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Abstract— This study focused on the analysis of drivers’ reactions
under hazardous scenarios in vehicle traffic. Driving behavior signals

were utilized to detect a chain of changes in driver status and to retrieve

incidents from a large real-world driving database obtained from the
Center for Integrated Acoustic Information Research (CIAIR). All the

existing 25 potentially hazardous scenes in the database were hand-
labeled and categorized. A new feature, based on joint-histograms of

these behavioral signals and their dynamics was proposed and utilized

to indicate anomalies in driving behavior. Brake pedal force-based
method attained a true positive (TP) rate of 100% for a false positive

(FP) rate of 4.5%, concerning the detection of 17 scenes where drivers

slammed on the brakes. Results stressed the relevance of individuality
in drivers’ reactions for this retrieval. In 11 of the 25 hand-labeled

scenes, drivers reacted verbally. Scenes where high-energy words were

present were adequately retrieved by the speech-based detection, which
achieved a TP rate of 54% (6 scenes), for a FP rate of 6.4%. In addition,

the proposed integration method, which combined brake force and
speech signals, was satisfactory in boosting the detection of the most

subjectively dangerous situations.

I. INTRODUCTION

A. Problem Statement

On the last decade, experts from academia and industry have

been actively involved in road safety. Efforts devoted to promote

safer, more comfortable, and more efficient transport are mainly

concentrated in two areas: accident prevention and injury reduction.

The former has been effective in promoting infrastructure improve-

ments and in raising driver awareness, addressing inappropriate or

hazardous behaviors [1][2], while the later has primarily focused

on the advancement of vehicular safety systems [3][4]. The above

efforts have positive impacts and implications in human, urban,

and scientific levels, respectively: (a) reduction of traffic deaths

and injuries; (b) better traffic organization and reduction of costs;

(c) better understanding of human behavior during a dangerous

situation.

Although encouraging improvements in transportation have been

made, the number of road fatalities and injuries is still unacceptably

high, suggesting that these measures alone do not suffice. In 2005,

road accidents killed over 7,500 people in Japan, and injured more

than 900,000—a high price has been paid for urban mobility.

Statistics have shown that almost 95% of the accidents are

partially due to human factor [2]. In almost three-quarters of the

cases the human behavior is solely to blame. Recently, heavy

investments have contributed in releasing cutting-edge systems,

technologies and applications; however, figures indicate that far

more effort has to be put into a better understanding of drivers’

reactions during hazardous situations.

Each individual driver is likely to perceive traffic conditions

differently and take risks according to his/her own judgment.

Besides, the intensity of reactions may vary due to multiple factors

such as gender, age, and driving experience. It is reasonable to

expect that, during a hazardous situation, drivers’ responses change

accordingly. Nevertheless, only a very small number of systems

have laid particular stress on the need for models which take into

account drivers’ individuality [5].
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In addition, models should take into account the complexity

of hazardous situations and recognize the multi-modal nature of

drivers’ behaviors to be more closely related to real conditions.

Although most of the systems relate traffic incidents to a small

set of maneuvers, a dangerous situation is often due to multiple

factors, including human behavior. In this context, there is a

necessity to identify the chain of changes in human conduct to

better characterize a hazardous situation.

Correspondingly, to gain insight into drivers’ reactions to danger-

ous circumstances, this study intended to explore the relevance of

driving behavior individuality concerning the detection of hazardous

situations and the integration of multi-modal reactions to hazard in

order to improve detection robustness.

B. Research Approach

In order to achieve research goals, a method for mining poten-

tially hazardous situations in a multimedia driving database was

proposed and evaluated based on the reactions of drivers to danger.

Besides a better understanding of drivers’ responses to hazard,

mining results can be utilized to proactively promote safety—

differently from reactive methods, such as pre-crash sensing [3],

that aim at predicting eminent risks for drivers.

An application which acts proactively and has increasingly at-

tracted attention is the drive recorder [1][6]. Triggered by sudden

accelerations or decelerations, the system stores vehicle and sur-

roundings information immediately before an accident or a near

miss incident. Mostly utilized by taxi drivers (notably in Japan),

recorded data helps, for example, in the detection of drivers who

need instructions and advice on road safety manners and attitudes.

In addition, mining results can be also utilized to create a database

of real-world potentially hazardous situations. Currently, a large

number of experiments in this research area are performed with the

aid of simulations.

