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Abstract— This paper presents an analysis of color and in-
frared stereo approaches to pedestrian detection. We design a
four camera experimental testbed consisting of two color and two
infrared cameras that allows for synchronous capture and direct
frame-by-frame comparison of pedestrian detection approaches.
We incorporate this four camera system in a test vehicle and
conduct comparative experiments of stereo-based approaches to
obstacle detection using color and infrared imagery. A detailed
analysis of these experiments shows the robustness of both color
and infrared stereo imagery to generate the dense stereo maps
necessary for robust object detection and motivates investigation
of color and infrared features that can be used to further classify
detected obstacles into pedestrian regions. The complementary
nature of color and infrared features gives rise to a discussion
of a feature fusion techniques, including a cross-spectral stereo
solution to pedestrian detection.

I. INTRODUCTION

Pedestrian safety is a problem of global significance. Nat-

urally, such an important concern to public safety has re-

ceived significant attention from all aspects of the research

community. Specifically, ongoing computer vision research

is making strides to detect and track pedestrians from both

moving vehicles and the static transportation infrastructure.

Typically, these approaches to pedestrian detection make use

of visual or infrared imagery [1] in both monocular and stereo

camera configurations.

The choice of visual or infrared imagery is significant,

as each provides disparate, yet complementary information

about a scene. Visual cameras capture the reflective light

properties of objects in the scene, while infrared cameras

are sensitive to the thermal emissivity properties of the same

objects. Features extracted from each type of modality can

be used to determine the presence of pedestrians in a scene.

Additionally, binocular stereo systems have been incorporated

into pedestrian detection approaches. The use of two cameras

allows for the accurate depth estimates crucial to the task of

pedestrian detection and collision mitigation. For color-based

stereo systems, these estimates have been determined through

dense stereo correspondence matching [2]. For infrared-based

stereo systems for pedestrian detection, correspondence match-

ing has been typically accomplished with sparser feature based

matching techniques [3], [4].

This paper presents research toward the development of

a stereo system that can extract the dense stereo depth and

features necessary for robust pedestrian detection using either

color or infrared stereo imagery. We design a four camera

experimental testbed consisting of two color and two infrared

cameras that allows for comparative experiments of stereo-

based detection approaches using color and infrared imagery

and demonstrates high obstacle detection rate achievable with

such stereo imagery. From these comparative experiments, we

provide a detailed analysis of the features and properties of

color and infrared imagery that are used to classify detected

obstacles into pedestrian regions. This analysis is used to

motivate a discussion of feature fusion techniques, including

a cross-spectral stereo solution to the pedestrian detection

problem.

II. STEREO-BASED PEDESTRIAN DETECTION

A fundamental step to analyzing pedestrians with stereo

imagery is to detect obstacles in the scene and localize their

position in 3D space from the disparity maps generated from

stereo correspondence matching. The disparity images derived

from stereo analysis can be used to generate a list of candidate

pedestrian regions in the scene. We adapt a classical approach

to obstacle detection in stereo imagery proposed by Labayrade

et al. [5] that utilizes the concept of v-disparity to identify

potential obstacles in the scene. Essentially, v-disparity is a

histogram of the disparity image that counts the occurrence of

disparity values for each row in the image and can be used

to detect the ground plane in the scene and isolate regions

that contain obstacles. Variations of this approach to detecting

objects in stereo imagery have been implemented in [6], [7],

[8]. However, we illustrate a generalized framework that is

able to obtain dense stereo correspondences and robust ground

plane estimates with both color and infrared-based stereo.

A. Disparity-based Obstacle Detection

Our goal is to provide a framework for a comparative

analysis of color and infrared stereo imagery for pedestrian

detection and have chosen to use the relatively simple v-

disparity approach to obstacle detection so that it can be im-

plemented for both color and infrared stereo imagery without

modification or specialization. We examine the ability of each

to generate stereo disparities and determine obstacle areas in

the scene. This comparison of low-level detection accuracy

will then lead to an evaluation of each camera type’s potential
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Fig. 1. Flowchart of stereo disparity-based obstacle detection algorithm.

