
A task-independent stochastic dialog manager for the EDECAN project

Francisco Torres Goterris

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia, Spain

ftgoterr@dsic.upv.es

Abstract
The adaptation of a stochastic dialog manager to work in a
new domain is presented. A dialog manager, previously
developed to attend a specific task (queries about train
services), has been modified to be used in a different domain
(a sport courts booking system). The new manager deals with
both tasks, just loading their corresponding bigram models and
configuration files. A user simulator technique has been
applied to acquire a corpus, and to automatically learn the
models. The dialog manager using the learnt models has been
evaluated, achieving satisfactory results for using them in an
acquisition with real users.
Index Terms: dialog management, stochastic models, domain
independence, user simulation.

1. Introduction
The statistical approach to the design of spoken dialog
systems has provided satisfactory results, as in [1], [2], and
[3], and it is currently a way open for further improvements.
Some drawbacks of this approach, as the high cost of the
acquisition of the corpora and the evaluation made by
interacting with human users, have been dealt with different
strategies as, for instance, the user simulation techniques, as in
[4], [5], and [6]. Equally, important efforts have been made to
develop dialog systems that can be easily adapted to different
domains, i.e., to obtain task-independent dialog systems, as in
[7], and [8]. In this paper, the adaptation of a stochastic dialog
manager to work in a new domain is explained. This
adaptation is one of the objectives in the EDECAN [9]
research project.

Up to now, we have developed a dialog system for the
BASURDE [10] and DIHANA [11] tasks, which provides
access to an information system for train timetables, prices,
and services. In this system, the dialog manager [12] uses a
stochastic dialog model that is a bigram model (BM) of dialog
acts. The information provided in previous turns of the dialog
(i.e., data out of the scope of the BM) is stored in a historic
register (HR). The dialog manager selects a new state, which
will determine its following action, taking into account the last
user turn, the probabilities of the available transitions in the
BM, and the degree of appropriateness of these transitions
given the content of the HR.

In addition, we have developed a user simulator [13] that
allows us to acquire synthetic dialogs, learn dialog models,
and evaluate the system. The behavior of the user simulator is
determined by the same BM, and by some heuristic rules that
implement a collaborative dialog strategy (in order to generate
consistent dialogs, which will be useful for learning dialog
models). These collaborative rules are domain independent.

During an acquisition of simulated dialogs, on the one
hand, the dialog manager decides its strategy using its BM and
its HR, and can automatically verify the success of the dialogs

and modify the BM, readjusting the probabilities of the
transitions. On the other hand, the user simulator just provides
an appropriate flow of user turns to easily generate consistent
dialogs. This user simulation technique has been demonstrated
valid to test the dialog manager and to enhance its BM [13].

In the research that is reported here, we have pointed to
three aims. First, we have converted the BASURDE/DIHANA
dialog manager into a task-independent dialog manager.
Second, we have migrated to JAVA, developing a platform-
independent prototype. Third, we have applied the user
simulation technique to test the dialog manager in the
EDECAN task: acquiring a dialog corpus, and learning an
initial stochastic dialog model. We have obtained a dialog
manager that works suitably in a dialog system for booking
sport courts (the EDECAN task).

In Section 2, the EDECAN task and the design of its BM
are described. In Section 3, the stochastic dialog manager is
revised. In Section 4, the prototype is described, and some
results of its evaluation in both tasks are reported. Finally, in
Section 5, some conclusions are presented.

2. Task and dialog model description
The EDECAN project is focused on the adaptation of dialog
systems to different acoustic environments and to different
semantic domains. One of these tasks consists of a sport courts
booking system (called the EDECAN task in this paper).

The EDECAN task has been semantically characterized by
identifying the concepts and attributes involved in a set of
dialogs with real users (recorded by the sport courts booking
system of our University). The concepts are the goals of the
user queries, and they are the following: AVAILABILITY
(queries about availability of courts), BOOKING (bookings of
courts, given certain restrictions), BOOKED (queries about
currently booked courts) and CANCELLATION (cancellations of
the bookings of courts). The attributes are the items that the
user must or can provide to specify his/her goals, and they are
the following: SPORT, DATE, HOUR, COURT-TYPE, and COURT-
ID.

