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Abstract

The paper describes aspects, methods and results of the devel-
opment of an automatic transcription system for Catalan broad-
cast conversation by means of speech recognition. Emphasis
is given to Catalan language, acoustic and language modelling
methods and recognition. Results are discussed in context of
phenomena and challenges in spontaneous speech, in particular
regarding phoneme duration and feature space reduction.

1. Introduction
The transcription of spontaneous speech still poses a chal-
lenge to state-of-the-art methods in automatic speech recogni-
tion. Spontaneous speech exhibits a significant increase inintra-
speaker variation, in speaking style and speaking rate during its
term. It involves phenomena such as repetition, repair, hesi-
tation, incompleteness and disfluencies. The increase in spon-
taneity compared to planned or read speech leads furthermore
to a reduction in spectral or feature space respectively, and in
duration. The paper focuses on aspects of the development of
a transcription system for Catalan broadcast conversations by
means of automatic speech recognition carried out in the frame-
work of the TECHNOPARLA project [1].

The subsequent sections address major aspects of the Cata-
lan language, characteristics of the underlying broadcastcon-
versational speech, as well as a description of the methods ap-
plied for feature extraction, acoustic and language modelling,
and in recognition. Results are discussed and put into context
by examining phenomena of spontaneous speech, assessing fea-
ture distribution, duration and disfluencies of speech in broad-
cast conversation.

The ASR acoustic model (AM) training and decoding sub-
system have been developed in the RWTH Open Source ASR
framework [2].

2. Catalan Language
Catalan, mainly spoken in Catalonia - a north-eastern region of
Spain - and Andorra, is a Romance language. As its geographic
proximity suggests, Catalan shares several acoustic phonetic
features and lexical properties with its neighbouring Romance
languages such as French, Italian, Occitan and Spanish. Never-
theless there are fundamental differences to all of them. Sub-
stantial dialectual differences divide the language into an east-
ern and western group on the basis of phonology as well as

verb morphology. The eastern dialect includes Northern Cata-
lan (French Catalonia), Central Catalan (the eastern part of Cat-
alonia), Balearic, and Alguerès limited to Alghero (Sardinia).
The western dialect includes North-western Catalan and Valen-
cian (south-west Catalonia). Catalan shares many common lexi-
cal properties with the languages of Occitan, French, and Italian
which are not shared with Spanish or Portuguese. In compari-
son with Spanish that has a faint vowel reduction in unstressed
positions, Catalan exposes vowel reduction in various varieties
- in particular with the presence or absence of the neutral vowel
”schwa” /@/. More specifically, the appearance of a neutral
vowel in reduced position in eastern Catalan is regarded as a
fundamental distinction to western Catalan. Among the eastern
dialects, Balearic allows the neutral vowel in stressed position
unlike Central Catalan and the western dialects [3]. The voiced
labiodental fricative /v/ is confined to Balearic and northern Va-
lencian, while in the remaining dialects the sound converges as
bilabial /B/ [4]. In Eastern Catalan, the Nasals /m/ (bilabial),
/n/ (alveolar), /J/ (palatal), and /N/ (velar) appear in final posi-
tion. /m/, /n/, and /J/ also appears intervocalically. /N/ is only
found word internally preceding /k/ [5]. The voiced alveolar
liquid /rr/ in word final position only appears to be pronounced
in Valencian. Furthermore, a word final voiceless dental stop /t/
is omitted in the Eastern and Northern dialectual region.

3. Broadcast Conversational Speech

The broadcast conversational speech data used during these
studies originate from 29 hours of transcribed Catalan television
debates (known as̀Agora), 16% interferred with background
music, 4% with overlapping speech and 3% originating from
replayed telephony speech. The debates exhibit sporadic ap-
plause, rustle, laughing, or harrumph of the participants.Seg-
ments containing background music, speaker overlap, and tele-
phony speech have been excluded at this stage, and are subject
of separate studies. Short term events of the same remained
in the data, since a removal of affected words may fragment
the recordings. Speakers intermittently also tend to use Span-
ish words in conversations due to their virtual bilinguality. Also
Spanish proper names remain as such. The gender distributesto
1/3 female,2/3 male respectively. The speaking style features
95% spontaneous speech, the remainder planned speech. Most
speakers are not considered professional.
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4. Acoustic Model
An initial Catalan acoustic model (AM) was derived from a
Spanish AM that was developed during the project TC-STAR
[6]. While carrying out the first alignment iteration, Catalan
allophones that extend the original set of Spanish allophones
borrow the appropriate models from the original AM instead of
following the approach of using monophone context indepen-
dent models to bootstrap context dependent models.

