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Abstract 

In this paper a new algorithm is proposed for fast 

discriminative training of hidden Markov models (HMMs) 

based on minimum classification error (MCE). The algorithm 

is able to train acoustic models in a few iterations, thus 

overcoming the slow training speed typical of discriminative 

training methods based on gradient-descendent. The algorithm 

tries to cancel the gradient of the objective function in every 

iteration. Re-estimation expressions of the HMM parameters 

are derived. Experiments with triphone and word models show 

that the proposed algorithm always achieves much better 

results in a single iteration than MCE, MMI or MPE do over 

several iterations. 

 

Index Terms: Speech recognition, discriminative training, 

hidden Markov models. 

1. Introduction 

The conventional HMM training method is based on 

Maximum Likelihood (ML). However, it is well known that 

discriminative training methods outperform ML.  Different 

discriminative training criteria have been successfully tested, 

namely maximum mutual information (MMI) [1], minimum 

phone error (MPE) [2], and minimum classification error 

(MCE) [3,4]. The MCE criterion is especially attractive 

because it minimizes a function that is directly related to the 

performance of the recognizer, the classification error rate, 

using N-best hypotheses. Recently a method using the 

extended Baum-Welch (EBW) algorithm was proposed [5] but 

this works only for the 1-best hypothesis. Discriminative 

training approaches use iterative optimization algorithms to 

estimate model parameters and convergence speed therefore 

plays an important role in training. The conventional 

optimization method used in MCE is based on a gradient 

descent (GD) technique called Generalized Probabilistic 

Descent [4]. This method is easy to implement and presents 

effective results, but the training speed is slow and it is 

difficult to estimate learning rates. These limitations have led 

to a need for new training algorithms that perform faster than 

GD-based algorithms. 

Another problem encountered in the conventional 

objective function used in MCE is that the sigmoidal loss 

function saturates when gross errors occur and gradient 

methods cannot subsequently improve on these errors. In this 

paper we present a new discriminative training objective 

function which solves this problem.  

A new fast discriminative training algorithm for HMMs 

based on MCE is also introduced. This algorithm is an 

extension of continuous speech recognition using HMMs from 

the method proposed in [6] for multiple-category classification 

problems. We have called it fast minimum error training 

(FMET). In order to compare the performance of the proposed 

training algorithm we have implemented MCE using the new 

objective function and one of the fastest GD based algorithms, 

resilient backpropagation (Rprop) [7]. We also compare the 

performance with maximum mutual information (MMI) and 

minimum phone error (MPE) algorithms. 

The rest of the paper is organized as follows: in Section 2 

the new objective function is defined and FMET is derived. 

Experimental results comparing FMET, Rprop, MMI and 

MPE are presented in Section 3. Finally, Section 4 presents 

some conclusions and guidelines for future work. 

2. Fast Discriminative Training for HMMS 

In this section a new objective function is introduced for 

discriminative training with MCE and the HMM parameter re-

estimation formulas are derived for the proposed training 

algorithm, FMET. 

2.1. The MCE objective function 

The objective function used in MCE is defined as 
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where Nu is the number of training utterances and 
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smooth loss function that emulates the zero-one recognition 

error count. Typically a sigmoid is used: 
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In these expressions ( )nd  is the misclassification measure 

between the score of the labelled HMM sequence 
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g(W) is a discriminant function computed as the log likelihood 

of the sequence of  acoustic observations, 
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given the best state alignment of the HMM sequence W, which 

is computed with the Viterbi algorithm.  

In (3) we introduce a scalar L, multiplied by the softmax 

term which controls the relative importance of true sequence  
( )n

labW  and competing sequences ( )n

kW , k=1..NBest. This scalar is 

the key point of this algorithm: setting L=0 implies ML 
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training and L=1 corresponds to the classical MCE. It can be 

even greater than 1, if the stochastic restrictions of the HMM 

parameters remain verified, as explained below. 

