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Abstract
In the broadcast news domain audio segmentation is an im-
portant pre-processing step for other speech technologies like
speech recognition and speech diarization. In this work we pro-
pose an architecture that allows to integrate the individual detec-
tions of various acoustic classes. By implementing a different
algorithm adapted to the characteristics of each class, we can
obtain much better results than using a generic detector for all
classes. Additionally, new features suited to detect telephone
channel speech over wideband music that improve the accuracy
are also introduced.
Index Terms: audio segmentation, acoustic event detection,
music detection, telephone speech, software architecture

1. Introduction
The TECNOPARLA project aims to develop speech technolo-
gies in the Catalan language focusing on the broadcast news
task. It involves language identification, automatic speech
recognition (ASR), machine translation, speech synthesis and
speaker diarization [1].

Audio segmentation is the task of segmenting a continu-
ous audio stream in terms of acoustically homogenous regions.
Several speech technologies can benefit from audio segmenta-
tion done at early steps. A previous identification of speech
segments facilitates the task of speech recognition or speaker
diarization systems. Furthermore audio segmentation is widely
used to make online adaptation of ASR models or generating
a set of acoustic cues for speech recognition to improve overall
system performance [2]. In [3] audio classes are defined accord-
ing to human perception which provide a clue towards detecting
a particular event. The audio streams are segmented into five
different types including speech, commercials, environmental
sound, physical violence and silence. Similarly in [4] five au-
dio classes are defined: silence, music, background sound, pure
speech, and non-pure speech which includes speech over music
and speech over noise. The definition of audio classes depends
much on the data and application domain.

In this work the database consists of 43h and 25m of audio
coming from audio-visual recordings of Àgora debate program
of the Catalan TV (TV3). According to this material we define
six different audio classes:

• “Speech”. This is pure speech recorded in the studio
without background such as music.

• “Speech over music”. This category includes all studio
speech with music in the background.

• “Telephone speech”. Some sections of the program have
telephonic interventions from the viewers. These inter-

ventions are mixed in the program’s main audio stream
as a wide band stream.

• “Telephone speech over music”. The same as previous
class but additionally there is music in the background.

• “Music”. Pure music recorded in the studio without any
speech on top of it.

• “Silence”.

Since silences are not labeled, the evaluation of “silence”
class is not included in our task. However it is detected to fa-
cilitate the detection of the other classes. Moreover, “telephone
speech” class is poorly represented in the database (see Section
3), so this class is not evaluated either.

We propose a hierarchical architecture for detecting acous-
tic classes using a set of binary detection systems. For compar-
ison we also show an alternative system with a one-step multi-
class detector described in [5].

The rest of this paper is organized as follows: Section
2.1 describes the classical one-step multiclass segmentation ap-
proach. The hierachical structure for segmentation is presented
in 2.2. Section 3 presents experimental results and Section 4
concludes the work.

2. Audio segmentation
2.1. One-step multiclass detection

2.1.1. Features

The audio signal (16 kHz sampling rate) is framed using 30 ms
Hamming window and 10 ms shift. For each frame, a set of
spectral parameters has been extracted. It consists of the con-
catenation of two types of parameters: 1) 16 Frequency-Filtered
(FF) log filter-bank energies [10], along with the first and the
second time derivatives; and 2) a set of the following param-
eters: zero-crossing rate, short time energy, 4 sub-band ener-
gies, spectral flux, calculated for each of the defined sub-bands,
spectral centroid, and spectral bandwidth. In total, a vector of
60 components is built to represent each frame. The mean and
the standard deviation parameters have been computed over all
frames in a 0.5sec window with a 100ms shift, thus forming one
vector of 120 elements.

2.1.2. Classifier

For each pair of classes an SVM classifier is trained. A dataset
reduction algorithm based on PSVMs [6] to cope with the enor-
mous amount of data available for training is applied . Those
sets of feature vectors whose PSVM classifier accuracies in the
middle (not the best classifiers nor the worst, in contrast with
[6]) are finally used to train the final SVM classifier. Using a
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Figure 1: Flow diagram of the hierarchical architecture. SP:
Pure speech. SM: Speech over background music. TM: Tele-
phone speech over background music. MU: Pure music. SI:
Silence.

DAG architecture, as proposed in [9], each frame is classified in
the final stage.

2.2. Hierarchical architecture

The hierarchical architecture (Figure 1) is a group of detectors
(called modules), where each module is responsible for detec-
tion of one class of interest. As input it uses the output of the
preceding module and has 2 outputs: the first corresponds to
audio segments detected as corresponding class of interest, and
the other is the rest of the input stream.