The original feature space comprises 16 Mel frequency cep-
stral coefficiants (MFCC) extended by a voicedness feature,
whereas the cepstral coefficiants are subject to mean and vari-
ance normalisation. Vocal tract length normalization (VTLN)
is applied to the filterbank. The temporal context is preserved
by concatenating the features of 9 consecutive frames. Subse-
quently a linear transformation reduces the dimensionality.

A training phase is carried out by several steps: Prior to
the AM estimation, a linear discriminative analysis estimates
a feature space projection matrix (LDA). Furthermore, a new
phonetic classification and regression tree (CART) is grownfol-
lowed by Gaussian mixture estimation, that iteratively splits and
refines the Gaussian mixture models.

The AM provides context dependent semi-tied continuous
density HMM using a 6-state topology for each tri-phone. Their
emission probabilities are modelled with Gaussian mixtures
sharing one common diagonal covariance matrix. A CART ties
the HMM states to generalized triphone states.

Based on the broadcast conversational training data, the
baseline AM has been estimated passing a number of iterations
of re-alignment and intermediate model estimation, whereas
LDA and CART are re-estimated twice per iteration.

VTLN Gaussian mixture classifier estimation during train-
ing employs solely normalised MFCC.

The iterative training procedure has been enhanced by us-
ing Maximimum Likelihood Linear Regression (MLLR) [7]
adapted AM during the first Viterbi alignment of acoustic train-
ing data within an iteration.

In addition to the speaker independent AM, Speaker Adap-
tive Training (SAT) [8] has been employed, aiming to model
less speaker specific variation in the (SAT) AM. It compensates
the loss of speaker specificity of the SAT AM through speaker
specific feature space transforms using CMLLR [7]. The trans-
forms are estimated using a compact AM, i.e. a single Gaussian
AM, with minimal speaker discriminance. The SAT formalism
relies on the concept of acoustic adaptation and is as such ap-
plied estimating the feature transforms of corresponding speak-
ers in recognition.

In summary, AM estimation has been carried out for 2
types: a speaker independent AM and a SAT-AM.

Besides the training data of broadcast conversation
(ÁGORA) - statistics outlined in Table 1, 2 additional rich
context speech corpora were evaluated selectively for training:
a read speech corpus (FREESPEECH) and spontaneous utter-
ances of the SpeeCon corpus (SPEECON-S), see Table 2. The
FREESPEECH corpus in its entirety displayed a degradation of
accuracy, and therefore is not further described.

Comparing the ratio of number of running words and to-
tal duration in Table 1 and 2 indicate significant differences in
speed, although the speaking style for both is considered spon-
taneous.

The phoneme set contains 39 phonemes + 6 auxiliary units
for silence, stationary noise, filled pauses and hesitations, as
well as speaker and intermittant noise. Pronunciations were
modelled with the UPC rule based phonetizer considering the

Transcribed Data [h] 20

# Segments 21420
# Speakers 275
# Running Words 272k

Table 1: Statistics on acoustic model training data
ÀGORA

Transcribed Data [h] 31

# Segments 11190
# Speakers 140
# Running Words 280k

Table 2: Statistics on acoustic model training data
SPEECON-S

4 dialectual regions Eastern, Valencian, Balearic and North-
Western Catalan in training and recognition.