2.2. The method 

The proposed method aims to cancel the gradient of the 

objective function, J, in every iteration. This is a necessary 

condition in order to minimize J. Setting the gradient 0J∇ =  

leads to a set of re-estimation expressions for the HMM 

parameters. However, there are restrictions that these 

parameters must obey: the transition probabilities and mixture 

weighs must be positive and add up to 1 and the covariance 

matrices must be non-negative definite. These conditions can 

easily be set by an appropriate choice of the scalar L. It turns 

out that this scalar has the same role as the learning rate in the 

GD methods. GD methods benefit from a different learning 

rate per parameter. Almost the same applies here: instead of a 

single global L, we found it advantageous to have an L-scalar 

for each HMM state and for each transition from that state. 

This turns into a slight modification of the decoding process of 

the competing sequences ( )n

kW , with the Viterbi algorithm, 

that becomes 
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In this equation, { }1 2, ,..., TQ q q q=  is the best state 

sequence given by Viterbi alignment over all models in the 

utterance n; ( )h

ija  is a transition probability and ( ) ( )h

jb x  is the 

pdf of state j belonging to HMM ,

k

n th w=  found at each frame 

t for each utterance n and competing sequence k. The two 

types of L-scalars are Lj
(h) for each state j and Li

(h) for the 

transitions from each state i, ( )h

ija . These weightings will help 

to ensure the statistical constraints of the HMM parameters. 

As indicated in [6], we cannot guarantee convergence at each 

iteration; however, it has been shown experimentally that this 

method produces much better results than the GD algorithm. 

Although the sigmoid loss function is suitable for error 

counting, its gradient approaches zero for an utterance with a 

large value of ( )nd , meaning that the utterance is 

misclassified. This is not suitable for approaches which 

optimize (1) through differential methods, because these 

utterances will make an insignificant contribution to the 

gradient. In order to solve this limitation we propose the 

following function 
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This function approaches zero when ( )nd  is negative 

(utterance n is correctly recognized) and approaches ( )ndλ  

when ( )nd  is positive (utterance n is incorrectly recognized). 

This overcomes the sigmoid limitation, especially at the first 

steps of the algorithm where a large ( )nd  does not mean 

necessarily an outlier, due to a mislabelled utterance for 

example. 

2.3. Estimation formulas 

In this section the re-estimation equations are derived for the 

HMM parameters as well as the limits for the L-scalars. It is 

assumed that the state pdf is a Gaussian mixture, 
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where Mj is the number of mixture components of state j 

within HMM h, cjm is the weight of the mth mixture 

component  and ( )jmb x  is a Gaussian pdf 
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where jmµ  and jmΣ  are respectively the mean vector and  the 

covariance matrix of the mth mixture component of state j. It is 

also assumed that the covariance matrices are diagonal. The 

gradient of the objective function is 
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Differentiating 
( )n

d  in order to a parameter θ  of an 

HMM and assuming, without loss of generality, that 0k =  

corresponds to a labelled (lab) utterance, results in 
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These last parameters weight the importance of the 

competing sequence k in the solution and add up to 1. In order 

to simplify the analysis, the following parameters are 

introduced: 
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δ(m,n) is the Kronecker delta function. Expression (18) can be 

interpreted as the weight of the mth component in the overall 

mixture.  

Resuming the differentiation that began in (9), in order to 

obtain all parameters of the HMMs and make the gradient 

vanish, we obtain the following estimation expressions for 

each vector component l: 
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To obtain estimation expressions of probability transitions 

or Gaussian mixture weights, we need to ensure that the 

following stochastic restrictions are verified: 
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where ( )h

sN  is the number of states of HMM h. Using 

Lagrangian multipliers the solutions are 

 
( )

( )

( )

( )

1

h
s

h

ijh

ij N

h

ij

j

p
a

p
=

=

∑
; 

( )

( )

( )

( )

1

h
j

h

jmh

jm M

h

jm

m

d
c

d
=

=

∑
 (22) 

where 
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It should be noted that some other constraints need to be 

verified: 
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with the constraint that 0 1η≤ < . Note that when 0η =  

FMET leads to ML training. 

2.4. Training Procedure 

It should be noted that this algorithm is intended for batch 

mode operation. The main steps to FMET implementation are 

the following: 

 

1. Initialize all HMMs with ML (or take η=0). 

2. Accumulate (14), (15), (16) and (17) for all training 

utterances. 

