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Abstract
Automatic Speaker Recognition systems have been largely

dominated by acoustic-spectral based systems, relying in proper
modelling of the short-term vocal tract of speakers. How-
ever, there is scientific and intuitive evidence that speaker spe-
cific information is embedded in the speech signal in multi-
ple short- and long-term characteristics. In this work, a mul-
tilevel speaker recognition system combining acoustic, phono-
tactic and prosodic subsystems is presented and assessed using
NIST 2005 Speaker Recognition Evaluation data.

For language recognition systems, the NIST 2005 Lan-
guage Recognition Evaluation was selected to measure perfor-
mance of a high-level language recognition systems.

1. Introduction
Speaker recognition systems are automatic systems that provide
information about the identity of the speaker of a given speech
segment. As a verification system it must decide whether or not
the identity of the speaker is a claimed one. As an identifica-
tion system the goal is to determine the identity of the speaker
among a set of predefined speakers.

Regardless the operation mode, the system works by com-
puting similarity measures (scores) between the speech segment
and a previously stored model (extracted from other speech seg-
ment). Based on the computed measures, the system may per-
form a hard decision (yes/no, accepted/rejected) or a soft one,
providing a score for a subsequent module. For the hard de-
cisions case, a threshold must be determined, and the decision
emerge from the comparison between the score and the thresh-
old.

Despite the fact that text-independent identification of
speakers by their voices has been a subject of interest for
decades, the first really successful results in actual telephone
conversational speech came in the 90s, where acoustic-spectral
based systems [1] were able to obtain remarkable performance
in really challenging out-of-laboratory tasks. The series of
NIST Speaker Recognition Evaluations (SRE) has fostered re-
search and development in this area since the mid-90s [2]. This
important forum has led to yearly significant improvements
in the speaker recognition technology, which has been shared
among participants to these evaluations. However, there was
by that time significant room for improvement which was not
taken into account in the use of higher non-acoustic levels of in-
formation. This information has demonstrated to be extremely
characteristic in the inter-speaker communication process and
well-known in linguistics, but it was not exploited at that time
by automatic speaker recognition technology. It was in early
00s when the pioneering work on idiolectal differences between

speakers [3] and specially the confluence of different sources of
knowledge that were presented in the SuperSID project [4] gave
a major impulse to multilevel and fusion approaches to auto-
matic speaker recognition. Presently, multilevel speaker recog-
nition systems may include generative [1] or discriminative [5]
acoustic-spectral sub-systems, prosodic [6], and phonotactic [4]
sub-systems among others [7].

2. Speaker recognition techniques overview
Speaker recognition techniques can be broadly classified as
those relaying in short-time spectral and acoustic information
and those using high-level features (phonetic, prosodic, lexical
information, etc.). A third group may be considered, in which
would be included those systems made by combination (fusion)
of several other systems.

Short-time spectral information systems include Gaus-
sian Mixture Models (GMM)[1] and Support Vector Machines
(SVM) [5]. GMM has been the reference in the past decade, but
SVM systems are now competitive.

High-level features based systems include prosodic and
phonotactic based systems. In both situations, the speech is con-
verted to streams of tokens used to compute the score. Prosodic
systems use pitch and energy as tokens while phonotactic sys-
tems use phones in some language.

GMM and SVM systems perform much better than
prosodic or phonotactic systems, but the combination of them
may improve the final systems [8][7].

3. High-level speaker recognition
techniques

The interest in the use of these higher level features was moti-
vated by the work of Doddington [3], who used the lexical con-
tent of the speech, modeled through statistical language models
(word n-grams), for speaker recognition using the Switchboard-
II corpus. This relatively simple technique improved the results
obtained by an acoustic-only speaker recognition system. Af-
ter the work of Doddington a number of research works have
continued exploring the use of higher level features in the field
of speaker recognition. Some of these works [4] made use
of similar techniques (n-gram statistical language models) ap-
plied to the output of phonetic decoders (i.e. speech recogni-
tion engines configured to recognize any phonetic sequence),
leading to the techniques known as phonotactic speaker recog-
nition. Instead of modeling the lexical content, these techniques
aim to model speaker pronunciation idiosyncrasies. This tech-
nique also yielded promising results, particularly when several
phonetic decoders for different languages were used and com-
bined. More recently, similar modeling techniques (n-gram
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statistical language models) have been applied to model the
prosody (mainly fundamental frequency and energy) of the dif-
ferent speakers [4][6], giving rise to the field known as prosodic
speaker recognition. As in the initial work of Doddington [3],
all of these higher-level techniques were particularly useful in
combination with traditional acoustic-only speaker recognition
systems.