5. Language Model and Vocabulary
Language model and vocabulary for recognition are derived
from a textual corpus, composed of articles of the online edi-
tion of ’El Periodico’, a weekly journal published in Catalan
and Spanish. It encompasses 10 subsets, each focused on a
separate topic with a total size of 43.7 million words, 1.8 mil-
lion sentences respectively. The 4-gram backing-off language
model comprises about 10.1 M multi-grams and achieves min-
imal perplexity (PPL) with a linear discounting and modified
Kneser-Ney smoothing methodology. The estimation of lan-
guage models is carried out with the SRI LM toolkit [9]. The
lexicon contains the 50k most frequent words of the ’El Period-
ico’ corpus. As for AM training, each word received multiple
phonetic transcriptions.

6. Recognition and Results
The recognition follows a multi-pass approach, depicted inFig-
ure 1, i.e. a first pass using the speaker independent AM, fol-
lowed by segmentation and clustering of segments, a second
and third pass, both applying the SAT based AM. Whereas the
corresponding feature space transforms for a speaker cluster are
again estimated using CMLLR. The third pass receives a model
parameter adaptation by means of MLLR [10]. Both last passes
derive their adaptation transform estimates from unsupervised
transcriptions of their previous recognition pass.

Dev-Set Test-Set

Duration [h] 0:45 1:15
# Speakers 10 17
# Running Words 8120 14916
µ [s] speaker duration 227 265
σ [s] speaker duration 95 142
OOV [%] 4.2 3.5
PPL 223.7 199.6

Table 3: Statistics on development and test set for recognition

The overall recognition results in Table 4 and 5 -µ denotes
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Figure 1: Multi-pass system architecture for recognition.

Dev-Set Test-Set
WER % µ µs σs µ µs σs

1. Pass 38.1 37.6 9.8 34.2 33.1 7.6
2. Pass 35.9 35.2 9.7 30.8 29.3 7.4
3. Pass 35.1 34.9 9.5 30.2 28.9 7.3

Table 4: Recognition results in multi-pass system architec-
ture usingÀGORA Corpus

Dev-Set Test-Set
WER % µ µs σs µ µs σs

1. Pass 34.2 32.2 9.4 28.2 27.5 6.6
2. Pass 33.9 32.0 9.4 26.1 25.5 6.3
3. Pass 33.4 31.5 9.1 25.8 25.2 6.2

Table 5: Recognition results in multi-pass system architec-
ture usingÀGORA and SPEECON-S Corpus

the word-error-rate (WER) across the two sets,µs, σs the mean
and standard deviation of WER across speakers - are fairly high
at first glance, but need to be reviewed considering three ma-
jor aspects: the phenomena of broadcast conversational speech,
the amount of available adequate acoustic and language model
training data, and the composition of training and testing data.

The development set, although biased due to parameter
optimization, poses a larger challenge than the test set. Fur-
thermore, the higher standard deviation across the individual
speaker error rates in the development set suggests speakers
of particular challenge. A larger perplexity (PPL) and out-of-
vocabulary rate (OOV), as indicated in Table 3 may additionally
account for the differences. Although Table 3 exhibts a gener-
ally high PPL, the distribution of segment PPL (not displayed)
shows a positive skewness indicating a few high perplexity out-
liers. A breakdown of these exceptions particularly highlights
words at segment boundaries and repetitions as contributors. It
emphasises the limitation of the current language model with
respect to phenomena of spontaneous speech as it is estimated
solely on news paper articles. Moreover, words with unknown
context account for exceptional high PPL. A reduction of OOV
by using more textual data will diminish this effect.

Although the SPEECON-S data differ in the level of spon-
taneity (data collection environment) from those ofÀGORA,
the extension of the acoustic training data provides an improve-
ment of relative 17%.

Comparing the results of the speaker independent recogni-
tion of the 1. pass with those using the SAT AM in 2nd and
3rd pass in Table 5, there are larger improvements. As both,
the 2nd and 3rd pass use speaker adaptation based on previ-
ously obtained unsupervised transcriptions, potential improve-
ments tend to be lower due to the overall lower level of accu-

racy. Moreover, considering the observed mean and standard
deviation for speaker durations in Table 3, the estimated trans-
formations for speaker adaptation may be less reliable and lead
to non-favourable speaker adaptation.