The proposed detection method utilized multimedia driving be-

havior signals, namely force on the brake pedal or speech or both,

to perform a mining task. A new representation of these signals was

first proposed to elucidate anomalies, which represented responses

to potentially hazardous circumstances. A following hand-labeling

and categorization of potentially hazardous scenes presented in the

database were done, and labels utilized to evaluate the detection.

Results were analyzed and conclusions about drivers’ reactions

under hazardous situations were drawn.

The relevance of behavior individuality was addressed by settling

a detection approach that took into account individual character-

istics of drivers and contrasting it with an ordinary approach. In

addition, a method for the integration of two multimedia features

in order to boost detection was proposed and analyzed. This method

was based on the combination of reactions detected through brake

pedal and speech.

In the following sections, a brief introduction of the database

and its preparation is given, followed by an explanation of the

proposed feature for detection. We then offer descriptions of the

detection methods and results. Finally, discussion and future work

are presented.
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II. DATABASE AND PREPARATION

The driving data utilized in this work was obtained from the

Center for Integrated Acoustic Information Research (CIAIR) [7],

Nagoya University. Multimodal information was collected in a

vehicle under both driving and idling conditions. The database is

composed of images, control (driving), and location signals that

were recorded synchronously with speech. Drivers were asked to

interact with both, a human operator (HUM) and a Wizard of Oz

system (WOZ) [8], and perform simple speech tasks such as asking

information about the weather or restaurant locations.

For this study, HUM session data from 373 drivers (34h),

recorded from November, 2000 to March, 2002 was utilized. HUM

session was chosen mainly because its data is more closely related

to everyday conditions; however, WOZ session data was utilized as

a training set, further explained in session III.

A. Hand-Labeling

Situations were selected by taggers from 34 hours of video

footage. A potentially dangerous situation to be included in the

test was defined as any motion by some other road user, which

could possibly develop into a hazard, and for which the driver had

to be especially prepared for taking some evasive action in terms

of braking or steering. In-car videos were taken from two different

viewpoints: drivers’ face and frontal view. In addition, in order

to avoid missing any potentially hazardous scene in the database,

drivers’ reactions, scrutinized utilizing the brake pedal force, steer-

ing wheel angle, and speech were also taken into account when

labeling. Specifically, taggers focused on the following behaviors,

since it was more likely that something hazardous had occurred

when they were observed:

• Sudden and strong use of the brake pedal;

• Sharply turning the steering wheel;

• Expletive words;

• Anxious facial expressions.

Data was divided into five groups, and five taggers performed

the labeling task. Results were then shown to two more taggers

in order to validate the potentially hazardous situation. Taggers

were voluntary graduate students, with no technical skills of traffic

incidents or accidents, so the final number of selected potentially

dangerous scenes may have been affected.

The 25 dangerous scenes that already existed in the database

were labeled considering that the start point was the initial change

in driver behavior, detected subjectively by analyzing the pedal and

steering signals, and watching in-car videos. The end point was

set when the “normal” condition, observed before the start point,

returned. A margin of one second before the start point and after

the end point of each hand-labeled potentially hazardous situation

was included.

Although in all the 25 hand-labeled scenes drivers were aware

of the circumstance, which could possibly develop into a hazard,

risks were considered acceptable in five of them and no substantial

reactions were observed. Besides, drivers uttered expletive words

to express negative feelings in eleven of the 25 situations selected

as potentially hazardous. In 17 of these 25 situations, sudden and

intense compression of the brake pedal was observed. In eight

situations, both reactions were present. In three, only the use of

expletive words was verified.

B. Ranking According to the Level of Dangerousness

In order to objectively verify the relationship between the level

of driver’s reactions—detected through brake pedal force as well

as speech—and hazard, a raking based on the subjective level of

dangerousness was proposed.

The definition of each level was shown to six taggers, who

watched once the 25 potentially hazardous scenes of the HUM

data. Scenes were than shown again, and taggers were asked to

assess risk levels based on video footage and audio only. No

driving signals were shown in order to avoid biased results. It

was stressed to taggers not to take into account drivers’ reactions,

only the environment. So, if a driver’s reactions to a certain

potentially dangerous situation were particularly strong, but the

scene was subjectively of low hazard, the “Low” label was given

to it. Potentially dangerous situations were ranked according to the

following definition. Concerning the potentially hazardous situation:

A) Low - No additional maneuvers are required unless they

can be implemented at very low cost (in terms of time

and effort). Actions to further risk reduction are assigned

low priority;

B) Medium - Consideration should be as to whether the risks

can be lowered, where applicable, to a tolerable level

and preferably to an acceptable level, but the costs of

additional risk reduction measures should be taken into

account. The risk reduction measures should be imple-

mented within a defined time period. Arrangements should

be made to ensure that vehicle controls are maintained;

C) High - Substantial efforts should be made to reduce the

risk. Risk reduction measures should be implemented

urgently within a defined period of time. Considerable

resources might have to be allocated to additional vehicle

control measures.