One of the most important decisions when using this kind
of architecture is to put the modules in the best order in terms of
information flow, since some modules may benefit greatly from
the previous detection of certain classes. For instance, previous
detection of the classes that show high confusion with subse-
quent classes potentially can improve the overall performance.
On the other hand, in this type of architecture, it is not neces-
sary to have the same classifier, feature set and/or topology for
different detectors. Tuning of parameters is done in each the
system independently, and the two-class detection can be done
in a fast and easy way.

Given the modules, the detection accuracy can be computed
individually and a priori. Those modules with best accuracies
are then placed in the early stages to facilitate the subsequent
detection of the classes with worst individual accuracies.

2.2.1. Silence detection

The silence detector before the “music” detector is based on the
derivative of the short time energy. This is done to avoid con-
fusion with silences that have “musical” spectra. The algorithm
can be described as follows:

• In the first stage the audio signal is low-band filtered at
1.5kHz. Although this filtering may cause problems with
fricatives, that might become missdetected silences, this

is dealt with in a post-process stage by using time con-
straints.

• The short time energy is convoluted with a 31 samples
derivative filter, as proposed in [7] with the modifications
in [8], to enhance the dynamics of the signal.

• Finally a threshold is tuned to separate the speech and
non-speech frames. A final post process stage smooths
the decisions and places time constraints (by using a fi-
nite state automat) to meet the evaluation requirements.

This detector has been tuned to give class “silence” at its output
only when the confidence is high.

The second silence detector removes most of the silences
to prepare the signal for the subsequent modules. Since there
are no references for the silences it is trained in unsupervised
manner. The algorithm can be described as:

• The short-time energy of the signal is then transformed
to the logarithmic scale, and a GMM of N Gaussians is
trained. The Gaussians with a lower weight than a fixed
percent of the weight of the Gaussian with the highest
weight are discarded (if any).

• The Nsil Gaussians with the lowest mean are selected
for the silence class (as they represent the frames with
low energy). The N − Nsil other Gaussians are left for
the non-silence class.

• With the Gaussians selected for silence, the whole show,
is evaluated frame by frame. The same is done with
the non-silence class. Comparing the silence and non-
silence likelihoods, plus a penalty for silence, each frame
is classified as silence or non-silence.

• Then the decisions are smoothed using a median filter.
Finally, silences longer than the specified minimum du-
ration are writen to the output file.

2.2.2. Music detection

Music segments usually appear at the beginning and the end
of the show or when the topic of discussions changes. Music
serves as introduction to show and it attracts attention of the
audience towards its beginning. It is worth to mention that the
melody in AGORA shows doesn’t vary and only 2 or 3 different
musical instruments could be distinguished: drums, saxophone
and piano. To detect music segments, a one-against-all topol-
ogy of detection process is selected [10] [11]. As disscussed
in [10] the advantage of this topology is the possibility of us-
ing a specific kind of features for each particular classification
task. The differences between the music and non-music class
can be noticed in the spectral domain. The periodograms of 0.5
sec long music and speech segments are displayed in Figure 2
(we selected “speech” class as a representative of “non-music”
metaclass).

As it seen from Figure 2, the spectral envelope is flatter
for “music” class while for “speech” class the energy is concen-
trated in lower bands. Typical ASR features are used in this mu-
sic detector (the FF coefficients with their first time derivatives.
In total the feature vector has 32 components). Finally, mean
normalization is applied. We model each of the two classes
separately using Hidden Markov Models (HMMs) and apply
Viterbi decoding for final segmentation. The “music” HMM
model consists of 2 emitting states with 5 Gaussians per state,
while “non-music” model has 3 emitting states and 9 Gaus-
sians per state, as its observation distribution is more complex.
Both of the models have left-to-right connected state transitions.
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Figure 2: Periodograms corresponding to “speech” and “mu-
sic” classes. Sampling rate 16 kHz.

Using the proposed detection scheme the confusion between
speech and music classes is minimal.

2.2.3. Speech over music detection

Often the discussions in Àgora shows start when music is still
in the background. In this case we call it a “speech over mu-
sic” segment. We use the same feature set as well as detection
scheme as in the previously described music detector. Depend-
ing on the ratio between the energies of speech and background
music, the spectrum will be more or less similar to the spectrum
of the “speech” class and, in extreme case when the energy of
music in background is very low, the differences between the
corresponding spectra are negligible. In such cases the confus-
sion between classes increases.