7. Discussion
In broadcast conversation, speech exhibits various speaking
styles with a continuous and frequent change. These can be
qualified as planned, extemporaneous or highly spontaneous.
Putting the results into context, three major phenomena were
assessed: duration reduction, feature distribution reduction, as
well as ratios of filled pauses, mispronunciations and word frag-
ments.

In order to qualify the exposed speaking style for the con-
versational broadcast transcription task, duration and feature
space were examined, and compared to those of read speech.
The latter was retained from the Catalan FREESPEECH
database comprising read-aloud sentences. As auxialiary exper-
iments indicated, the accuracy obtained for this task was above
95% WER.

Duration reduction for both vowels and consonants is a
known phenomenon in spontaneous speech [11]. Phoneme
durations have been obtained from pruned forced alignments.
Figure 2 depicts the duration of phonemes regarding read
speech (FREESPEECH) and spontaneous broadcast conversa-
tion (ÁGORA). Speech in conversational broadcast exhibits a
significantly lower mean duration for all phonemes and an in-
creased standard deviation compared to read speech. The in-
creased standard deviation suggests a significant higher vari-
ability of the exposed speech in broadcast conversation butalso
an alteration of its style.
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Figure 2: Mean phoneme durations of broadcast conversational
and read speech.

The standard deviations indicate a blurred transition be-
tween the two. This fact and the noticeable high variation in
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phoneme duration of broadcast conversation suggests a method-
ological change in modelling durations. The HMM topology
as mentioned above, also referred to as One-Skip HMM, re-
ceives a global set of transition probabilities. Noticing variation
in speaking style, these parameters should be instantaneously
adaptable, specific to phoneme or allophone respectively.

A feature distribution analysis compares feature distribu-
tions of each phoneme given spontaneous broadcast conver-
sational and read speech. The phoneme specific feature dis-
tributions have been estimated based on labeled feature vec-
tors containing 16 Mel-frequency cepstral coefficiants (MFCC),
whereas the labels originate from the pruned forced alignments.
The ratio of phoneme feature distributions has been defined ac-
cording to [12] as||µp(C)−µ(C)||/||µp(R)−µ(R)||, whereas
µp denotes the center of distribution of phonemep given broad-
cast conversational speech (C), and read speech (R) respec-
tively. µ(.) is the average of the phoneme specific means. The
phoneme feature distribution ratios shown in Figure 3 indicate
significant differences of MFCC feature distributions for all
phonemes in broadcast conversation compared to read speech,
in most cases depicting a large reduction. As suggested in [12],
the reduction in feature distribution ratio correlates with a loss
in accuracy.
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Figure 3: Phoneme feature distribution ratios between broadcast
conversational and read speech.

At last, the fraction of filled pauses, word fragments and
mispronunciations for broadcast conversational speech and read
speech was determined from their corresponding transcriptions.
Linguistically, the broadcast conversations possess frequent
repetition and repairs. Mispronunciations and incompleteness
encompass 3.6% of the transcribed spoken events, filled pauses
6.5% - both emphasising the spontaneity of the language. On
the other hand, read speech exhibits linguistically neither repe-
tition nor repair. The proportion of mispronunciations andin-
completeness is below 0.3%, the one of filled pauses 0.8%. Dif-
ferences in these ratios emphasises the assessment above.

8. Conclusion
Catalan, as a regional language poses the issue of availability
of large amounts of appropriate data. Recent evaluations in
broadcast conversational respectively spontaneous speech op-
erate with an amount of AM training data with a factor 4 to
20. Given the high variability in feature space of spontaneous
broadcast conversations, larger amounts of acoustic training

data are desireable to estimate models and transforms more reli-
ably. As the language model corpus is derived from textual writ-
ten language, the phenomena addressed above have not been
modelled. OOV and PPL still exhibit a lack of appropriate in
domain data for both LM and vocabulary.

The results are considered as baseline and encourage for
further efforts towards approaches to tackle the problem of
acoustic and linguistic data sparseness, discriminativeness of
features particular of spontaneous speech.
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