
 
 

 

  

Abstract— Drowsiness is a safety hazard in commercial 

vehicle driving. The conditions to which truck drivers are 

exposed put them at higher risk as compared to passenger car 

drivers. Unobtrusive drowsiness detection methods can avoid 

catastrophic crashes by warning or assisting the drivers. This 

paper describes an experimental analysis of commercially 

licensed drivers who were subjected to drowsiness conditions in 

a truck driving simulator and evaluates the performance of a 

neural network based algorithm which monitors only the 

drivers’ steering input. Correlations are found between the 

change in steering and the state of drowsiness. The results show 

steering signals differences can be used effectively for detection.  

I. INTRODUCTION 

CCORDING to National Highway Traffic and Safety 
Administration (NHTSA) report, driver fatigue and 

drowsiness causes 100,00 crashes annually, resulting in 
more than 40,000 injuries. The Fatality Analysis Reporting 
System (FARS) indicates 1,544 fatalities due to driver 
drowsiness, per year. 3,300 of drowsiness related accidents 
(including 84 fatalities) involved drivers of combination unit 
trucks. A U.S. National Transportation Safety Board 
(NTSB) study in 1990 indicates that fatigue is the most 
frequent contributor to fatal crashes. Drowsiness accounts 
for 1% to 3% of all U.S. motor vehicle crashes [1]. In 15% 
of single vehicle fatal truck crashes, fatigue was believed to 
be involved [2]. Based on NHTSA General Estimates 
System (GES) statistics [3], although the frequency of 
drowsiness related crashes involving passenger vehicle is 
greater than that of trucks, due to high exposure level of 
trucks the number of involvement per vehicle life cycle for 
trucks is about 4 times greater. Crashes that involve a driver 
falling asleep are on average very serious in terms of injury 
severity and property damage [4], [5]. It has been shown by 
researchers that subjects can not predict when they will have 
a serious sleep attack [6]. Long-haul truck drivers get less 
sleep than is required to be alert on their job [7]. In another 
study, researchers showed in spite of the knowledge of 
factors influencing the risk of becoming drowsy, the drivers 
tend to continue driving [8]. 

Long hours of continuous wakefulness, irregular driving 
schedules, night shifts, sleep disruption or fragmented sleep 
due to split off-duty time put truck drivers more at risk [9], 
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[10], [11]. 
Driver drowsiness detection technologies may have the 

ability to avoid a catastrophic accident by warning the driver 
of his/her drowsiness.  

Some researchers use physical and physiological data of 
drivers to measure or detect drowsiness. These include the 
measurement of brain wave or EEG [12], and eye activity. 
PERCLOS (PERcent eyelid CLOSure) is one of the most 
widely accepted measures in scientific literature for 
measurement and detection of drowsiness [13], [14]. 

There are numerous valuable studies on the effect of 
driver’s inattention and drowsiness on driving performance 
for truck driver using field data [15], [16]. Because of the 
risks of involving the drivers in dangerous drowsy scenarios, 
some researchers tend to perform the experiments in a 
simulated environment [17]-[21]. 

Researches indicate variables related to vehicle lane 
position show good correlation with drowsiness [22], [23], 
[17]. 

Reference [24] suggests that there exists some correlation 
between micro steering movements and drop in vigilance.  
Reference [25] reported that steering wheel reversals and 
standard deviation of steering wheel angle are two measures 
that show some potential as drowsiness indicators. 

Reference [26] developed a driver drowsiness detection 
system at the Toyota Motor Company.  The authors used 
steering adjustment time to estimate drowsiness. 

According to reference [27] phase plots of steering wheel 
angle verses steering wheel velocity can be used as an 
indicator of drowsiness.   

A system that relies solely on steering inputs provides a 
number of benefits over the more common means of 
detecting drowsiness through eye-tracking or lane departure 
detection systems.  A steering-only detection system is 
unobtrusive, capable of being implemented inexpensively 
with a minimal amount of additional sensors and computing 
power, and immune to problems associated with the 
dependency of other detection systems to the environment 
and weather such as performance degradation under low-
light or rainy conditions. 