2.2.4. Telephone speech over music detection

To detect “telephone speech over music” class we use the two-
class version of the system described in subsection 2.1. In our
scenario “telephone speech over music” class is composed of
the music that spans all the frequency range 0-8 Hz and tele-
phone speech which is in low frequency range. New features,
called spectral slopes, are concatenated to the existing ones to
enhance the detection accuracy. To compute a spectral slope,
two different couples of subbands are defined. These sub-
bands have been chosen to discriminate between “telephone
speech over music” and the rest of audio based on the slope
of the spectrum in the region around 4000 Hz, the end of the
band of telephone speech, beyond which only music frequency
components exist. The first couple is made of the sub-bands
[1000−3000]Hz and [3000−7000]Hz and the second is con-
sists of the sub-bands [3000− 3500]Hz and [3500− 4000]Hz
aims to parametrize the energy in the region where the energy
drop should appear for the “telephone speech over music” class.
A feature vector ss is computed for each couple as:

ss = (S1, S2,
S1

S2
) (1)

where S1, S2 are total energies of the first and second sub-band
respectively.

Experimental results have shown that the dynamics of the
spectral slope features are helpful for the detection of the “tele-
phone speech over music” class. Thus the deltas and acceler-
ations are added to the final feature vector. Finally we obtain
a set of 18 values for each frame (with two sub-band couples),

Figure 3: Sub-band couples for the spectral slope superposed
over periodograms corresponding to “speech” and “telephone
speech over music” classes. Sampling rate 16 kHz.

which is concatenated with all the features listed in subsection
2.1 leading to a feature vector of 78 components.

3. Experiments
3.1. Database description

As mentioned in Section 1, the database used to test the system
consists of 43h and 25m of spontaneous speech in the context of
a debate TV program. Each program has been cut in two parts to
exclude the commercials, and each part has a duration of about
40 minutes. Àgora is a highly moderated program where around
7 different speakers discuss a wide variety of topics. The Àgora
program has a fairly fixed structure, although no use of this in-
formation has been made in order to keep the system general.
As can be observed in Table 1, the dominant class is “speech”
appearing 83.21% of the time. The class “telephone speech”
(without background music) has been discarded because of its
extremely low appearance. The class “OV” (overlapped speech
coming from two or more speakers) has been left out for future
work.

Table 1: Distributions of the events in the database.

Acoustic class Appearance (%)
Speech 83.21

Speech over music 9.78
Telephone speech 0.02

Telephone speech over music 2.48
Music 1.16

Overlapped speech 3.36

The Àgora database has been manually annotated. In or-
der to evaluate the audio segmentation system the database has
been divided in three sets: training, development and evalua-
tion. The sets have been designed to have a similar distribution
to the whole database (see Table 1). This leaves 8h of audio for
development, 8h for evaluation, and 27h for training.

3.2. Results

In order to evaluate the improvements introduced by the hierar-
chical architecture two systems are compared:

• One-step (described in subsection 2.1).

• Hierarchical (described in subsection 2.2).
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We use two metrics to compare both systems: the first metric is
the ratio between the time when the hypothesis doesn’t match
the reference (error time) and the total time of the audio record-
ings. The second metric is the average ratio between the error
time and the total time of audio per each class.

ERROR =
terror

ttotal
(2)

MERROR =
1

Nclass

Nclass∑
i=1

terror(classi)

ttotal(classi)
(3)

Table 2 shows that the use of hierarchical architecture improves

Table 2: Segmentation results

System ERROR (%) MERROR (%)
One-step 7.20 46.88

Hierarchical 3.71 3.4

Table 3: Segmentation results per class

Class One-step (%) Hierarchical (%)
Pure speech 6.5 4.8
Pure music 32.0 2.4

Speech over music 75.3 4.9
Telephone speech over music 73.7 1.5

both ERROR and MERROR. As can be seen in Table 3 the
large reduction of MERROR can be explained by the poor re-
sults the One-step system achieves in the minority classes, while
the Hierarchical system performs rather well for all classes.

The proposed spectral slope features yield a strong relative
improvement in detection of the class “telephone speech over
music”, as displayed in Table 4.

Table 4: “Telephone speech over music” detection results

System ERROR (%)
w/o Spectral Slope 3.5
w/ Spectral Slope 1.5

4. Conclusions
From the results in Table 2, it can be observed that the use of
a more flexible architecture allows to develop a system that is
more suited to a particular task. A large improvement can be ob-
tained by using a set of detectors, which are properly combined
and also tuned to the different target classes.

The one-step multiclass detection system tries to detect the
most dominant class while doing worse in other classes; this is
reflected in the large value of MERROR. On the other hand,
an hierarchical system does not detect the most dominant class
(“speech”) explicitely, converse, it detects all other classes and
“speech” is what is left.

Future work will be devoted to improve performance of the
“speech over music” detector. For instance, the current system
produces a large proportion of errors in the speech segments
with very low level of music in the background. The forthcom-
ing annotation of the “silence” class in the Àgora database will

make it possible to tune the parameters of the silence detectors
and get an improvementof the overall accuracy.
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