3.1. Statistical grammar modelling

The most common modelling technique for tokens sequences is
statistical modelling, where the probability of a sequence given
a language model is used as the basis for scoring.

Given a sequence of tokens (words, phones, prosodic to-
kens, data driven units, etc.)

S = (w1, w2, . . . , wm)

the probability of occurrence can be decomposed as a product
of conditional probabilities

P (w1, w2, . . . , wm) =

mY
i=1

P (wi | w1, . . . , wi−1) (1)

Usually eq.1 is approximated by limiting the context:

P (w1, w2, . . . , wm) '
mY

i=1

P (wi | wi−n+1, . . . , wi−1) (2)

for some n ≥ 1. Due to reasons of data sparsity n is usually
selected in the range of 1 to 4.

Estimates of probabilities in n-gram models are commonly
based on maximum likelihood estimates – that is, by counting
events in context on some given training text:

P (wi|wi−n+1, . . . , wi−1) =
C(wi−n+1, . . . , wi)

C(wi−n+1, . . . , wi−1)
(3)

where C(.) is the count of a given word sequence in the training
text. For robust estimation, probability smoothing techniques
can be applied.

3.2. Process overview

The process starts with speaker models training, from speech
transcriptions or tokenization. Direct robust estimation of prob-
abilities requires a big amount of data, usually not available for
a single speaker. The procedure to train more robust models
is to train the UBM model using a lot of data and then adapt
that model to the data available for a particular speaker. This
adaptation is made by linearly interpolating the n-grams mod-
els of the UBM and the one trained only with speaker data. That
interpolation is governed by an weighting factor that has to be
empirically determined.

To obtain a score related to a given sequence, usually a log-
likelihood detector is used. The target model SPMi will be the
n-gram model adapted to transcriptions from speech from the
speaker. The alternate model will be a n-gram model trained
with transcriptions from speech from many speakers (UBM
model). The final score for sequence S of m tokens is obtained
as

si =
1

m
log

P (S/SPMi)

P (S/UBM)
(4)

where P (S/SPMi) and P (S/UBM) are calculated as shown
in eq. 2.

3.3. Phonotactic systems

Phonotactic systems use phonetic transcribers to convert speech
into a sequence of tokens where each token is a phone.

A typical phonotactic speaker recognition system consists
of two main building blocks: the phonetic decoders, which
transform speech into a sequence of phonetic labels and the
n-gram statistical language modeling stage, which models the
frequencies of phones and phone sequences for each particular
speaker. The phonetic decoders can either be taken from a pre-
existing speech recognizer or trained ad hoc. Any speech recog-
nition technology can be used, but usually phonetic decoders are
based on Hidden Markov Models and null grammars.

Reported experiments have been performed using phonetic
decoders for Castillian Spanish (using the Albayzin Corpus [9]),
American English (using the TIMIT corpus) and Basque (using
Basque-SpeechDAT corpus).

Once the phonetic sequence has been obtained the scoring
process is performed as explained above.

3.4. Prosodic systems

A prosodic speaker recognition system consists of two main
building blocks: the prosodic tokenizer, which analyses the
prosody, and represents it as a sequence of prosodic labels or to-
kens, and the n-gram statistical language modeling stage, which
models the frequencies of prosodic tokens and their sequences
for each particular speaker, as explained above. The tokeniza-
tion process carried out consists of two stages. Firstly, for each
speech utterance, both temporal trajectories of the prosodic fea-
tures, (fundamental frequency or pitch- and energy) are ex-
tracted. Secondly, both contours are segmented and labelled
by means of a slope quantification process. The slope quan-
tification process was performed as follows: first, a finite set of
tokens were defined using a four level quantization of the slopes
(fast-rising, slow-rising, fast-falling, slow-falling) for both en-
ergy and pitch contours [6] .Thus, the combination of levels
generate sixteen different tokens when combined pitch and en-
ergy contours are considered. Second, both contours were seg-
mented using the start and end of voicing and the maximums
and minimums of the contours. These points were detected as
the zero-crossings of the contours derivatives using a ±2 frame
span. On the other hand, silence intervals were detected with an
energy-based voice activity detector. Finally, each segment was
converted into a set of tokens which describe the joint-dynamic
variations of slopes. Therefore, utterances with different se-
quences of tokens contain different prosodic information. Since
errors in the pitch and energy estimation are likely to gener-
ate small segments, all segments smaller than a certain amount
(tipically 30 ms) are removed from the sequence of joint-state
classes.

Additionally to the sixteen tokens defined for the joint-
dynamic of the prosodic features, a special token must be added
to represent unvoiced segments.

