volume V around x and capture k samples, ki of
which turn out to be labeled ωi. Then the obvious esti-
mate for the joint probability p(x, ωi) is

pn(x, ωi) =
ki/n

V
(2)

Thus, a reasonable estimate for P (ωi|x) is

P (ωi|x) =
pn(x, ωi)∑
c
j=1pn(x, ωj)

=
ki

k
(3)

That is, the estimate of the a posteriori probability that
ωi is the state of nature is merely the fraction of the sam-
ples within the cell that are labeled ωi. For minimum error
rate, we select the category most frequently represented
within the cell. If there are enough samples and if the cell
is sufficiently small, it can be shown that this will yield
performance approaching the best possible.

When it comes to choosing the size of the cell we
can use kn-nearest-neighbor approach. Vn would be ex-
panded until some specified number of samples, were cap-
tured, such as kn =

√
n. As n goes to infinity an infi-

nite number of samples will fall within the infinitely small
cell. The fact that the cell volume could become arbitrari-
ly small and yet contain an arbitrarily large number of
samples would allow us to learn the unknown probabili-
ties with virtual certainty and thus eventually obtain op-
timum performance. Interestingly enough, we shall now
see that we can obtain comparable performance if we base
our decision solely on the label of the single nearest neigh-
bor of x [3].

3. MLP-DISTANCE

In KNN algorithm described in Section 2, kn is some
specified function of n. Usually, we calculate the Eu-
clidean distance between the vector we want to classify
and the n prototypes (or training vectors), with the aim
of selecting only the k prototypes closest (with a smaller
distance) to it. Once we have selected these k nearest vec-
tors, we only need to vote according to the their targets,
obtaining in this way the final posterior probabilities.
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Now, instead of using Euclidean distance, we propose
to implement a very simple MLP which decides if two in-
put vectors belong to the same class or not. In fact, soft-
max output of the MLP will give us a number between 0
and 1, that is, if two inputs belong to the same class MLP-
distance will be near to 0, and near to 1 if they belong to
different classes. Thus, we use 0.5 as threshold.

4. EXPERIMENTS AND RESULTS

This work must be considered as a first experiment to
evaluate the effectiveness of the MLP-distance as local
distance between vectors. But also, we want to evaluate
the a posteriori probabilities estimated by KNN using this
distance.

4.1. Database

In the following sections, the results are reported on the
Numbers95 [4] conected digit task. Numbers95 contains
digit strings spoken in US English over a telephone chan-
nel and is a small vocabulary database. There are 30 word
types in the database modelled by 27 context-independent
phones. The training set consists of 3330 sentences (2996
sentences were used for training and 334 for cross-valida-
tion) and 2250 sentences were used for testing (see Ta-
ble 1). Training and test were only performed on clean
speech. The lexicon has 12 different words (from zero to
nine plus oh and silence) with a single pronunciation per
word.

4.2. Features

Short-term spectral-based features, such as MFCC or PLP,
are traditionally used in ASR. They can be modeled by a
mixture of Gaussians (a typical function used to estimate
the emission distribution of a standard HMM system) and
this is the reason why they have been successfully ap-
plied. Nevertheless, spectral-based features not only con-
tain lexical information, but also knowledge about the
speaker or environmental noise. This extra information
is cause of unnecessary variability in the feature vector,
which may decrease the performance of the ASR system.
Thus, we can use a transformation of traditional acoustic
vectors as features for ASR, i.e. a posteriori probabilites.
A multi-layer perceptron can be trained to estimate the
phone posterior probabilities based on spectral-based fea-
tures. In this case, the MLP performs a non-linear trans-
formation. Because of this discriminant projection, pos-
teriors are known to be more stable [1] and more robust to
noise (chapter 6 of [5]). Moreover, the databases for train-
ing the MLP and for testing do not have to be the same
so it is possible to train the MLP on a general-purpose
database and use this posterior estimator to obtain fea-
tures for more specific tasks [6]. Also, phone posterior
probabilities can be seen as phone detectors [7], making
them a very suitable set of features for speech recogni-
tion systems since words are formed by phones. Despite

SET ] sentences ] PLP ] Posterior
frames frames

Train 2996 449.877 425.909
Cross-Validation 334 48.720 46.048

Test 2250 336.433 318.433

Table 1.
Feature data sets.

d t k dcl tcl kcl s z f th v n l r w hh iy ih eh ey ah ao ay ow uw er sil
0

5

10

15

20

Phoneme

di
st

rib
ut

io
n 

(%
)

Phoneme Distribution in Numbers95

 

 

Training Set
Cross-Validation Set
Test Set

d t k dcl tcl kcl s z f th v n l r w hh iy ih eh ey ah ao ay ow uw er sil
0

20

40

60

80

100

Phoneme

FE
R

 (%
)

Frame Error Rate per Phoneme in Posteriors from Numbers95

 

 Training Set - FER 13.23%
Cross-Validation - FER 19.07% Set
Test Set - FER 19.67%

 

Figure 2. Analysis in Posterior sets: a) Phoneme Distri-
bution and b) Frame Error Rate per Phoneme in a poste-
riori probabilities.

their good properties, posterior features cannot be easi-
ly modeled by a mixture of Gaussians. In the what is
called the Tandem approach [1], posteriors are used as
input features for a standard HMM/GMM system. How-
ever, a PCA transform on the logarithm of the a posteriori
probabilities has to be done previously to make them more
Gaussian like and decorrelate the feature vector.

