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ABSTRACT

This paper shows a revised statistical test for voice activi-
ty detection in noise adverse environments. The method is
based on a revised contextual likelihood ratio test (LRT)
defined over a multiple observation window. The new ap-
proach not only evaluates the two hypothesis consisting
on all the observations to be speech or non-speech but
all the possible hypothesis defined over the individual ob-
servations. The implicit hangover mechanism artificial-
ly added by the original method was not found in the
revised method so its design can be further improved.
With these and other innovations the proposed method
showed a high speech/non-speech discrimination over a
wide range of SNR conditions. The experimental frame-
work showed that the revised method yields significant
improvements over standardized VADs for discontinous
voice transmission and distributed speech recognition, as
well as over recently reported methods.

1. INTRODUCTION

Emerging applications in the field of speech process-
ing are demanding increasing levels of performance in
noise adverse environments. Examples of such systems
are the new voice services including discontinuous speech
transmission [1, 2, 3] or distributed speech recognition
(DSR) over wireless and IP networks [4]. These systems
often require a noise reduction scheme working in com-
bination with a precise voice activity detector (VAD) in
order to compensate its harmful effect on the speech sig-
nal.

During the last decade numerous researchers have stud-
ied different strategies for detecting speech in noise and
the influence of the VAD on the performance of speech
processing systems. Sohn et al. [5] proposed a robust VAD
algorithm based on a statistical likelihood ratio test (LRT)
involving a single observation vector. Later, Cho et al
[6] suggested an improvement based on a smoothed LRT.
Most VADs in use today normally consider hangover al-
gorithms based on empirical models to smooth the VAD
decision. It has been shown recently that incorporating
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contextual information in a multiple observation LRT (MO-
LRT) [7] reports benefits for speech/pause discrimination
in high noise environments. This paper analyzes this method
and shows a new LRT VAD that extends the number of
hypothesis on the individual multiple observation that are
tested.

2. MULTIPLE OBSERVATION LIKELIHOOD
RATIO TEST

In a two-hypothesis test, the optimal decision rule min-
imizing the error probability is the Bayes classifier. Given
an observation vector ỹ to be classified, the problem is
reduced to selecting the class (G0 or G1) with the largest
posterior probability P (Gi|ỹ). From the Bayes rule, a like-
lihood ratio test (LRT) can be defined as:

L(ỹ) =
p(ỹ|G1)
p(ỹ|G0)

G1

>
<
G0

P (G0)
P (G1)

(1)

where the observation vector is classified as G1 if the like-
lihood ratio L(ỹ) is greater than the ratio P (G0)/P (G1)
between the a priori class probabilities, otherwise it is
classified as G0. Frequently, there is a need to shift the
operating point of the classifier in favor of one of the two
classes so that L(ỹ) is compared to a threshold η repre-
senting the separation between the classes.

A LRT for detecting the presence of speech in a noisy
signal based on a Gaussian model was proposed by Sohn
et al. [5] and several improvements [6, 8] have been con-
sidered to improve its performance. Among them, the mul-
tiple observation LRT (MO-LRT) [7] considers not just a
single observation vector ỹt measured at a frame t, but
also an N -frame neighborhood {ỹt−N , ..., ỹt, ..., ỹt+N}:

`(ỹt−N , ...ỹt+N ) =
pyt−N ,...,yt+N |G1(ỹt−N , ..., ỹt+N |G1)

pyt−N ,...,yt+N |G0(ỹt−N , ..., ỹt+N |G0)
(2)

This test involves the evaluation of an N-th order LRT
incorporating contextual information to the decision rule
and exhibits significant improvements in speech/pause dis-
crimination over the original LRT proposed by Sohn [5].
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This smoothed test introduces a non-controllable hang-
over mechanism that needs to be studied and discussed.
This paper reformulates the MO-LRT previously proposed
in [7] and shows a new and effective LRT yielding high
speech/pause discrimination accuracy. The hangover is then
eliminated and not affected by the selection of the number
of frames involved in the LRT.

3. REVISED MO-LRT

It is interesting to analyze the hypothesis that are be-
ing tested in the evaluation of the previous MO-LRT VAD.
Note that the decision is made in favor of one of the two
hypothesis:

G1 : ŷl = ŝl + n̂l

G0 : ŷl = n̂l
(3)

for l = t − N, ..., t, ..., t + N . The VAD operates on a
frame by frame basis and assigns a class to the central
frame at time t. In this way, the test evaluates the prob-
ability that “all” the observations in the N -frame neigh-
borhood of the central frame to be non-speech or speech.
This is the reason to revise the method in order to evaluate
not just the two previous hypothesis G0 and G1 but also
other hypothesis that could be equally possible.