A value was assigned to each scene, depending on its level—1

for low, 2 for medium and 3 for high—and the mean score of each

scene was calculated. Using the mean score as the input vector,

scenes were divided into three groups using the K-means algorithm

[9].

Ranking results are as follows: Group A (low) with 9 scenes,

Group B (medium) with 14 scenes and Group C (high) with 2

scenes. Three of the five situations, explained in section II-A, in

which no substantial reactions from drivers was observed, were

ranked as having a low level of dangerousness. The other two,

as having a medium level. Since taggers were voluntary graduate

students, with no technical skills of traffic incidents or accidents,

the final content of each group may have been affected.

III. BRAKE PEDAL FORCE-BASED DETECTION

This section describes the detection of situations when drivers

slammed on the brakes. Since this is a maneuver characterized by

a strong and sudden use of the brake pedal, a feature which took into

account not only intensity, but also the dynamics of the compression

was necessary. In this study, an alternative representation of the

brake pedal signal was proposed.

Figure 1 shows a 6-second interval when the driver strongly

compressed the brake pedal. The solid and dashed lines indicate

brake pedal force and its dynamics, respectively. One of the most

common forms of the dynamical behavior of a signal is the

estimation of linear regression coefficients, which are calculated

in the following way for a signal x(n) with a window of length

2K:

∆x(n) =

PK

k=−K
kx(n + k)

PK

k=−K
k2

. (1)

The relationship between the two signals illustrated in Fig. 1 can

be fully appreciated by plotting them on a single graph, with the
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Fig. 1. 6-second interval of brake pedal force signal (solid line) and its
dynamics (dashed line).
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Fig. 2. Joint plot of brake pedal force and its dynamics.

x-axis denoting the force and the y-axis denoting the dynamics.

Figure 2 shows the joint plot, smoothed with Bezier smoothing.

Each point in this graph represents a temporal state of the system,

which changes as we travel clockwise around the curve. The start

of the cyclic process is a point close to 0N/s and 110N—an idling

condition. The driver then released the brake pedal and the left-

most point, around 0N/s and 0N, was reached—a forward motion

started. A following strong braking took again the vehicle to an

idling condition, a point around 0N/s and 80N. The cyclic nature

of the process elucidates its dynamical behavior.

An analysis of the same type of joint plot in the long run,

shown in Fig. 3 for a 5-minute interval, reveals areas where data

concentrates. One large area, with force dynamics around 0N/s and

force ranging from, approximately, 10N to 80N represents an idling

status. A region around 0N/s and 0N represents a normal moving

condition. These are ordinary driving circumstance at most of the

five minutes. An inspection in Fig. 3 indicates that there is also

an anomaly in the system. The blue line with the cross symbols

over it represents the 6-second interval of Fig. 2, when the driver

slammed on the brakes. To detect such data which deviates from

the ordinary driving conditions a clustering analysis was adopted,

since it has been utilized satisfactorily to solve anomaly detection

problems. In this study, the Linde-Buzo-Gray (LBG) algorithm [10]

was chosen as the clustering scheme, since it is less sensitive to
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Fig. 3. Joint plot of a 5-minute interval of brake pedal force and its
dynamics. The line with crosses represents a sudden and strong braking.
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Fig. 4. Joint-histogram of brake pedal force and its dynamics.

initial parameters than well-known algorithms such as K-means [9].

A joint-histogram of brake pedal force and its dynamics was

utilized to describe the cyclic data, such that in Fig. 2. A joint-

histogram of data presented in Fig 2 is shown in Fig. 4. Ordinary

driving conditions, represented by the concentration of cycles as

those in Fig. 3, were characterized by a clustering of histograms

generated from consecutive data frames. The detection was then

performed by calculating the distortion from each frame histogram

to clusters, which represented a safety model. The distortion of a

given histogram was obtained by calculating its Euclidean distance

from clusters and taking the minimum of them. Data frames which

the distortion overcame a certain threshold barrier were labeled as

potentially hazardous.