Center for Intelligent Systems Research (CISR) 
previously developed an algorithm, which is based on 
Artificial Neural Network (ANN) learning of driver steering 
[19]-[21]. They trained an ANN model using data from a car 
driving simulator, driven by human subjects under various 
levels of sleep deprivation. However, it was not clear 
whether this system would also work for drowsiness 
detection in large commercial vehicles.  Significant 
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differences include the additional experience and training of 
truck drivers, the dynamics of the trucks versus cars, and the 
different feel of the steering systems in trucks and cars.  
Consequently, altered driver behavior and steering signals 
might limit the effectiveness of this approach for trucks 
tractor trailers. 

New experiments were conducted with commercially 
licensed truck drivers as subjects in the truck driving 
simulator. This paper presents the results of these 
experiments and shows some new findings in steering 
behavior which is critical before vehicles encounter a crash 
or hazardous situations. Based on both previous findings and 
the new results, it develops the design of a drowsiness 
detection method for commercial trucks using Artificial 
Neural Network (ANN) classifier, trained and tested in a 
simulated environment. Success of the detection method 
from the truck simulator results is also compared with the 
previous results from the passenger car experiment. 

II. EXPERIMENT 

Experiments were conducted at the Center for Intelligent 
Systems Research (CISR) Truck Driving Simulator 
Laboratory (TDSL) [28]. TDSL is fixed base driving 
simulator, and organized around a real full size truck cabin. 
CISR TDSL includes: 
1) Sophisticated vehicle dynamics and traffic models  
2) Superior quality graphics  
3) A five channel projection systems with a 135 degrees 

front field-of-view and two side view mirrors 
4) A fully instrumented truck cabin with all original 

displays, controls, and pedals 
5) An electronic gear box system with 8 forward gear 

ratios 
6) An advanced steering feedback system using a 

controller and a DC motor to generate realistic truck 
steering feel 

7) A head-mounted eye closure measuring system 
Four infrared digital cameras recording driver’s face, 

hands, and feet motions and projected driving scene during 
simulation. 

The actual data of a 52-mile section of Interstate 70 (form 
Topeka to Junction City, Kansas) was used to design the 
simulator scenario. The scenario was developed in a way to 
induce monotony and drowsiness. The posted speed limit 
was 105 km h-1 (65 mph). The traffic vehicles could 
intelligently adjust their speed and lane to keep a safe 
distance with the surrounding vehicles. The designed traffic 
volume in the driver’s traveling direction was low and had 
minimum effect on drivers’ behavior.   

Thirteen truck drivers (subjects), with valid commercial 
driving license, ranging in age from 23 to 60 years (mean 
age=41 years) completed the experiments. Each driver had 
to complete two driving sessions, a morning session and a 
night session. Prior to each test, each participant completed a 
practice session to get familiar to the simulator environment.  

The night before morning session, the subjects were asked 
to have at least 8 hours of sleep. For the morning session, 
they drove the simulator for one full length of the scenario 
(52 miles). After completing the morning session, the 
subjects followed their normal life activity. They were 
instructed to have limited amount of caffeine and no sleep 
during that day.  

At the same night, each subject drove the same 52 miles 
of simulated driving scenario repeatedly between 1:30 to 
5:00 AM for the night session. The drivers were susceptible 
to doze off and fall sleep since they were sleep deprived. 

During each experiment drivers’ inputs, vehicle 
kinematics, traffic information, eye data and digital video of 
drivers’ face were recorded for data analysis and labeling. 

III. ASSESSMENT OF DROWSINESS 

The drowsiness of the tested drivers was identified in two 
ways. A description of each follows. 

A. Subjective Drowsiness Rating (SDR) 

The driver behavior, performance and eye closure were 
observed during testing and off-line observation of video 
data.  All behavioral signs indicating a state of drowsiness 
were subjectively observed and recorded. The subjective 
assessment of drowsiness was conducted on a five-level 
rating scale from 0 to 4: 

 -- SDR 0: alert. 
 -- SDR 1: questionable. 
 -- SDR 2: moderately drowsy. 
 -- SDR 3: very drowsy (doze-off). 
 -- SDR 4: extremely drowsy (asleep). 
Although SDR is a subjective variable to demonstrate the 

level of drowsiness, it cannot correctly represent the severity 
of the drowsiness. For this purpose, another variable was 
defined as Severity of Drowsiness (SEVD), measured as the 
total time while SDR> 3 divided by the driving time. 