In addition, these dialogs with real users have been studied
to design a set of scenarios, which are used in the acquisition
of a dialog corpus. Different levels of complexity have been
established in the proposed set of 15 scenarios. For instance,
the first and the last of them have been coded as follows:

• Scenario-1: <AVAILABILITY> SPORT [COURT-TYPE] [DATE]
[HOUR].

• Scenario-15: <BOOKED> <CANCELLATION> [SPORT]
[DATE] [HOUR] [<AVAILABILITY>] <BOOKING> SPORT
[COURT-TYPE] DATE HOUR.

Scenario-1 consists of a query about availability on a
certain sport, allowing the user to specify date, hour, and
court-type. Scenario-15 is a complex scenario, and it can be
decomposed into three phases: (1) the user has to obtain the
list of his/her booked courts; (2) the user has to cancel some

Proceedings of the I Iberian SLTech 2009

9

courts of the previous list, and s/he can optionally provide the
sport, the date, or the hour, to specify the booked court whose
cancellation s/he wants; and (3) the user has to book some
courts providing the sport, the date, and the hour, and s/he can
supply the court-type, or can make an availability query.

Thus, dialogs of complex scenarios are dialogs composed
by sequences of sub-dialogs, and there are sub-dialogs that
share information among them. This circumstance occurs
between the BOOKED and CANCELLATION sub-dialogs, and also
between the AVAILABILITY and BOOKING sub-dialogs.

In the DIHANA project, the acquired dialog corpus was
labeled applying the concept of dialog act and a hierarchy of
three levels. In this hierarchy, the first level (L1) identifies the
generic dialog act; the second level (L2), the semantic of the
task; and the third level (L3), the instantiated attributes. Once
each dialog turn was labeled, each dialog consists of a
sequence of dialog acts. Thus, the structures of the dialog
models are represented by sequences of dialog acts.

However, at the moment of carrying out the work reported
here, there was not any EDECAN dialog corpus. Thus, after
studying the corpus facilitated by our University, we have
defined a set of labels for describing the semantic of the task,
according to the scheme of a hierarchy of three levels. The L1
labels are the following: OPENING, CLOSING, WAITING, NEW-
QUERY, QUESTION, CONFIRMATION, ANSWER, CHOICE, NOT-
UNDERSTOOD, ACCEPTANCE, REJECTION. The L2 and L3 labels
are the following: AVAILABILITY, BOOKING, CANCELLATION,
BOOKED, SPORT, DATE, HOUR, COURT-ID, COURT-TYPE, NIL.

Using this label set, we can define the descriptors of the
dialog states that will be the nodes of the BM. For instance,
the (U:QUESTION:BOOKING:DATE) descriptor identifies a state in
which the user asks for booking a court, specifying the date
s/he wants to play. Equally, the (S:ANSWER:BOOKING:COURT-
ID,HOUR) (S:CHOICE:BOOKING:NIL) descriptor identifies a state
in which the system supplies a list of courts (providing their
court-ids and time-slots) that can be booked, and asks the user
for choosing one of them. Figure 1 illustrates this approach.

In Figure 1, the user asks for something (L1: QUESTION),
the question is about bookings (L2: BOOKING), and s/he
provides the values of two attributes (L3: DATE, SPORT). In the
following turn, the system answers by making a confirmation
(L1: CONFIRMATION) of the court-type (L2: COURT-TYPE) and it
provides the value of this attribute (L3: COURT-TYPE). Then,
the user carries out two dialog acts in the same turn: s/he
rejects (L1: REJECTION) the court-type proposed by the system,
and s/he provides (L1: ANSWER) other value of this attribute.

Starting from this labeling proposal, we have built an
initial BM for the EDECAN task. The states of this BM are
defined by one or several identifiers that match the (US-ID:L1-
ID:L2-ID:L3-ID) pattern, where US-ID is U or S depending on the
turn corresponds to the user or to the system, L1-ID is one of
the L1 labels, and L2-ID and L3-ID are one or several of the L2

and L3 labels, respectively. The transitions between states
have been established connecting any user (system) state to all
the system (user) states. All the transitions have the same
probability (i.e., given that there are 228 user states and 266
system states, the probability of the transition to any user state
is 1/228, and the probability of the transition to any system
state is 1/266). Thus, this initial BM is an equiprobable model.
Given a certain current dialog state, the dialog manager will
choose any following state without influence of statistical
information.