The Euclidean distance of two 2D histograms h1 and h2 of L2

bins was calculated as follows:

dist =
1

L2

L
X

i=l

L
X

j=l

(h1(i, j) − h2(i, j))
2
. (2)

The sparsity of potentially dangerous scenes in the database was

a significant limitation, and made it intractable to also devise a

dangerousness model. Accordingly, the safety model approach was

adopted. Moreover, to avoid detecting strong compressions of the
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brake pedal which occurred during an idling condition, vehicle

velocity was also considered as a detector input. Frame intervals

which mean velocity did not overcome a certain threshold barrier

were labeled as not dangerous.

A. Training and Test Sets

This section describes different types of training and test data sets

which were utilized during the experiments. A training set indicates

data utilized as the clustering analysis input. On the other hand, a

test set corresponds to data compared to clusters in order to have its

distortion from the safety model calculated. As mentioned in section

II, drivers interacted with two different dialog partners—HUM and

WOZ. Consequently, the following sets could be proposed:

1) Set 1: For each driver, data from the HUM session was

utilized in training and test sets;

2) Set 2: For each driver, data from the WOZ session was

utilized in training set and data from the HUM session in

the test set;

3) Set 3: HUM session data of all drivers was utilized to create

a single model of safety. Test data for each driver was taken

from the HUM session;

4) Set 4: WOZ session data of all drivers was utilized to create

a single model of safety. Test data for each driver was taken

from the HUM session.

In sets one and two, a driver-dependent clusters approach was

utilized, since a different safety model was generated for each

driver. Nevertheless, in sets three and four, a driver-independent

clusters approach was adopted, given that the safety model was the

same for all drivers. Since potentially dangerous situations were

very sparse in the database, their data was also included in the

training set.

Different types of detection thresholds were also considered when

performing the detection. The threshold could be set to:

1) Driver-independent: the same for all drivers;

2) Driver-dependent: an individual threshold.

A threshold adjusted for each driver was important since the

intensity of reactions varies, for example, according to gender. Mean

(µ) and standard deviation (σ) of frame distortions were calculated

and the threshold was set to µ+ασ, where α was the same for all

drivers.

B. Uniqueness of Driver Behavior

Drivers express their individuality both consciously and uncon-

sciously when driving. While searching for pertinent individual

characteristics, recent efforts toward biometric signature using

driving behavior [11][12], have stressed the relevance of certain

features, such as the way gas and brake pedals are compressed.

To verify the role drivers’ individuality regarding the detection of

hazardous situations, a comparison of two detection approaches was

proposed. One took into account individual characteristics of each

driver, while the other did not. In both of them, driver-independent

clusters were created and utilized as the safety model. Along with

a driver-independent threshold approach, a detection that does not

rely on individualities could be devised: model and parameters were

the same for all subjects. Nevertheless, a driver-independent cluster

approach together with a driver-dependent threshold calculation

took into account the individuality of each driver, allowing an

interesting comparison with the first approach.

C. Enhancement of Low Amplitude Areas

Dark areas in Fig 4, where cycles concentrate, indicate values

of brake pedal force and its dynamics that were presented most of

the time. Light areas indicate the movement from idling to moving

condition, and then back again to the idling condition after a strong

use of the pedal (the process moves clockwise). These light areas

play a fundamental role, since they tell us how the change between

conditions occurred. To better represent the light areas as a feature,

an enhancement step before the LBG clustering stage was proposed.

A normalization process, which made the maximum value in the

histogram equal to one and the following mapping comprised this

step:

y = x
γ
. (3)

Where x is the original histogram value and y is the mapped one,

utilized as an element of the clustering algorithm input vector. γ

is the degree of enhancement. Values close to one (maximum) do

not considerably change after the mapping, while low amplitude

regions can be greatly enhanced, depending on γ.

D. Detection Evaluation

When the distortion from clusters of a certain frame overcame

the threshold barrier, the next eight seconds were considered one

potentially dangerous scene; therefore even if multiple hits inside

this interval were observed, only one valid detection was counted.