3.5. Data-driven phonotactic systems

Both phonetic and phonotactic systems use as tokens items with
linguistic meaning: phones, energy trajectories, pitch. But from
an engineering point of view the tokens do not need to be lim-
ited to these. Some researchers have proposed the use of units
extracted automatically from speech samples.

ALISP systems are based on this idea. Units are similar to
phones but the information modelled by each unit is determined
by means of an automatic clustering process. Results reported
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in [10] show that this approach can outperform classical pho-
netic systems.

3.6. PhoneSVM systems

PhoneSVM systems share many elements with a phonotactic
system. Both rely on phonetic transcriptions and n-gram model
estimation, but differ in the way the score is computed. While
in classical phonotactic systems the scores are calculated as log-
likelihood ratios, in phoneSVM systems a SVM is used to de-
termine the score.

The training process starts by estimating n-gram models.
One for the speaker under consideration and many more from
other different speakers. The probabilities of the different n-
grams are considered as the coordinates of a vector, thus trans-
forming the problem into a one suitable for training a SVM.
Results presented in [11] show major improvements.

3.7. Phonetic decoding using phone lattices

Phone lattices is a technique initially proposed for language
recognition [12] that was later successfully applied to speaker
recognition [13].

The underlying idea is how to increase the amount of data
available for n-gram estimation. Extracting a single phone se-
quence from a speech segment to estimate n-grams is an idea
borrowed from the speech recognition field, where only one se-
quence is useful as the transcription of a speech segment (un-
less further processing is performed, but at last, only one se-
quence will be output). But in speaker and language recognition
fields, the sequence itself is not important, but for estimation
purposes, so if instead of considering the best sequence, the N
best sequences are considered, the amount of data for parame-
ter estimation largely increases, thus relying to better estimates.
The decrease in error rates (as reported in [12] and [13]) largely
compensates the increase in execution time.

4. Multilevel speaker recognition
techniques fusion

There are many works related to the combination of different
speaker characteristics and modelling methods for a speaker
recognition system, such as [14][3][8]. State of the art systems
as [15] are commonly not a single system but the fusion of sev-
eral of them. The performance improvement of a fused system
is based on the fact that different systems provide different in-
formation about the speaker, and therefore errors committed by
a certain system may be cancelled out by other systems. In fact,
the potential benefits from fusion increase with the uncorrela-
tion between the involved systems.

Some research has been done in the adaptation of fusion
schemes to each user [16]. While there is some research ef-
fort in fusion of multiple biometrics systems [17][18], it is not
very common within different speaker recognition systems, but
improvements can be obtained from that adaptation.

The effect of fusion on error rates will be shown in sec-
tions 5 where specific systems are described and tested on ref-
erence data.

5. The ATVS speaker recognition system at
NIST 2006 Speaker Recognition Evaluation

The evaluation is a speaker detection task, where the goal is to
determine if a specified speaker is present in a given segment of

conversational speech. Systems must provide a decision about
the segment (T/F) and a confidence score.

The different task conditions are defined by a training and a
test condition. For the core task, also called 1conv4w-1conv4w,
5 minutes of speech are provided (before silence removal) and
other five minutes for testing.

ATVS systems have been tested in the core task, 8conv4w-
1conv4w task and 1conv4w-10sec4w. For the 8conv4w training
condition 8 speech segments of about 5 minutes are provied,
and in the 10sec4w testing condition only 10 seconds of speech
are available. Four different systems were developed and fused
in different ways for the different tasks.

5.1. Development process

For the development process several partions of data were de-
fined. For the training of the UBM model for all systems,
data from NIST 2005, NIST 2004, SWITCHBOARD I and
SWITCHBOARD II Extended-data task was used.

5.2. GMM system

A root UBM (needed for feature mapping[19]) was trained us-
ing 5 hours of channel- and gender-balanced speech after si-
lence removal. Data from MIXER (NIST SRE 2004 and 2005),
Switchboard I and Switchboard II was used. The UBM was
trained using 1024 Gaussian mixtures and ML estimation via
EM algorithm. Fourteen channel models (7 per gender) were
adapted from the UBM in order to perform Feature Mapping.
An average value of 2 hours of speech was used for each chan-
nel model training.

Target models were 1024 mixtures GMM, MAP adapted
with one iteration (only means) from the 1024 root UBM. Only
5 Gaussian per frame were used in likelihood computations.

Score normalization was performed using Tnorm [20] and
KL-Tnorm [21].

5.3. Acoustic SVM system

The acoustic SVM system uses a explicit normalized three de-
gree polynomial expansion [22] followed by a decomposed
Generalized Linear Discriminant Sequence Kernel (GLDS) as
described in [5]. SVMTorch [5] was used to train the target
models.