B. Eye Closure Measure (PERCLOS) 

PERCLOS quantifies the percentage of time the eye is 
more than 80 % closed.  This measure indicates the intervals 
of time when the eyes were closed.  

The eye tracking data was gathered as an additional 
verification and is not part of the proposed detection 
method. 

However, the eye tracking system experienced some 
difficulties either during calibration or measurements, for a 
few subjects with facial features like glasses with reflections 
or excessive head movements, etc. This resulted in false 
recordings. Alternatively, the subjective method was 
especially useful for identifying driver drowsiness. This 
relied on observation data from live recording and 
subsequent independent video analysis.  

For average 0.75 hours morning session driving, the 
average SDR was 0.15, while for average 2.13 hours night 
session driving, the average SDR was 2.25. Average 
PERCLOS was 7% for morning sessions and 22% for night 
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Fig. 2.  Steering behavior degradation before a run-off road crash for 
one sample subject. 
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Fig. 1. Average SEVD and PERCLOS for morning and night 
sessions. (Night session video data for subject 13 and PERCLOS data 
for subject 2 and morning sessions of subject 7 and 9 had error during 
recording.) 

sessions. SDR and PERCLOS showed a significant 
difference between day and night sessions (SDR: F=134.27, 
P<0.001, Eye: F=12.61, P=0.002). 

Fig 1 shows average SEVD and PERCLOS for each 
driver during morning and night sessions. The figure 
illustrates higher values of the severity of drowsiness and 
PERCLOS for night sessions. The night values also vary 
from subject to subject. 

IV. DATA ANALYSIS 

A. Effect of Sleep Deprivation on Driving Performance 

The data from the experiments was analyzed to identify 
the potential variables that had good correlation with 
drowsiness. The goal of the data analysis was also to check 
whether similar degradation characteristics could be 
observed for the new truck experiment. The degradation 
characteristics of steering control parameters were analyzed 
in detail. The statistical analysis showed that steering wheel 
angle and lateral displacement had significant correlation 
with the level of drowsiness. There was also a drastic 
correlation between number of crashes and drowsiness. 
According to the data, drowsiness was the cause of most of 
the crashes during night sessions. Two types of crashes were 
observed: run-off-road and collision with other vehicles. 
Ninety-one percent of the night drowsiness related crashes 
were the result of run-off road incidents.  

B. Effect of Drowsiness on Steering Behavior 

According to the analysis of the steering data, drowsiness 
affected the steering behavior in two consecutive phases. In 
the first phase, called impaired phase or phase-I, the driver 

was not able to smoothly control the truck. The steering 
corrections in this phase were large (large amplitude), 
resulting in large amplitude maneuver in vehicle trajectory 
(zigzag driving). The phenomenon was supported by the 
previous car experiment [19]-[21] and other researcher [24]. 

In the next phase, the dozing off phase (phase-II), the 
driver had no feedback or corrective action on the steering 
angle. The phenomenon could be recognized by flatten 
steering signal (constant values) over a short period of time 
combined with increasing lateral displacement. Fig 2 
displays a sample of the described signs of driving 
performance degradation in the lateral position and steering 
data for about one minute before a run-off road crash caused 
by drowsiness. Review of data for all crashes from 10 
subjects reflects a similar two phase steering behavior. Fig 3 
shows each subject’s steering behavior for 5000m driving 
distance before the first crash. The night steering wheel data 
are compared with the corresponding morning data at the 
same driving distance.  

The two-phase steering behavior is a significant finding 
for the development of a smart detection system which is 
based on steering signal prior to a hazardous situation or a 
crash eminent condition. The detection timing, period for 
averaging the steering signal, and the magnitude of the 
signal are all critical factors. Missing the two-phase 
phenomena could lead to unsuccessful detection. 

V. METHOD 

An Artificial Neural Network is trained to learn steering 
input of commercial truck drivers under different driving 
states (alert and drowsy). This system is used to detect truck 
driver drowsiness based on steering activity. The training of 
the neural network was based on the learning of the phase-I 
steering performance degradation. The data of the 
experiment on truck drivers in a simulated environment was 
used to train and test the ANN. Prior to training the network, 
the effect of road curvature on steering wheel angle was 
removed. This filtered steering data were also preprocessed 
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Fig. 3.  Steering wheel angle signal before crash. 

