Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThE1.6

GENERATION OF PEDAL OPERATION PATTERNS OF
INDIVIDUAL DRIVERS IN CAR-FOLLOWING FOR
PERSONALIZED CRUISE CONTROL

Yoshihiro Nishiwaki, Chiyomi Miyajima, Norihide Kitaoka, Katsunobu Itou, and Kazuya Takeda

Abstract— This paper presents a method to generate car-
following patterns for individual drivers. We assume that
driving is a recursive process. A driver recognizes a road envi-
ronment such as velocity and following distance and adjusts gas
and brake pedal positions. A vehicle status changes according
to the driver’s operation and the road environment changes
according to the vehicle status. Driving patterns of each driver
are modeled with a Gaussian mixture model (GMM), which is
trained as a joint probability distribution of following distance,
velocity, pedal position signals and their dynamics. Gas and
brake pedal operation patterns are generated from the GMMs
in a maximum likelihood criterion so that the conditional
probability is maximized for a given environment i.e., following
distance and velocity. Experimental results for a driving simu-
lator show that car-following patterns generated from GMMs
for three different drivers maintain their individual driving
characteristics.

I. INTRODUCTION

The number of driver’s license holders and car owners
is increasing each year, and the car has obviously become
indispensable for our daily life. To improve safety and
road traffic efficiency, intelligent transportation system (ITS)
technologies, including adaptive cruise control (ACC), lane-
keeping assist systems (LKAS) and driver warning system
have been developed over the last several years [1]-[5]. Many
of these conventional methods directly estimated the accel-
eration or throttle angle and resulted in successful estimation
accuracy. However, these conventional driver assist systems
do not always suit all drivers. To improve driving comfort,
they need to be intelligently personalized based on individual
driving styles.

In this paper, we propose a method to generate car-
following patterns for individual drivers to personalize head-
way control. Gas and brake pedal operation patterns of the
target driver are modeled using Gaussian mixture models
(GMMs) [6], and car-following patterns are generated from
the statistical driver model of the target driver. Given velocity
and following distance, pedal operation patterns are esti-
mated in a maximum likelihood criterion from the GMMs.
Contrary to the conventional methods which directly estimate
the acceleration or throttle angle, our method estimates the
pedal operation signals from the driver models iteratively
given only initial conditions of velocity and the patterns
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Fig. 1. Cyclic process of driving signal generator.

of lead vehicle. The driving pattern generation method is
evaluated using driving signals collected in a simulator for
three different drivers.

II. DRIVING SIGNALS

Observable driving signals can be categorized into three
groups:
i) Driving behavior signals
(e.g., gas pedal operation, brake pedal operation, and
steering angle)
ii) Vehicle status signals
(e.g., velocity, acceleration, and engine speed)
iii) Vehicle position signals
(e.g., following distance, relative lane position, and yaw
angle).
Among these signals, we focused on the driving behavior
signals, especially drivers’ characteristics with respect to gas
and brake pedal operation.

III. GENERATION OF DRIVING BEHAVIOR SIGNALS

A cyclic process of the driving signal generator is shown
in Fig. 1. The generator is composed of the following three
parts.

o Driver model based on GMM

¢ Vehicle dynamics

o Vehicle status and relative position
First, gas and brake pedal operation signals are generated
from a driver model on the basis of vehicle status and
positions. The acceleration degree of the vehicle is calculated
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based on the velocity dynamics using the generated pedal
patterns. Vehicle status and the relative positions change on
the basis of vehicle behavior. Gas and brake pedal patterns
are regenerated from the driver model.

A. Driver Model

The driver model consists of two GMMs trained using gas
and brake pedal operation signals for the target driver. Gas
and brake pedal patterns are generated from the driver model
on the basis of vehicle status and relative position to other
vehicles.

1) Features Modeled by GMMs: GMMs model feature
x consisting of velocity V;, following distance F; with their
first and second-order dynamics AV;, AF;, A?V;Cand A?F;
and gas or brake pedal pattern G; or B; with their first-order
dynamics AG; or ABy:

T = (‘/taFt7A‘/t7AFtaA2V}7A2Ft7AGt7Gt)T' (1)

The dynamic features are calculated differently for ve-
locity/following distance and pedal patterns because pedal
patterns are the features we estimate. Hence, the dynamic
features of the pedal operation patterns include the signal at
time t + 1. We calculate the first-order dynamic features of
velocity and following distance as follows:

p ka(t =k — 1) .
T-2 )
k=1

Az(t) = z(t)

where z(t) is the velocity or following distance at time ¢. The
second-order dynamic feature is calculated from the first-
order dynamic feature based on the same equation. The first-
order dynamic features of pedal patterns are calculated using
signals at time ¢ + 1:

oD ka(t — k)
T—-2
k=1 k

= a(t+1)+C). 3)

Az(t) = z(t+1)-—

The calculation of Eqgs.(2) and (3) are shown in Figs. 2 and 3,
respectively. Dynamic features are calculated as the weighted
difference between the current or future signal and the past
signals. The weights for x(t) or z(¢ 4+ 1) and the past T' —
2 signals are equal. In the generation of driving behavior
signals, driving signals up to time ¢ are known. We define
C(t) using the known signals as follows.