Let ℵ = {Hm,m = 1, 2, ..., 22N+1} be the set of
all the possible hypothesis considering all the individual
observations to be speech or non-speech in the multiple
observation vector {ỹt−N , ..., ỹt, ..., ỹt+N} that is rein-
dexed as Ŷ= {ŷ1, ..., ŷN+1, ..., ŷ2N+1} for convenience
of the presentation. Each hypothesis Hm can be defined
in terms of a binary integer representation:

m =
2N+1∑

k=1

2bk (4)

where bk define if the observation k is non-speech (bk =
0) or speech (bk = 1):

bk = 1 : ŷk = ŝk + n̂k

bk = 0 : ŷk = n̂k k = 1, 2, ..., N + 1
(5)

Thus, each hypothesis Hm consists of 2N+1 individual
hypothesis involving the 2N+1 observations. The clas-
sification problem is then reformulated as selecting the
class i with the higher posterior probability P (Hi|Ŷ) and
assigning speech (G1) or non-speech (G0) to the current
frame depending on the bit bN+1 associated to Hi.

If the set ℵ of all the possible hypothesis is splitted
depending on the value of the central frame bit bN+1 as:

M1 = {Hm ∈ ℵ : bN+1 = 1}
M0 = {Hm ∈ ℵ : bN+1 = 0} (6)

the posterior probabilities are defined to be:

p(G1|Ŷ) =
∑

m∈M1
p(Hm|Ŷ)

p(G0|Ŷ) =
∑

m∈M0
p(Hm|Ŷ)

(7)

and

P (G1) =
∑

m∈M1
P (Hm)

P (G0) =
∑

m∈M0
P (Hm) (8)

Using the Bayes rule:

p(G1|Ŷ) = 1
P (Ŷ)

∑
m∈M1

P (Hm)p(Ŷ|Hm)

p(G0|Ŷ) = 1
P (Ŷ)

∑
m∈M0

P (Hm)p(Ŷ|Hm)
(9)

and a revised LRT can be defined as:

Λ =
p(G1|Ŷ)
p(G0|Ŷ)

=

∑
m∈M1

P (Hm)p(Ŷ|Hm)
∑

m∈M0
P (Hm)p(Ŷ|Hm)

(10)

An effective approximation to the statistical test de-
scribed above is to replace the summation by the maxi-
mum value of the probability of the hypothesis in M1 and
M0:

Λ∗ =
máxm∈M1 p(Ŷ|Hm)
máxm∈M0 p(Ŷ|Hm)

(11)

By taking logarithms this test is expressed in a more com-
pact form:

log Λ∗ = máx
m∈M1

lm − máx
m∈M0

lm (12)

where:

lm =
2N+1∑

k=1

log p(ŷk|bk) (13)

If we restrict the number of possible hypothesis by remov-
ing those corresponding to more than one speech/non-
speech or non-speech/speech transition in the N -frame
neighborhood, the test can be rewritten in matrix form:

L = KB1 + (I−K)B0 (14)

where:

L = [l1, l2, ..., l2N+1]T

B0 = [log p(ŷ1|0), ..., log p(ŷ2N+1|0)]T

B1 = [log p(ŷ1|1), ..., log p(ŷ2N+1|1)]T
(15)

and K is the Hankel matrix:

K =




0 0 ... 0 ... 0 0
0 0 ... 0 ... 0 1
0 0 ... 0 ... 1 1
... ... ... ... ... ... ...
0 1 ... 1 ... 1 1
1 1 ... 1 ... 1 1
1 1 ... 1 ... 1 0

1 1 ... 0 ... 0 0
1 0 ... 0 ... 0 0




(16)
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Moreover, if the matrix K is splitted into two submatrices
K0 and K1 by extracting from K the rows with a central
0 or 1, respectively, the test is easily reduced to:

log Λ∗ = máxL1 −máxL0 (17)

where:

L1 = K1B1 + (I−K1)B0

L0 = K0B1 + (I−K0)B0
(18)

Note that K0 = I−K1 and equation 18 is reduced to:

L1 = K1B1 + (I−K1)B0

L0 = (I−K1)B1 + K1B0
(19)

As an example, for N = 1, the matrices K, K0 and
K1 are defined to be:

K =




0 0 0
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0




K1 =




1 1 1
1 1 0
0 1 1




K0 =




0 0 0
0 0 1
1 0 0




(20)

and L1 and L0 are computed by:

L1 = K1B1 + (I−K1)B0 =

=




1 1 1
1 1 0
0 1 1







log p(ŷ1|1)
log p(ŷ2|1)
log p(ŷ3|1)