 
Fig. 4.  Schematics of the ANN method. 
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Fig. 5.  Steering wheel data before and after road curvature removal. 

and coded into a vector to be applied as input into the 
network. The sum of vectors on every 15-second interval 
was used as the ANN input. Two separate sets of 
preprocessed vectors were used to train and test the neural 
network. Fig 4 shows a schematic of the detection model. 
Based on the input vector, the ANN output is in a coded 
vector format, representing alert or drowsy state. 

A. Data Preprocessing 

To train and test the network, the data from the steering 
angle was preprocessed and converted into a 1 by 8 vector 
state, representing 15 seconds of steering activity before 
being presented to the ANN model. 

The data was preprocessed in two steps before presenting 
to the ANN.  In the first step, the effect of road curvature 
was eliminated.  In the second step, the data was discretized 
to allow a vector state presentation of the steering angle. 

B. Elimination of the Road Curvature on Steering Angle 

Road horizontal geometry normally includes two types of 
geometric sections, straight lines and curves. In the straight 
sections, the steering angle signal consists of only the 
steering adjustments for lane keeping. In the curve sections, 
including clothoids which connect straight and curve 
segments, the steering signal contains the waveform for lane 
keeping as well as the waveform for negotiating road 
curvature. The effect of curvature can be removed from 
steering wheel angle signal by subtracting the signal trend 
from the original signal. A simplified and modified 
procedure of trend extraction was used. In this method, if 
four or more consecutive data points were of the same sign 

(positive for right turn and negative is for left turn) and their 
sum were greater than or equal to 15 (absolute) degrees, 
then all these points were assumed to be from a curve or 
portion of a curve section.  The mean value of these data 
points was then subtracted from each of these points (Fig.5). 

1) Input/Output Discretization 

For the input of the ANN, the steering signal was 
discretized and coded into a one by eight vector. The 
steering angle amplitude is divided into 8 smaller ranges, r1 
to rk. These ranges are defined as follows: 

4 4

1

; {1,2,3, 4}
k i k

k i k i

p r p i
= = −

− > ≥ − =� �  (1) 

4 4

9 8

; {5,6,7,8}k i k

k i k i

p r p i
= − = −

≤ < =� �  (2) 

where pk are constant. By choosing different values for pk, 
the coded vector can be calibrated for different driving 
behaviors. Some drivers make small and accurate steering 
correction (low amplitude) while others are less sensitive to 
their lane keeping and make larger steering movement 
(higher amplitude) in their normal driving behavior. Larger 
values for pk are used for drivers with large steering 
movement to make discretization ranges wider. p0 and p4 

represent upper and lower steering angle limits respectively 
(p0=90

0 and p4=0). Over a given period of time, T, if the 
mean steering value fell into one of the ranges represented 
by ri, the ith component of the eight-dimensional vector state, 
I(T), was set to 1. The other indices values are equal to zero. 
For this study T is one second.  

After vectorizing the mean steering for each second, each 
vector was summed over an interval of n point resulting 
ANN input vector X(n): 

)(...)2()()( nTITITInX +++=  (3) 

For n=15, X(n) represents 15 seconds of steering activity. 
During the supervised training of the neural network, the 

input vectors, X(n), were classified into two output vectors. 
Vector [1,0] represents alert state and vector [0,1] 
demonstrates drowsy state. 

C. Artificial Neural Network 

The neural network architecture is a three-layer, feed 
forward network as shown in Fig 6. The error-propagation 
supervised learning algorithm was used to update the 
weights. 

600 exemplars from 8 subjects were used for training the 
network. To avoid memorizing the data during the training 
algorithm, a set of 200 exemplars were used for cross 
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Fig. 8.  ANN model results for a sample subjects during entire morning 
and night sessions. 

validation. This is a supervised training in which the known 
input-output patterns are presented to the network and the 
ANN learns (stores) the information. The input patterns are 
the exemplars, i.e. 15-second summed of discretized steering 

angle, and the output is known state of the driver, i.e. the 
desired output vector, D(n). D(n) is represented by a 
classifying vector value of [1,0] for awake and [0,1] for 
sleep. Therefore, for training, for each input example X 
corresponds to a known output D(n). The presentation of 
input-output patterns (i.e. X D(n)) is random, selected from 
the 600 exemplars. Training an ANN requires selecting the 
right and optimum architecture for the various training 
parameters. The ANN training was performed multiple times 
with varying parameters until the best results were obtained. 
The tangent hyperbolic activation function, with output 
range from –1 to 1, was applied to neurons of the hidden and 

the output layers. Fig 7 shows Mean Square Error (MSE) for 
training and cross validation of the network.  These graphs 
indicate the network performance during training.  The cross 
validation error always stayed below the training error 
showing the network generalization.  The smooth drop of 
MSE indicates that the ANN performed very well. 