Could I book a tennis-court on next Friday?
(U:QUESTION:BOOKING:DATE,SPORT)

Do you want to play on a lawn court?
(S:CONFIRMATION:COURT-TYPE:COURT-TYPE)

No. I want a clay court.
(U:REJECTION:COURT-TYPE:NIL)
(U:ANSWER:COURT-TYPE:COURT-TYPE)

Figure 1: Labeling a segment of a hypothetic dialog.

3. Task-independent dialog management
Spoken dialog systems are usually integrated by six modules:
speech recognizer, language understanding module, dialog
manager, database manager, language generator, and speech
synthesizer. However, in this approach of training models
through a synthetic acquisition, only the text is used, and
neither speech recognizers nor speech synthesizers are part of
the prototype. Figure 2 shows its block diagram.

In a synthetic acquisition, the understanding module
receives the sentences generated by the user simulator,
extracts its meaning, and builds a set of user frames or
semantic representations. Up to now, this module is an
application restricted to the BASURDE and DIHANA tasks,
and it is not used in an EDECAN acquisition. Thus, the frames
generated by the user dialog manager (UDM) are directly
provided as input to the generic system dialog manager
(GSDM), with the possibility of applying some error
simulations.

The GSDM receives these user frames, decides the system
dialog strategy (taking into account its BM, its system historic
register, SHR, and the domain parameters, DP), and builds a
set of system frames, which formalizes the chosen behavior. In
addition, this manager interacts with the database manager.

The UDM receives the system frames, decides the user
dialog strategy (taking into account its BM, its user historic
register, UHR, and a set of target planning rules, TPR), and
builds the user frames. This manager follows a collaborative
strategy, defined by the TPR and a set of task scenarios.

The database manager attends the queries of the GSDM.
The user/system language generators (ULG/SLG) translate the

Dialog System
Generic System Dialog

Manager (GSDM)

Understanding Module System Language
Generator (SLG)

text frames frames text

Database
Manager

User Simulator

frames User Dialog Manager
(UDM)

frames User Language
Generator (ULG)

text

UHR TPR BM

DP BM SHR

Figure 2: Task-independent dialog system block diagram.

Proceedings of the I Iberian SLTech 2009

10

user/system frames into Spanish or English sentences. Both
modules work using a set of templates and a set of rules for
instantiating the templates.

Figure 3 shows the algorithm of the dialog manager in its
usual role of system interlocutor. The algorithm of the UDM
(i.e., the dialog manager when it plays as user interlocutor)
differs slightly from the GSDM algorithm. Both managers use
the same dialog model that is a BM of dialog acts.

Initialization (DP, SHR);
Read (BM); BM.state = OPENING;
BM.mode = Select (STATIC, DYNAMIC);
REPEAT Read (U-frames);
 BM.input = Adapt (SHR, U-frames);
 BM.state = Transit (BM.state, BM.input);
 SHR = Update (SHR, U-frames);
 BM.state = Transit (BM.state, SHR);
 SHR = Update (SHR, BM.state, BD.info);
 S-frames = Adapt (BM.state, SHR);
 Write (S-frames);
 IF (BM.mode = DYNAMIC) Update (BM);
UNTIL BM.state = CLOSING;
IF (BM.mode = DYNAMIC)
 Read (UHR);
 success = Compare (UHR, SHR);
 IF success Write (BM);

Figure 3: System Dialog Manager (GSDM) algorithm.

Now, we describe the steps of both algorithms, starting
with the GSDM algorithm. At the beginning of each dialog,
the GSDM performs the following three actions: (1) it
initializes the domain parameters (DP) and the SHR, whose
structure is task-dependent; (2) it reads the BM, and selects
the initial state, which is the opening of dialog; and (3) it
establishes the way of using the BM. In static mode, BM
cannot be modified. In dynamic mode, BM can be modified
when successful dialogs are carried out.

Then, and for each sequence of turns between the user and
the system, the GSDM performs the following actions: (1)
reading of the user frames; (2) identification of the user dialog
acts corresponding to the user frames, and generation of their
semantic generalizations; (3) transition to a user state in the
BM, stochastically, using the semantic generalizations; (4)
updating of the SHR with data from the user frames; (5)
transition to a system state in the BM, taking into account the
probabilities of the available transitions in the BM, and a set
of heuristic rules (that check the consistence of the transitions
against the content of the SHR); (6) updating of the SHR in
the case of querying the database; (7) building of the semantic
representation of the system turn (system frames); (8) writing
of the system frames, providing them to the SLG and UDM
modules; and (9), in case of working in BM dynamic mode,
increasing of the counters of the chosen transitions.