(a) Color (b) Color Disparity

(c) Infrared (d) Infrared Disparity

Fig. 2. Example disparity images from color and infrared stereo input images.

for higher level obstacle classification and analysis. Fig. 1

shows a flowchart of the obstacle detection algorithm.

1) Dense Stereo Matching: As a first step, it is necessary

to perform dense stereo matching to yield disparity estimates

of the imaged scene. We elect to use the correspondence

matching algorithm developed by Konolige [9] for its ease

of use and reliable disparity generation with both color and

infrared stereo imagery. Example disparity images generated

using this approach are shown in Fig. 2.

2) U- and V-Disparity Image Generation: The u- and v-

disparity images are histograms that accumulate the number

of pixels at a given disparity value, d, for each column

or row in the image, respectively. For example, each row

in the v-disparity image is the histogram of disparities in

the corresponding row of the stereo disparity image D. The

(a) Color

(b) Infrared

Fig. 3. Example u-disparity images from color and infrared stereo input
images.

(a) Color (b) Color w/
Ground Plane

(c) Infrared (d) Infrared
w/ Ground
Plane

Fig. 4. Example v-disparity images from color and infrared stereo input
images along with the detected ground plane.

resulting v-disparity histogram image indicates the density of

disparities for each image row v, while the u-disparity image

shows the density of disparities for each image column u. Fig.

3 shows an example u-disparity image for color and infrared

stereo imagery, and Fig. 4 shows the corresponding v-disparity

images generated from the color- and infrared-based stereo

disparity maps in Fig. 2.

Notice how the u-disparity images in Fig. 3 show three dis-

tinct horizontal regions of high disparity density corresponding

to the three pedestrians in the scene. These regions can be

detected in order to help build candidate pedestrian areas. The

image spanning high density region at the top of the u-disparity

image indicates the background disparities of the image and

can be detected and filtered from processing. Similarly the v-

disparity images in Fig. 4 show vertical peaks of high density

for both the background plane and the range of disparities in

D containing pedestrians. These regions will also need to be

detected to generate pedestrian candidates. Additionally, there

is a distinct downward sloping trend for the lowest image point

for each disparity in the v-disparity image. It has been shown

that this phenomenon can be used to estimate the ground plane

of the image [5] for color stereo imagery. We show this can

also be extended to dense stereo estimates from infrared stereo

imagery.
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(a) Color

(b) Infrared

Fig. 5. Example region-of-interest generation in u-disparity images with
color and infrared stereo input images.

3) Ground Plane Estimation: To derive an estimate of

the line indicating the ground plane, we must first extract

candidate points on that line. For each column corresponding

to a disparity d in the v-disparity image, we select the lowest

pixel location whose value is above a given threshold as a

candidate point in the ground plane. If there is no value that

exceeds that threshold for a given disparity, then we do not

consider that disparity point. The ground plane is estimated

by fitting the candidate points to a line with a robust linear

regression scheme that uses weighted least squares that itera-

tively reweights at each iteration using the bisquare weighting

function. Figs. 4(b),(d) show the v-disparity images for color

and infrared stereo imagery with the candidate ground plane

points in red and the fitted ground plane estimate plotted in

cyan. Because we are using a dense stereo correspondence

algorithm with robust point candidate generation and linear

least squares fitting, we are able to reliably estimate the ground

plane with both color and infrared stereo imagery.

4) Candidate Bounding Box Generation: Bounding box

candidates can be extracted by first identifying regions-of-

interest in the u- and v-disparity images. Regions in the u-

disparity image can be extracted by scanning along the rows

of the image and identifying continuous spans along a row

where the histogram values exceed a given threshold. Fig. 5

shows the extracted regions in green on the u-disparity image.

Regions are also extracted in the v-disparity image by scanning

each column and summing the histogram value above the

ground plane. If this sum is greater than a threshold, then

the region is selected that spans from the ground plane to the

high point in the column where the histogram entry exceeds

a given threshold. Fig. 6 shows the extracted regions in green

on the v-disparity image.