 +




0 0 0
0 0 1
1 0 0







log p(ŷ1|0)
log p(ŷ2|0)
log p(ŷ3|0)




L0 = (I−K1)B1 + K1B0 =

=




0 0 0
0 0 1
1 0 0







log p(ŷ1|1)
log p(ŷ2|1)
log p(ŷ3|1)


 +




1 1 1
1 1 0
0 1 1







log p(ŷ1|0)
log p(ŷ2|0)
log p(ŷ3|0)




(21)

The algorithm for voice activity detection is based on
a comparison of a likelihood ratio to a given threshold η:

log Λ∗
G1

>
<
G0

η (22)

For the computation of the logarithmic probability vectors
B0 and B1, an adequate statistical model needs to be se-
lected. In this work, the discrete Fourier transform (DFT)

coefficients of the clean speech (Sj) and the noise (Nj)
are assumed to be asymptotically independent Gaussian
random variables:

p(ŷ|G0) =
∏J−1

j=0
1

πλN (j) exp{− |Yj |2
λN (j)}

p(ŷ|G1) =
∏J−1

j=0
1

π[λN (j)+λS(j)] exp{− |Yj |2
λN (j)+λS(j)}

(23)
where Yj represents the noisy speech DFT coefficients
and λN (j) and λS(j) denote the variances of Nj and Sj ,
respectively. Thus, the logarithmic probabilities found in
B0 and B1 can be computed as in [7] through the “a pri-
ori” and “a posteriori” SNRs defined to be:

γj =
|Yj |2
λN (j)

ξj =
λS(j)
λN (j)

(24)

that are estimated using the Ephraim and Malah minimum
mean-square error (MMSE) estimator [9].

The algorithm is adaptive and suitable for non-stationary
noise environments since the statistical properties are up-
dated when the frame is classified as a non-speech frame.
In this way, the variance of the noise λN is updated as:

λN (j) = αλN (j) + (1− α)|Yj |2 (25)

Figure 1 shows the operation of the original MO-LRT
VAD and the revised one over an utterance of the Span-
ish SpeechDatCar database [10] in clean conditions (25
dB SNR). Note that the new algorithm removes the sav-
ing period at the word beginnings and endings being more
accurate in such a low noise conditions. It is interesting to
point out that the hangover of the original MO-LRT was
a result of extending the decision over a neighborhood of
the current frame. However, the new statistical test ex-
hibits the same smoothing process and reduced variance
of the decision variable with the benefit of being suitable
for a more effective hangover mechanism development.
Under the noisiest conditions (5 dB SNR), the new al-
gorithm has a similar behavior to the previous VAD as
shown in figure 2.

4. EXPERIMENTAL RESULTS

The ROC (receiving operating characteristic) curves
have shown to be very effective for the evaluation of voice
activity detectors [11, 12]. These plots, which show the
trade-off between the error probabilities of speech and
non-speech detection as the threshold η varies, complete-
ly describe the VAD error rate. In this analysis, the Span-
ish SpeechDat-Car (SDC)[10] database was used. This
database consists of recordings from distant and close-
talking microphones in car environments at different driv-
ing conditions. For the computation of the speech and
non-speech distributions, a semiautomatic “speech/non-
speech” labeling process was conducted on the close talk-
ing microphone.
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Figura 1. Comparison between the original MO-LRT and the revised MO-LRT for VAD in clean conditions.
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Figura 2. Comparison between the original MO-LRT and the revised MO-LRT for VAD in high noise car environment.
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Figura 3. ROC curves in quiet noise conditions (stopped car and engine running) and close talking microphone.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40
FALSE ALARM RATE (FAR0)

P
A

U
S

E
 H

IT
 R

A
T

E
 (

H
R

0
)

Revised MO-LRT MO-LRT

G.729 AMR1

AMR2 AFE (Noise Est.)

AFE (frame-dropping) Li

Marzinzik Sohn

Woo

Figura 4. ROC curves in high noise conditions (high speed over a good road) and distant talking microphone.
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Fig. 3 and 4 shows the non-speech hit rate (HR0) ver-
sus the false alarm rate (FAR0=1-HR1, where HR1 de-
notes the speech hit rate) for recordings from the distant
microphone and under quiet and high noise conditions,
respectively. The results show that the revised MO-LRT
method yields better results than the previous method.
These improvements are obtained by the robustness of
the decision rule and by removing the implicit hangover
found in the previous method and developing a more suit-
able design. It can be concluded from figures 3 and 4
that the proposed algorithm also outperforms a number
of standardized VAD methods including the ITU-T G.729
[2], ETSI AMR (opts. 1 and 2) [3] and the ETSI Advanced
Front-End (AFE) [4] for distributed speech recognition
(DSR), as well as other recently published VAD meth-
ods [5, 13, 14, 12]. The best results are obtained for N=
8 while increasing the number of observations over this
value reports no additional improvements. In particular,
the proposed VAD outperforms the Sohn’s VAD [5], that
assumes a single observation in the decision rule and a
HMM-based hangover mechanism.