3. Determine ( )h

iL  and ( )h

jL  for all HMMs and states, 

according to (26) and (27), respectively. 

4. Update all HMMs parameters computing (19), (20)

and (22), using (23) and (24). 

5. Save the new HMMs and evaluate the performance 

using the updated HMMs. 

6. Return to step 2) until the required number of 

iterations is reached.  

 
If the performance does not improve in one iteration, it 

will normally improve in the subsequent ones. Also, the 

FMET first result, in all experiments, was better than the best 

GD result over several iterations. 

3. Experiments and Results 

The experiments were carried out using a Portuguese speech 

command database [8]. The training set consisted of 103001 

utterances and the test set consisted of 27382 different 

utterances of 254 commands. 

Acoustic models were built for monophones, triphones 

and words using HTK3.4 [9]. The input features were 12 

MFCCs plus energy, and their first and second order time 

derivatives computed at a rate of 10ms and within a window of 

25ms. Evaluation was done by means of accuracy rate. 

To describe the Portuguese language 38 monophones were 

used plus a silence model. Each class was modelled by a three-

state left-to-right HMM, except the silence one where 

transitions to previous states were allowed. Each state was 

modelled using a mixture of 16 Gaussians. The set of 

triphones is composed by 955 HMMs (found in the 254 

commands) also with 16 Gaussians. The 255 whole-word 

models correspond to the 254 commands plus the silence. The 

number of emitting states ranged from 3 to 39 modeled with 

10 Gaussians. The test was carried out using a task grammar 

with all the 254 word-commands in parallel, preceded by and 

ending with the silence model.  

One of the initial conditions of the method is the choice of 

the λ  in (10) and in α  (13) parameters. Using typical Viterbi 

decoding scores we found 0.05λ =  and 0.001α =  a good 

trade-off between these two parameters. In FMET a value of 

η  between 0.6 and 0.8 was used. In MCE using Rprop the 

update value of each HMM parameter was set by multiplying 

0.01 by each parameter value, and the increasing and 

decreasing factors were η+=1.2 and η−=0.5, respectively. For 

MMI and MPE the i-smoothing and learning rate factors were 

set as suggested in [9]. 

Table 1 presents the results obtained after training the 

HMMs with only one iteration of FMET. The results with 

Rprop were obtained with 10 iterations for monophones and 2 

iterations for triphones and words. The results with MMI and 

MPE are the best obtained after 4 iterations. In fact, the results 

with MPE for triphones decreased at the 2nd iteration and then 
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increased again at further iterations. As can be seen the single 

iteration of FMET method outperform Rprop, MMI and MPE 

using triphone and whole-word models.  

 

Table 1 – Comparison of FMET, Rprop, MMI and 

MPE performances. 

Method Monophones Triphones Word 

ML (before) 90.87% 97.48% 96.82% 

MCE/Rprop 91.53% 97.55% 96.92% 

MMI 91.95% 97.53% 96.92% 

MPE 91.97% 97.55% - 

FMET (1st it.) 91.86% 97.66% 97.28% 

 

With monophone models, MMI and MPE methods 

outperform FMET’s first iteration result but only at the 4th 

iteration. This is shown in Figure 1 where the evaluation 

performances with monofone models over the first 4 iterations 

are presented. 
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Figure 1: Performance comparison with monofone models. 

 

4. Conclusions 

In this paper a fast training algorithm based on MCE was 

introduced. This algorithm attempts to minimize the objective 

function in a single step. A new objective function was also 

proposed. Although the convergence of this method cannot be 

guaranteed, it has been shown experimentally that this method 

produces much better results than the Rprop, MMI or MPE 

approach. Moreover, it does not only achieve better results 

faster, but also archive results that other approach cannot 

achieve with several iterations. The presented results, although 

preliminary, allow us to extend the conclusions derived in [6] 

for the MCE-based HMM parameter estimation. As future 

work we intend also to apply the method to other well-known 

speech databases and larger tasks. 
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