The dialog ends when the closing state is reached. After
this, and if it is working in BM dynamic mode, the following
actions are made: (1) reading of the UHR; (2) verification of
the success of the dialog by comparing both registers; and (3),
in case of successful ending, the modified counters of the
chosen transitions are used to recalculate the probabilities of
all the transitions in the BM (which is consolidated into file).

More details about the dialog manager algorithm can be
found in [12], especially in key aspects as the semantic
generalization technique, and the determination of the system
behavior following a hybrid dialog strategy, which is half
stochastic (by using BM) and half heuristic (by using SHR).

On the other hand, the UDM performs the following
actions at the beginning of each dialog: (1) it reads the DP,
including the data of the scenario, and stores them in its UHR;
(2) it reads the BM, and looks for a state to ask for the goals of
the scenario; and (3) it generates the corresponding question
frames. In each dialog turn, the UDM performs the following
actions: (1) reading of the system frames; (2) semantic
generalization of the frames; (3) transition to a system state in
the BM, stochastically, using the semantic generalizations; (4)
updating of the UHR with data from the system frames; (5)
transition to a user state in the BM, heuristically, taking into
account the TPR; and (6) generation of the user frames.

More details about this user simulator algorithm can be
found in [13], especially the use of heuristic rules to establish
the collaborative dialog strategy.

It must be remarked that both algorithms are task-
independent. All the information about the tasks has been
encapsulated into the bigram models, the scenarios, and other
configuration files. Thus, the data-structures (models,
registers) are initialized using the files that correspond to the
selected task, and the methods called in both algorithms have
been appropriately parameterized.

4. Development and evaluation
We have developed a JAVA platform, available in [14] as an
applet, which corresponds to the design of the dialog system
described in Section 3. Figure 4 shows a screenshot of this
prototype in a turn of a synthetic dialog of the EDECAN task.

By means of this application, it is possible to acquire
dialogs of both tasks, selecting several ways of working. In the
interactive mode, any human user can provide the input
frames through a graphical interface, and s/he can read the
system answers, carrying out complete dialogs.

In the simulation mode, the dialog is completely done by
the platform. The prototype allows us to simulate dialogs turn
by turn, or whole dialogs, or series of any number of dialogs,
and to specify which scenarios are simulated. In addition, the
user frames can be altered by including errors in the attributes
whose values are critical to achieve the success of the dialog.
Moreover, there are the test and training sub-modes, which
correspond to the static and dynamic modes of using the BM.

The applet area consists of seven areas of text. The three
areas on the left, from top to bottom, are the real user
graphical interface, the output of the UDM (user frames), and
its internal state (BM transitions, and UHR content). The three
areas on the right, from top to bottom, are the output of the
SLG (system sentences), the output of the GSDM (system
frames), and its internal state (BM transitions, and SHR
content). In the bottom text area, the whole dialog is collected.

Using this prototype, we have executed several training
sets for the EDECAN task, starting from the BM described in
Section 2. Different trainings have been done by enabling or
disabling the simulation of input errors (each training set
contains 4,000 dialogs for each scenario, i.e., a total of 60,000
dialogs). Then, several test sets have been done to evaluate the
learnt models (15,000 dialogs per test set). In addition, several
test sets for the BASURDE task have been carried out. Table 1
summarizes the more important statistics of these test series.

Table 1. Evaluation of the prototype in both tasks.

Task BASURDE EDECAN
Success rate 98.7 97.1 99.7 85.3
Errors per dialog 0.00 1.02 0.00 1.04
Turns per dialog 6.95 7.51 7.28 8.07

Proceedings of the I Iberian SLTech 2009

11

These results are enough satisfactory. The prototype
works appropriately with the BASURDE task. In previous
tests [13], a success rate of 71.8% was achieved introducing
1.12 errors per dialog (and with an average duration of 4.42
system turns). Now, the success rate has risen to 97.1% (with
a lower error rate: 1.02 errors per dialog). This enhancement
can be explained by the increase of the duration (7.51 system
turns), which is due to a greater number of confirmations.

In addition, the prototype works finely with the EDECAN
task. The success rate of 85.3% (achieved introducing 1.04
errors per dialog) is lower than the one obtained in the
BASURDE test, because the EDECAN task and scenarios are
more complex than the BASURDE ones. This fact also
explains the higher duration (8.07 system turns).