An 8-second interval, chosen based on the hand-label results, was

set as the duration of a dangerous situation. When detection was

observed inside the hand-labeled limits of a hazardous scene, a true

positive detection was counted. Results are presented utilizing Re-

ceiver Operating Characteristics (ROC) graphs [13]. The following

definitions were also utilized for displaying ROC graphs:

• Total positives: the number of hand-labeled potentially dan-

gerous scenes in the test data. However, when detecting, for

example, the 17 scenes of HUM data where a sudden and

strong use of the brake pedal was observed, the number of

total positives was set to 17;

• Total negatives: the number of 8-second frames inside the test

data minus the number of 8-second frames inside the hand-

labeled dangerous situations.

Experiments for this detection method were performed for dif-

ferent values of enhancement γ (0.05, 0.1, and 0.2), histogram bins

(144, 256, and 576), clusters (2, 4, and 8), frame length (2s, 4s, and

8s), frame shift (1s, 2s, 4s, and 8s) and velocity threshold (0-8km/h).

A delta feature window of 800ms was utilized in all experiments.

Optimal parameters, which achieved less false positive detections,

were obtained by changing one parameter at a time, while keeping

other fixed.

E. Brake Pedal Force-Based Detection Results

The best result for brake pedal force-based detection was

achieved with 256 bins, 2 clusters, frame length and shift of 4.0s and

enhancement γ = 0.05. The optimal velocity threshold was 4km/h.

Above this value, 100% of detection was not achieved. A driver-

independent clusters approach trained with HUM data, along with a

driver-dependent threshold, attained the best performance. Similar

results were obtained for a driver-independent approach trained with

WOZ data and a driver-dependent threshold.

Since the focus of this section is on mining sudden and strong

compressions of the brake pedal, results are relative to the detection

of the 17 scenes where a strong use of the brake pedal was observed.

Fig. 5 shows the detection results as ROC graphs, obtained by

varying the detection threshold, as explained in section III-A. Best
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Fig. 5. Best results for brake pedal force-based detection utilizing driver-
dependent and driver-independent approaches.

results for both driver-dependent and driver-independent detections,

as explained in section III-B, are shown.

IV. SPEECH-BASED DETECTION

The possibilities for a multi-modal analysis of drivers’ reactions

during hazardous circumstances are varied. Slamming on the brakes

and sharply turning the steering wheel are, for example, intuitive

responses in a dangerous traffic situation. Under certain conditions,

however, suddenly pressing the brake pedal or a rapid steering

wheel movement are unsafe practices. Therefore, in this scenario,

natural reactions such as uttering some words or non-verbal sounds

to express negative feelings about an adverse condition are relevant

facets to be analyzed.

An analysis of the hand-labeled potentially dangerous situations

stressed the advantages of using speech as a feature in this research.

Scenes where a sharp turning of the steering wheel was observed,

a sudden and strong use of the brake pedal was also present. The

same was not true for verbal responses, as mentioned in section

II-A.

This method followed an analogous approach as that explained

in section III. Sudden and high energy speech utterances presented

similar anomalous characteristics as sudden and strong braking;

therefore the joint-histogram of speech energy and its dynamics was

utilized as feature. The detection evaluation followed the method

described in section III-D.

Experiments were performed for different values of enhancement

γ (0.1, 0.5, and 1.0), histogram bins (49, 64, and 144), clusters (2,

4, 8, and 16), frame length (1s and 2s), and frame shift (0.5s and

1.0s) for global and individual clusters approaches. A delta feature

window of 960ms and a driver-dependent threshold were utilized

in all experiments.

A. Speech-based Detection Results

The best result for speech-based detection was achieved with 64

bins, 4 clusters, frame length of 1.0s, shift of 0.5s and enhancement

γ = 0.5. The detector trained with a driver-dependent clusters

approach of HUM data presented the best performance.

Since the focus of this section is on mining expletive words,

results are relative to the detection of the 11 scenes where drivers

reacted verbally to the hazardous situation. Results are shown in

Fig. 6 as ROC graphs, obtained by varying the detection threshold.
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Fig. 6. Best results for speech-based detection.

V. INTEGRATING INFORMATION SOURCES

This section describes the integration of two different sources

of information—brake pedal force and speech—for the detection

of potentially hazardous situations. One possible strategy is to

combine these two pieces of information at the feature level by

constructing a large feature vector. The problem with feature level

fusion/combination is that, during a hazardous situation different

behavior changes do not necessarily occur concurrently. Actually,

an analysis of the hand-labeled potentially dangerous situations

indicated that they are more likely to occur at different timings.

Accordingly, an alternative approach which could deal with delayed

reactions was devised.