5.4. Prosodic system

The submitted prosodic systems was similar to the one de-
scribed in section 3.4.

HTK 3.2.1 n-gram modeling tools [23] are used to train
gender-dependent UBMs and the target-speaker models. Male
and female training data from NIST 2005, NIST 2004,
SWITCHBOARD I and SWITCHBOARD II Extended-data
task has been used to train the male and female UBMs, respec-
tively. N-gram modelling used trigrams. The target-speaker
models are created by linear interpolation of the corresponding
UBM (gender-dependent) and the speaker training data. The
interpolation coefficients are set to 0.8 for the speaker data and
0.2 for the UBM. By including the general knowledge provided
by the UBM into the target-speaker models, the amount of data
needed for a good estimation of the trigram models is reduced.
TNorm technique was applied for score normalization. Cohorts
consist of 60 models from NIST SRE 2004 database.
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5.5. Phonotactic system

The phonotactic system was built over three independent speech
recognisers (English, Spanish and Basque) based on Hidden
Markov Models (HMMs). The HMM topology is three- state
left-to-right with no skips. The output pdfs of each state are
modelled as GMMs. The number of Gaussians per state were
adjusted on the NIST SRE05 data task corpus to minimize
speaker recognition EER.

Two schemes have been used for feature extraction:

• The Advanced Distributed Speech Recognition Standard
Front-End defined in the standard ETSI ES 202 050 [24].

• Sphinx [25] feature extraction system. This system is
based on 13 MFCC coefficients along with delta and
double delta coefficients and C0.

The set of English phone HMMs was trained on the TIMIT
corpus. Since this corpus is microphone speech sampled at 16
kHz, audio was filtered to simulate the telephone channel and
then downsampled it to 8 kHz. One Gaussian/state was used to
model output pdfs. The set of Spanish phone HMM was trained
on the Albayzin corpus. The same subsampling process as de-
scribed above was applied for this case. Five gaussians/state
were used to model output pdfs. Both systems use the ETSI ES
202 050 parameterizer. Basque SpeechDAT was used in order
to train the Basque phone HMM set, modelling output pdfs with
20 gaussians per state. The parameterisation was performed us-
ing the Sphinx parameteriser. All sets were trained using HTK
v3.2.1.

Acoustic-phonetic decoding (phone recognition) was per-
formed with every recogniser on Switchboard I, Switchboard
II, NIST SRE04, NIST SRE05, NIST SRE06 train and test files
using HTK v3.2.1, the trained models and a null grammar. The
only information used from the acoustic-phonetic decoding was
the phone streams. The output phone streams were filtered to
avoid repetitions of inter-word silences.

The Universal Background Phone Model (UBM) is a tri-
gram language model trained with data from Switchboard I,
Switchboard II, NIST SRE04 and NIST SRE05. Smoothing of
unlikely trigrams was performed with absolute discounting. No
cut-off factor was applied. A different UBM was used for each
phonetic decoder. Speaker Phone Models (SPMi) are created
by linear interpolation of the 8 sides training material for each
target speaker from NIST SRE06 training data. The interpola-
tion factor (weight of the UBM) for this adaptation was adjusted
on NIST SRE05 extended data task and was found to be optimal
for an UBM weight of 0.7.

For score normalization Tnorm was applied using as co-
hort a gender dependent set of 60 models extracted from NIST
SRE04.

5.6. The system for the 8conv4w-1conv4w task

High-level systems require lots of data for reliable parameter
estimation, so they can only be applied to certain tasks. The
8conv4w-1conv4w task provides about 40 minutes of untran-
scribed speech for model training (prior to silence removal) and
5 minutes for testing.

The submitted system for this task was a combination of all
available systems: GMM, SVM, prosodic system, phonotactic
systems. All systems were fused using a linear SVM.

For the development stage, NIST05 data was used to train
and test the fusion rule. This makes shown results a little bit
optimistic, but as the used classifier is a very simple one (a lin-
ear SVM) the overfitting is not expected to be strong. With
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Figure 1: 8conv4w-1conv4w task involved systems results

this setup, the obtained results are shown in figure 1. This fig-
ure shows that acoustic systems (GMM’s and SVM’s) perform
much better than high-level systems, but the fusion of all im-
proves results significantly.

6. Application of high-level speaker
recognition techniques to language

recognition
The language recognition field shares many techniques with the
speaker recognition field. In [26] there is a detailed explanation
of several techniques for language recognition.

First research efforts showed that high-level systems per-
formed better than acoustic systems [26], but there have been
important improvements in acoustic systems, as can be shown
in [27] and [28]. Both techniques are applied in similar ways in
both fields.