VI. MODEL TESTING AND RESULTS 

During the training process, the ANN was tested to 
evaluate its performance. The design of the algorithm was 
based on detection of steering behavior in phase-I. The 
testing set of drowsy state was from the periods when the 
steering behavior was erratic (large steering) and the 
severity of drowsiness (SEVD) was greater or equal to 0.5. 

The data from the morning sessions were used to generate 
the testing set of alert state. Table I shows network testing 
performance for the best network weights. The test data set 
contained 600 input vectors (each vector representing 15 
seconds of driving).  The test data was not used in training 
or cross validation, in other words, the network had never 
seen this data before. 

The network correctly identified 235 out of a total of 275 
phase-I drowsy intervals, i.e. an accuracy of 85 %. There 
were 37 out of 325 (11%) “false alarms”, intervals that were 
in the “awake” class but were misclassified as “drowsy”. 
Also, 40 out of 275 (14%) intervals that were in the drowsy 
class were misclassified by the network as “awake”. Fig 8 
shows the ANN model results for two sample subjects 
during entire morning and night sessions. The model results 
are also compared to eye and SEVD. The SEVD plots are 
eliminated for the morning sessions since the drivers were 
alert during morning. In the figure the abscissa represents 15 
seconds time intervals. For the ANN output, each red bar 
means the ANN is classifying that particular interval as 

TABLE I 
ANN MODEL RESULTS 

OUTPUT/ 

DESIRED 
AWAKE DROWSY 

WAKE 288 40 
DROWSY 37 235 

% CORRECT 89 85 
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Fig. 7.  ANN training performance. 

Fig. 6.  Neural network architecture. 
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“drowsy” while the rest are classified as “awake”. In Fig 8, 
these crashes are shown by a black line. 

To further investigate the system detection performance, 
the five minutes preceding the crashes of each driver was 
observed and analyzed. The studied crashes had at least 5 
minutes time difference. The observation is summarized in 
Table II. (In the table the term “warning” is a hypothetical 
one, synonymous with the detection.)  

An evaluation of the ANN model shows good 
performance under the crash prediction metric. The system 
issued at least one detection for 97% of all the observed 
crashes experienced by any of the subjects. On average, 4.8 
detections were issued during the five minute preceding the 
crash.  The first detection was issued on average 3 minutes 
and 52 seconds prior to the crash.  The final detection was 
issued on average 1 minute and 30 seconds before the crash. 
The table also shows that there are numerous doze off events 
(phase-II) in which no detection was issued. As explained, 
phase-II steering behavior is characterized by a period with 
no steering correction. Therefore, the ANN algorithm cannot 
detect these events since it was trained for phase-I events 
when the steering signal amplitude is large. Fig 9 shows 
ANN detection output versus steering and lateral 
displacement signals 5 minutes before a selected crash. To 
have better comparison with lateral displacement data, the 
illustrated steering data in the figure were before 
preprocessing. 

VII. DISCUSSION AND CONCLUSION 

A method for detecting truck driver drowsiness based on 
ANN is examined in a truck driving simulator. The 
performance of the drowsy driver detection systems for 
truck drivers was acceptable and similar to previous systems 
[19]-[21] that detected drowsiness in passenger car drivers.  
The truck driver fatigue detection systems performed 
extremely well in the most important evaluation metric – 
timely crash prediction. A comparison of the two studies 

shows that the results are very similar.  The two 
experimental conditions were not the same and differed in 
the type of simulator and driver (subject) population, 
although the amount of sleep deprivation were the same. 
Table III shows the results for both of these studies.  The 
percentage accuracy during training decreased slightly for 
the truck study.  The number of false alarms decreased 
slightly for the truck study. 

Based on the accuracy and the crash prediction results, the 
detection system holds the promise of safer roadways when 
coupled with a warning system. 
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