T2

— k=1T]if§(t - k) )
k

k=1

o(t) =

2) Estimation of Gas and Brake Pedal Patterns: We esti-
mate the pedal patterns using GMMs based on the assump-
tion that a driver determines the gas and brake pedal patterns
from the velocity and following distance. We estimate the
gas and brake pedal patterns from the joint probability
distribution of the features so that the conditional probability
is maximized. This is a problem of maximization of the
conditional probability. The generator finds the suboptimal
maximum point of the GMM by a hill-climbing search
starting from the chosen point and generates next driving
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Fig. 2. Calculation of dynamic features for velocity and following distance
using Eq.(2).
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Fig. 3. Calculation of dynamic features for pedal operation signals using
Eq.(3).

signals. As an example, consider the generation of gas pedal
pattern. The value of gas pedal pattern G’tﬂ is estimated
based on the following equation.

Giri = argmaxp(@’ | Om), 5)

Gy

where & = (V;, Fy, AVi, AF,, A2V, A2F, AGy, Giq)T is
the feature set used in estimation. Note that z includes the
cumulative estimation error. 6, = {Wm, Wy, X} 18 the
mixture weight, mean vector, and covariance matrix of the
chosen m-th mixture component. p(z | @) is a weighted
Gaussian given as follows.

’ Wm
x| 0,)=—m
P 1Ol = o

1 ’ _ ’
-eXp{—2(CC _p’m)szl(x _IJ‘m)} (6)

We focus on the exponent and rewrite x — W, as follows.

‘/t - /Lm,l ‘/t - ,Ufm,l
Ft_,u/m.Q Ft_lffm,2
AVy = pim,3 AV = pin,3
! AFt — HUm,4 _ AFt — HUm,4
T T Hm= A2‘/t — KUm,5 N AQV;E — Um,5 (7)
A2Ft — Um,6 A2F’t — Hm,6
AGy — 7 Giy1+Cp — pim 7
G411 — om,8 Giy1 — hm,8

Then, we separate it into constant and variable terms as
follows.

‘/t — Hm,1 0

Ft — Hm,2 0

Avf - Km,3 0

T — My = AAQF‘Z _'LZ:Z + G 8
Ath — Hm,6 0

Ct = Hm,7 1

—Hm,8 1
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= a+Gig ®)
The exponential part of Eq.(6) becomes
—%(w' — ) 3 @ = )
= 5@+ Ging) S @+ i)
= (g"E,gCl, + 278, G + a5, )

2
= pmG§+1 + QmGt+1 + Ty 9

where p.,,, ¢m, and 7, are defined as follows.
1

Pm = 359" %.'g (10)

Gm = —a’'%.'g (11)
1

= fgaTE:nla. (12)

The estimate of gas pedal pattern Gt+1 that maximizes
Eq.(6) is given as follows.

Gip1=—5— (13)
Then, the suboptimal maximum value is found by a hill-
climbing search starting from the maximum point among the
estimates calculated by the above equations or intersection
points of mixture components. The intersection points are
obtained by solving the following equation with respect to

Gt+11

w;
V (2m)PI%]
wj

=——2  oxp(p;G%, + ¢:G +r;), (14
(27T)D|Ej| p(pJ t+1 T 4G+ J)( )

where ¢ and j represent the ¢-th and j-th mixture components,
respectively. Then, the logarithm of Eq.(14) becomes

(pi — )Gy + (6 — 4j)Geyr +

L
;o — 1+ log(ljl)— 0. (15)
w;|5i|2

exp(pinH + qiGry1 + 1)

This is a quadratic function. So we can easily calculate the
intersection points.

Brake pedal pattern can be estimated in the same way
as gas pedal pattern. Although pedal pattern signals can be
estimated without dynamic features, we use dynamic features
to retain continuity in generated signals.

The driving signal generator has two driver models for gas
and brake pedal patterns. Generated pedal signals can have
both positive values because they generate gas and brake
pedal signals independently. However, it is very rare that a
driver hits gas and brake pedals simultaneously. To avoid
such situations, we use the gas pedal signal preferentially
and set the brake pedal signal to zero.

The driver model is trained for representing the relation-
ship of velocity, following distance, and pedal patterns of the
training data. However, the training data does not involve
following distance data of more than 100 m or less than
1 m. Therefore, when the model encounters situations that
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are not included in the training data, it cannot adequately
estimate pedal patterns. As a result, the vehicle can be too
far away from the lead vehicle or bump into the rear of the
lead vehicle. To avoid this situation, we used forced control
of gas and brake pedals. If B;11 < Biforee and F} < Fijose
we set Bt+1 to Biorce. If Gt+1 < Gforce and Fy > Fy, we
set Gt+1 to Giorce. Otherwise, we used the estimated values
from the driver models.