One of the most common technique for language recog-
nition is an extension of phonotactic systems called Parallel
Phone Recognition and Language Modelling (PPRLM). Basi-
cally it consists on the fusion of several phonotactic systems
as described in section 3.3 related to phonetic decoders in sev-
eral languages, not necessarily related to the target ones. Us-
ing the transcriptions, statistical grammars are applied and the
scoring process is performed in the same way as for speaker
recognition. Sum fusion is the most common applied fusion
technique. In order to train each of the underlying phonetic
recognisers, multilingual speech corpus are required, but they
do not need to contain labelled speech in the target language.
The only requirement is to have labelled in a certain number
of language (and in the appropriate amount to train a phonetic
recogniser). The most common corpus for this purpose is OGI
Multilingual Telephone Speech [29]. This corpus has speech
in 11 languages, and for 6 of them it contains labelled speech.
Other corpora used to train language recognition systems is
SpeechDAT. The main advantage of SpeechDAT over OGI Mul-
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tilingual Telephone Speech is that the former is a much larger
database, which seems to be important, as shown in [30].

Language recognition can also be performed using speech
recognisers in the target languages. This technique is called
Parallel Phone Recognition (PPR) and it basically consists of N
parallel speech recognisers (one for each target language), each
one providing a speech recognition score, used for decisions. To
perform language recognition using PPR labelled speech in all
target languages is required, in order to train the speech recog-
nisers. As this may be difficult for certain languages, PPR is not
very common.

6.1. The ATVS PPRLM speaker recognition system at
NIST 2005 Language Recognition Evaluation

For the 2003 evaluation, twelve target languages were defined
(Arabic, English, Farsi, French, German, Hindi, Japanese, Ko-
rean, Mandarin, Spanish, Tamil and Vietnamese). Test material
was extracted mainly from the CallFriend corpus from LDC,
with some test segment from other corpora.

In the 2005 evaluation, the target languages set was re-
duced to seven (English, Hindi, Japanese, Korean, Mandarin,
Spanish and Tamil) along with some dialectal variations (Amer-
ican/Indian English, Mainland Mandarin and Taiwanese Man-
darin). A new database was collected, including a big amount of
cellular data, that was not present in previous evaluations data.

The testing segments have nominal durations of 30, 10 and
3 seconds.

The full description of submitted system along with the de-
tails of the development process can be found in [31].

The best submitted system was a fusion of two PPRLM
systems (as described above) based on phonetic recognisers
trained with the OGI Multilingual Telephone Speech corpus.
Both PPRLM systems were the fusion of 6 language recognisers
based on phonetic recognisers of Mandarin, German, Japanese,
Spanish, Hindi and English, using in all cases trigrams. The
two PPRLM systems were similar but differ in the the number
of Gaussian used to model HMM state output pdf’s in the pho-
netic recognisers. To normalise scores, Tnorm was used. (This
system appears in plots as ATVS1).

Other system was submitted, but consists only of a single
PPRLM system, built using 10 Gaussian per state. (This system
appears in plots as ATVS2).
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Figure 2: ATVS PPRLM results tested on a NIST 2003 LRE
subset involving only NIST 2005 LRE target languages.

Figure 3: ATVS PPRLM submitted systems results at NIST
2005 LRE.

Figure 2 shows the results of the development process, with
testing data coming from 2003 evaluation data, but restricted to
the 2005 evaluation target languages. Figure 3 shows the results
obtained in the 2005 evaluation. As aforementioned, in 1996
and 2003 editions, evaluation data was mainly extracted from
the CallFriend database. But for the 2005 evaluation a new cor-
pus was collected by OHSU. This corpus includes a large pro-
portion of cellular data, which is not present neither in the Call-
Friend database nor in the NIST 2003 Evalu- ation data. The
aforementioned systems were submitted to the 2005 evaluation,
performing as shown 3. Those new channel conditions could
explain the similar degradation in re- sults, by a factor of two
or even more, that affected all LRE05 participants, from dev to
eval data.

7. Conclusions
Several techniques are available in the field of speaker recogni-
tion. They are usually divided into acoustics (GMM, SVM) and
high-level (phonotactic and prosodic) systems. Results obtained
by each type of systems are quite different, and acoustics sys-
tems clearly outperform high-level systems. The main purpose
of high-level systems is to be combined, in order to improve re-
sults. The kind of knowledge, parameters and modelling tech-
niques these systems use are quite different from one to an-
other (discriminative vs. generative approaches, phones, en-
ergy), thus providing a chance for fusions, which is performed
at score level, providing important improvements in recognition
rates.
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