Using detection methods separately, the distortion of each brake

and speech frames from clusters (safety model) was calculated,

as explained in section III. The detection parameters were set to

their optimal values. Then, an 8-second window, set as the duration

of a dangerous scene, was shifted concurrently along brake pedal

and speech frames. The amplitude of each frame corresponded to

the previously calculated distortion from clusters. Inside this 8-

second window, frames of each signal with the highest probability

of representing a reaction to a hazardous situation, that is, the

highest amplitude brake (Bmax) and speech (Smax) frames, were

then integrated utilizing (4).

βBmax + (1 − β)Smax. (4)

The parameter β is called the fusion factor and ranges from 0 ≤

β ≤ 1. A zero mean normalization of frames was required in order

to have the parameter β favoring both decision methods equally

when it was set to 0.5.

Experiments were performed utilizing data divided into three

groups, according to their subjective level of dangerousness, as

described in section II-B. Consequently, the relationship between

drivers’ reaction and subject level of dangerousness could be

verified. The 8-second window shift was set to 4s, given that this

value could not be shorter than the shifts utilized for brake pedal

force and speech-based detections. In addition, different values of

β were utilized: 0.25, 0.5 and 0.75.

A. Integration-based Detection Results

Best results for group C (high) were achieved with β = 0.25;

for group B (medium) with β = 0.75; and for group A (low), with

β = 1.0, that is, the brake pedal force-based method. Results are
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shown in Fig. 7 as ROC graphs, obtained by varying the detection

threshold.
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Fig. 7. Best results for the integration-based method utilizing scenes
divided according to their subjective level of dangerousness.

VI. DISCUSSION

Results demonstrated that the brake pedal force-based method

attained satisfactory results, a true positive rate of 100% for a false

positive rate of 4.5%, concernning the detection of 17 scenes where

sudden and strong compression of the brake pedal was observed.

Results from this work also indicated that future advancements

in this area should consider the uniqueness of driving behavior

signals for a better retrieval of dangerous situations and for the

development of other safety systems. An assistant system which

correctly interprets drivers’ responses would be far more efficient

and interactive than current ones.

In 11 of the 25 hand-labeled scenes, drivers reacted verbally.

Reactions could be broadly divided into two groups: high energy

words and whispered speech. The division of these two groups was

clear in the results. For the detection of these 11 situations, speech-

based method obtained a true positive rate of 54% (6 scenes) for a

false positive rate of 6.4%. However, in order to detect the other 5

scenes and achieve 100% of detection, a false positive rate of 65%

was observed.

Since the speech-based method relied on energy and its dynamics,

whispered speech could not be detected. Pitch, formant and timing-

related features, effective in detecting emotion from speech and also

whispers must be considered for a more efficient detection in further

research. Moreover, expletive words uttered during a hazardous

situation are often difficult to be recognized, suggesting that a low

speech recognition rate is also a promising feature.

As for the integration of sources, the two scenes, which com-

prised group C (high), were far more easily detected than the

others. In this group, drivers reacted intensely with both speech and

brake pedal, so the integration method was effective in boosting the

detection. For a true positive rate of 100%, a false positive rate of

about 0.1% was required for the integration-based method.

In five of the 25 hand-labeled potentially dangerous scenes no

substantial reactions from drivers were verified, and in three, drivers

only reacted verbally. These situations were divided among groups

A and B, what increased the number of false positives for 100%

of detection. Group B (medium) was better detected using the

integration method, achieving false positive rates of 6.1% and

44.5% for true positive rates of 70% and 100% respectively.

On the other hand, group A (low) was better retrieved by the

brake pedal force-based detection method. False positive rates of

7% and 49% were observed for true positive rates of 70% and

100%, respectively. The use of new features concerning vehicle

surroundings, such as following distance, and a more efficient

speech-based detection are necessary facets to provide both, more

accurate hand-labeling and retrieval of all situations.

This research found evidences indicating that further analysis

on driving behavior signals processing ought to consider drivers’

reactions individuality and the integration of multi-modal responses

to hazard. Nevertheless, additional methodology improvements are

required, along with a larger number of potentially dangerous

scenes. Hence, in this context, future researches will be able to

identify the chain of changes in human conduct to better character-

ize a dangerous situation in vehicle urban traffic. Findings of this

study provide a realistic understanding of drivers’ responses to a

hazardous condition and can be utilized mainly to improve systems

that proactively promote safety.
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