It must be remarked that the dialog manager applies the
hybrid dialog strategy [12]. However, the EDECAN training
starts from an initial BM, applying a heuristic strategy. To
measure the quality of the learnt model, the initial BM and the
learnt BM have been tested disabling the heuristic rules. In
such a situation, the initial BM does not work at all (its
success rate is 5.3%), whereas using the learnt BM the success
rate is 42.8% (with the same error rate). This result is coherent
with a similar experiment done for BASURDE in [13].

Nowadays, the prototype can be used in both tasks.
Although the success rates would be lower when interacting
with real users, the working of the prototype seems acceptable
to use it in a real corpus acquisition. Once this EDECAN
corpus will be available, the user simulation technique can be
applied to enhance the BM extracted from such a corpus.

5. Conclusions
In this paper, the adaptation of a stochastic dialog manager to
deal with different tasks has been discussed. A dialog system
prototype has been developed, allowing us to carry out real
and simulated dialogs, acquire a synthetic corpus, learn dialog
models, and evaluate the system using these models. The
results are enough satisfactory as to consider using the
prototype in a real acquisition with promising expectations.
Thus, future work will be oriented to acquire real user dialog
corpus for the DIHANA and EDECAN tasks, and to extend
the prototype to another semantic domains.

6. Acknowledgements
This work has been partially funded by CICYT under project
TIN2008-06856-C05-02/TIN, Spain.

7. References
[1] Levin, E., Pieraccini, R., Eckert, W., "A stochastic model of

human-machine interaction for learning dialog strategies", IEEE
Trans. on Speech and Audio Processing, 8 (1), 11–23, 2000.

[2] Young, S., "The statistical approach to the design of spoken
dialogue systems", Cambridge University, Tech. Rep., 2002.

[3] Potamianos, A., Narayanan, S., Riccardi, G., "Adaptive
categorical understanding for spoken dialogue systems", IEEE
Trans. on Speech and Audio Processing, 13 (3), 321–329, 2005.

[4] Eckert, W., Levin, E., Pieraccini, R., "User modeling for spoken
dialogue system evaluation", Proc. of ASRU – IEEE Workshop,
Santa Barbara, USA, 1997.

[5] López-Cózar, R., De la Torre, A., Segura, J.C., Rubio, A.J.,
"Assessment of dialogue systems by means of a new simulation
technique", Speech Communication 40 (2003), 387–407.

[6] Schatzmann, J., Georgila, K., Young, S., "Quantitative
evaluation of user simulation techniques for spoken dialog
systems", Proc. of SIGdial Workshop, Lisboa, Portugal, 2005.

[7] Lemon, O., Gruenstein, A., Battle, A., Peters, S., "Multi-tasking
and collaborative activities in dialogue systems", Proc. of
SIGdial Workshop, Philadelphia, USA, 113-124, 2002.

[8] Bohus, D., Rudnicky, A.I., "The RavenClaw dialog management
framework: Architecture and systems", Computer Speech &
Language (2008), doi:10.1016/j.csl.2008.10.001.

[9] Lleida, E., et al., "EDECÁN: sistema de diálogo multidominio
con adaptación a contexto acústico y de aplicación", Jornadas en
Tecnología del Habla (JTH), Zaragoza, Spain, 291–296, 2006.

[10] Bonafonte, A., et al. "Desarrollo de un sistema de diálogo oral en
dominios restringidos", JTH, Sevilla, Spain, 2000.

[11] Benedí, J.M., et al., "Design and acquisition of a telephone
spontaneous speech dialogue corpus in Spanish: DIHANA",
Proc. of LREC, Genove, Italy, 1636–1639, 2006.

[12] Torres, F., Hurtado, L.F., García, F., Sanchis, E., Segarra, E.,
"Error handling in a stochastic dialog system through confidence
measures", Speech Communication 45 (2005), 211–229.

[13] Torres, F., Sanchis, E., Segarra, E., "User simulation in a
stochastic dialog system", Computer Speech & Language, 22
(2008), 230–255.

[14] Torres, F., Prototype of the dialog system, available in
http://www.laesteladetanit.es/inicioB.htm.

Figure 4: The JAVA application of the dialog system.

Proceedings of the I Iberian SLTech 2009

12