B. Vehicle Dynamics

The vehicle dynamics calculation part estimates the ac-
celeration degree, a(t), using gas pedal pattern G(t + 1),
brake pedal pattern B(¢ + 1), and velocity V (¢) at time ¢.
The vehicle dynamics calculation module was implemented
based on the internal model of the driving simulator.

C. Vehicle Environment

The vehicle status and relative position, including velocity
and following distance, change on the basis of vehicle
acceleration. The velocity and the following distance at time
t + 1 are calculated as follows.

V(it+1) = V(@) +alt)-T (16)
F(t +1 - dfront(t + 1)
= (dmyear®) +V(E+1)-T), (A7)

where a(t) is the acceleration degree obtained from the
vehicle dynamics module, and dpron(t) and dmycar(t) are
the total travel distances from the start point of the lead
vehicle and ego-vehicle, respectively. The system estimates
the signals every T' = 0.1 second.

IV. EXPERIMENT

We evaluated the individual characteristics of the gener-
ated car-following patterns from the driver models trained
for three different drivers (drier A, B, and C). Driver A was
a tailgater who followed very close to the lead vehicle, and
the other two drivers were conservative drivers who tended
to keep a safe distance from the lead vehicle.

A. Data Collection

We recorded observable driving signals using a driving
simulator for the training of GMMs. The course was straight.
We used two velocity patterns of the lead vehicle, as shown
in Fig. 4. The upper velocity pattern was recorded on an
express way in the same simulator, and the lower pattern is
an artificial velocity pattern aimed at obtaining all velocity
ranges. We recorded the observable driving signals for two
different velocity patterns of the lead vehicle four times,
i.e., eight times in total. The gas pedal pattern was digitized
linearly from O to 10000, and brake pedal pattern from O to
5000.
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Fig. 4. Velocity patterns of lead vehicle.

B. Training of GMM

We trained GMMs using the expectation maximization
(EM) algorithm [6] for each driver to fit the drivers’ in-
dividual characteristics. The feature vector & modeled by
GMMs includes velocity V, following distance F', their first
and second dynamic features AV, AF, A2V, A%F, gas
pedal pattern G, and its first dynamic feature AG as shown
in Eq.(1). Driver models for the brake pedal patterns were
trained in the same way. We used full covariance matrices
for the GMMs to represent correlations among the features.
Experimental conditions are summarized in Table I.

TABLE I
EXPERIMENTAL CONDITIONS.

# of drivers 3

Sampling frequency 10 Hz

30 min. (Pattern 1)

Training data length 20 min. (Pattern 2)

Test data length 10 min. (Pattern 1)

V AV A2V F AF A?F G AG

Features VAV ATV F AF AF B AB
Awindow length 0.8 sec
# of GMM mixture components 1,2,4,8

GMM covariance matrix Full covariance matrix

(Gforce’ Brorce> Felose» Far) (5000, 500, 5Sm, 80m)

C. Experimental Results

We compared the generated data with the real data of
the target driver. To objectively evaluate how well the
driver models could represent driver characteristics in car-
following, signal to deviation ratios (SDRs) to driving signals
are calculated. The SDR is defined as follows:

N
Zn:l x2 (TL) [dB]
N N

2 n=1(2(n) — 2(n))?
where N is the length of signals, z(n) is the real signal, and
Z(n) is the generated signal.

The SDRs of the gas pedal pattern for three drivers are
shown in Fig. 5 and those of the brake pedal pattern and the
following distance are shown in Figs. 6 and 7, respectively.
Higher SDRs were obtained for all drivers when modeling

with one or two mixture component GMMs. Drivers’ charac-
teristics could be represented with only one or two mixture

SDR = 101log,, (18)
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components. The experimental result for the tailgater (Driver
A) is shown in Fig. 8 and for conservative drivers (Drivers
B and C) who tended to be far from the lead vehicle is in
Figs. 9 and 10. The resulting following distance sometimes
becomes too small or 0 m. This is attributed to the fact that
the training data for GMMs did not include the data for
such uncommon situations as too small following distance,
and estimation errors were accumulated by the ad-hoc forced
control applied to brake pedal signals under the situations
beyond the system control. It is also because the proposed
driver model did not include the internal vehicle state, e.g.,
gear position, and engine speed. However, we can see that
the generated gas pedal patterns follow the outlines of their
original pedal patterns. The resulting following distances also
maintained their characteristics in the driving behavior in car
following in the face of the cumulative estimation error.

V. CONCLUSION

We generated pedal operation patterns in car following
for each driver. We confirmed that GMM driver models
could generate driving signals that maintained the driver
individualities in car-following patterns. We plan to use
longer-term dynamics of driving signals and hidden Markov
models for modeling the signals. We also plan to evaluate
the generated signals both subjectively and objectively.
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Fig. 9. Generated driving signals (Driver B).
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Fig. 10. Generated driving signals (Driver C).
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