5. CONCLUSIONS

This paper revises a multiple observation likelihood
ratio test for voice activity detection in noisy environ-
ments. The new approach not only evaluates the two hy-
pothesis consisting on all the observations to be speech or
non-speech, but all the possible hypothesis defined over
the individual observations. The revised statistical test ex-
hibits the same smoothing process and reduced variance
of the decision variable with the benefit of being suitable
for a more effective hangover mechanism development.
The experimental results showed a high speech/non-speech
discrimination accuracy over a wide range of SNR con-
ditions and significant improvements over standardized
VADs such as ITU-T G.729, ETSI AMR and ETSI AFE,
as well as other publicly available approaches.

6. REFERENCES

[1] A. Benyassine, E. Shlomot, H. Su, D. Massaloux,
C. Lamblin, y J. Petit, “ITU-T Recommendation
G.729 Annex B: A silence compression scheme for
use with G.729 optimized for V.70 digital simulta-
neous voice and data applications,” IEEE Commu-
nications Magazine, vol. 35, no. 9, pp. 64–73, 1997.

[2] ITU, “A silence compression scheme for G.729 op-
timized for terminals conforming to recommenda-
tion V.70,” ITU-T Recommendation G.729-Annex
B, 1996.

[3] ETSI, “Voice activity detector (VAD) for Adaptive
Multi-Rate (AMR) speech traffic channels,” ETSI
EN 301 708 Recommendation, 1999.

[4] ETSI, “Speech processing, transmission and quality
aspects (STQ); distributed speech recognition; ad-
vanced front-end feature extraction algorithm; com-
pression algorithms,” ETSI ES 201 108 Recommen-
dation, 2002.

[5] J. Sohn, N. S. Kim, y W. Sung, “A statistical model-
based voice activity detection,” IEEE Signal Pro-
cessing Letters, vol. 16, no. 1, pp. 1–3, 1999.

[6] Y. D. Cho y A. Kondoz, “Analysis and improvement
of a statistical model-based voice activity detector,”
IEEE Signal Processing Letters, vol. 8, no. 10, pp.
276–278, 2001.

[7] J. Ramírez, José C. Segura, C. Benítez, L. García, y
A. Rubio, “Statistical voice activity detection using
a multiple observation likelihood ratio test,” IEEE
Signal Processing Letters, vol. 12, no. 10, pp. 689–
692, 2005.

[8] A. Sangwan, W.P. Zhu, y M.O. Ahmad, “On the
competitive neyman-pearson approach for compos-
ite hypothesis testing and its application in voice ac-
tivity detection,” in Proc. of the 2006 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, May 2006, vol. 3, pp. 301–304.

[9] Y. Ephraim y D. Malah, “Speech enhancement us-
ing a minimum mean-square error short-time spec-
tral amplitude estimator,” IEEE Trans. on Acous-
tics, Speech and Signal Processing, vol. ASSP-32,
pp. 1109–1121, 1984.

[10] A. Moreno, L. Borge, D. Christoph, R. Gael,
C. Khalid, E. Stephan, y A. Jeffrey, “SpeechDat-
Car: A Large Speech Database for Automotive En-
vironments,” in Proceedings of the II LREC Confer-
ence, 2000.

[11] J. Ramírez, J. C. Segura, M. C. Benítez, A. de la
Torre, y A. Rubio, “Efficient voice activity de-
tection algorithms using long-term speech informa-
tion,” Speech Communication, vol. 42, no. 3-4, pp.
271–287, 2004.

[12] M. Marzinzik y B. Kollmeier, “Speech pause de-
tection for noise spectrum estimation by tracking
power envelope dynamics,” IEEE Transactions on
Speech and Audio Processing, vol. 10, no. 6, pp.
341–351, 2002.

[13] K. Woo, T. Yang, K. Park, y C. Lee, “Robust voice
activity detection algorithm for estimating noise
spectrum,” Electronics Letters, vol. 36, no. 2, pp.
180–181, 2000.

[14] Q. Li, J. Zheng, A. Tsai, y Q. Zhou, “Robust end-
point detection and energy normalization for real-
time speech and speaker recognition,” IEEE Trans-
actions on Speech and Audio Processing, vol. 10,
no. 3, pp. 146–157, 2002.
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