We work with 39 dimensional acoustic vectors, 13
static features (PLP) extracted using a window length of
32ms and a window shift of 12.5ms, plus their delta and
aceleration features. Posterior features were obtained us-
ing a MLP trained on Numbers95 (see Section 4.1). This
MLP has 351 input nodes corresponding to the concatena-
tion of 9 frames of 39 dimensional acoustic vectors (this
is the reason why we lose 8 frames per sentence when we
calculate a posteriori probabilities, as we can see in Ta-
ble 1), one hidden layer with 1800 units, and 27 output
units in output layer, each of them corresponding to a dif-
ferent monophone. After training MLP, train and cross-
validation sets are also passed through the MLP (forward
pass) to generate their a posteriori probabilities.

If we make a brief analysis in all a posteriori proba-
bility sets, we obtain Figure 2

4.3. Training MLPd

The first design problem we face is to decide which n pos-
terior probabilities from training set should be used for
training MLPd (the one we use to calculate distances be-
tween posterior probabilities). To train MLPd we would
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SET ] frames
Train 32732

Cross-Validation 2992

Test 66622

Table 2.
MLPd data sets.

Hidden size FER (%)
50 1.85
100 1.98
500 5.92

Table 3.
Frame Error Rates (%)in MLPd test (for a subset of 6662

frames).

have to confront every posterior vector (27 dimension)
with itself and with the rest of posterior probabilities, there-
fore we would have N2 training frames, being N the
number of a posteriori probabilities in the training set (in
this case 425.909, see Table 2). This quantity of data
was too large for our purposes, so we have randomly se-
lected a subset: approximately 120 frames per phoneme
(more than 3 thousand posterior probabilities which will
be transformed in more than 9 millions of training frames).
We have also selected a subset for the test and cross-
validation sets, in the same way (see Table 2).

The second design problem was to select the correct
hidden size for the MLPd. In Table 3 we show Frame
Error Rates (FER) obtained for different hidden sizes. Our
final decision was 100 hidden units. Although, at first
sight, the use of only 50 hidden units can be considered
the best choice, the better results obtained in the next step
(KNN estimation described in section 4.4) justified our
decision.

Analyzing the results showed in Table 3, we can see
that MLP-distance is a very good method to compute lo-
cal distances between vectors.

4.4. KNN

We began the posterior estimation via KNN, by select-
ing n vectors from the training set (n prototypes). Thus,
we use as prototypes the 3273 training vectors used in
MLPd training (see Table 2). Once we have calculated
the distances for all test vectors (between them and all the
n train ones) using MLPd, we try to fix kn. As this pro-
cess is very slow, we have only used 500 utterances from
the test set to carry out this selection. In Figure 3 we can
see the evolution of mean test frame error rate when kn

varies from 1 to 200. Thus, we can notice that better re-
sults are obtained considering only the 3 nearest training
frames (being results for kn = 1 and kn = 3 very close
to it).
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Figure 3. Variation of mean test frame error rate with
kn.

Experiment Training frames FER
(%)

Baseline 449.877 19.67
(Posteriors before KNN)

3-NN 3.273 21.82
(Posteriors after KNN)

Table 4.
Frame Error Rate comparative.

Once the best kn was selected, we applied KNN to
obtain new posteriors as it was explained in sections 2
and 3. In Table 4 we show FER obtained before and after
KNN (really, 3NN: 3-nearest neighbors) and, in Figure 4
is showed the confusion matrix of KNN-posteriors. So,
we have an increase of approximately 2% in FER, but
using only a 0.77% (see Tables 2 and 1) of the training
samples which is a promising result.

5. CONCLUSIONS AND FURTHER WORK

As we mentioned before, this is a preliminary experiment
to evaluate the effectiveness of both MLP as distance mea-
surer (MLP-distance) and KNN as posterior estimator.

For the MLP-distance, we obtained very good results
using a posteriori probabilities as features. But, it is true,
that we must carry out experiments with other features
(e.g. PLPs) and also, with other distance measures, as
the Kullback-Leibler (KL) divergence [8] or the classical
Euclidean distance.

On the other hand, we also obtained very good results
using KNN as posterior estimator, mainly considering the
quantity of data (less than 1% total training frames) used
in KNN estimation, as we can see in Table 4. But, as
we have already said in previous sections, this is only a
preliminary experiment.

Further work includes the following:

• Use PLP features to train MLPd and also to ob-
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Figure 4. Confusion Matrix for KNN-posteriors.

tain posteriors with KNN, and compare results with
those which use posterior features.

• Analyze other distances, as KL or Euclidean, and
compare them with MLP-distance.

• Increase the number of prototypes n in KNN.

• Include these a posterior probabilites in a complete
Tandem system to obtain word error rates (WER).
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