Candidate bounding boxes are then determined by associ-

ating the regions-of-interest in the u- and v-disparity images

based on their disparity values. For a given disparity d, the

width of the bounding boxes at that disparity are determined

by the regions found in the u-disparity image and the height

is correspondingly derived from the regions in the v-disparity

image. Bounding boxes associated with the background re-

gions that are obviously too large are removed. The resulting

bounding box candidates are shown in green in Fig. 7.

(a) Color (b) Infrared

Fig. 6. Example region-of-interest generation in v-disparity images with
color and infrared stereo input images.

(a) Color (b) Infrared

Fig. 7. Example bounding box candidates with color and infrared stereo
input images.

5) Candidate Filtering and Merging: As shown in Fig.

7, there are often multiple overlapping candidate bounding

boxes generated in the previous step. This usually arises

when disparities associated with a single pedestrian span a

range of disparity values. We merge overlapping bounding

box candidates if their overlap is significant and the dispari-

ties associated with the bounding boxes are close. The final

selection of pedestrian candidate bounding boxes is shown in

Fig 8. Notice how the multiple bounding box candidates have

merged into three appropriate bounding boxes associated with

the correct pedestrians in the scene.

B. Experimental Framework and Testbed

We establish a framework for experimenting and analyzing

pedestrian detection approaches for color and infrared stereo

imagery. This framework needs to facilitate a direct, frame-by-

frame comparison of the data coming from color and infrared

stereo imagery. To that end, we have designed a custom rig

consisting of a matched color stereo pair and a matched

infrared stereo pair. The two pairs have been arranged so that

their imaged scenes are as consistent as possible. The two

pairs have identical baselines and the corresponding cameras

in the color and infrared pairs are positioned as close as

possible so as to maintain the same approximate fields of view.

Additionally, lenses for the color cameras were selected to best

match the fixed zoom of the infrared cameras. All four cameras

are arranged in a single row and care was taken in aligning the

pitch, roll and yaw of the cameras to maximize the similarity

in field of view.
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(a) Color

(b) Infrared

Fig. 8. Example of the final selection of pedestrian candidates after bounding
box merging with color and infrared stereo input images.

Fig. 9. Experimental testbed: Two color cameras and two infrared cameras
arranged in stereo pairs and mounted to the front of the LISA-P testbed.

Once aligned the rig was mounted to the grill of the LISA-

P testbed described in Trivedi et al. [10], [11]. The LISA-P

is a Volkswagen Passat equipped with the computing, power,

and cabling requirements necessary to synchronously capture

and save the four simultaneous camera streams of our custom

rig. Fig. 9 shows the four camera rig properly arranged and

mounted on the LISA-P.

C. Experimental Analysis of Disparity-based Obstacle Detec-

tion in Color and Infrared Stereo Imagery

Experiments were conducted so pedestrians walk in front

of the LISA-P testbed. The experiments included multiple

pedestrians in the scene with varying degrees of depth, com-

plexity and occlusion. The experimental data was captured

simultaneously with the color and infrared stereo cameras to

allow for direct comparison of the approaches. The captured

data was analyzed using the disparity-based obstacle detection

algorithm in Section II-A and detection was determined suc-

cessful if a bounding box correctly overlaid a corresponding

pedestrian region. If two candidate bounding boxes associated

with two separate pedestrians merged into a single bounding

box after the merge process, we still consider the detection

TABLE I

RESULTS OF EXPERIMENTAL COMPARISON BETWEEN COLOR AND

INFRARED STEREO IMAGERY FOR DISPARITY-BASED OBSTACLE

DETECTION.

# Peds Peds False Merge
Modality in Frame Correct % Correct Positives Errors

Color

1 758 100.0% 0 0
2 2376 99.5% 2 7
3 1525 99.9% 0 35
4 377 99.2% 1 6
5 22 88.0% 0 0

Total 5058 99.6% 3 48

Infrared

1 880 97.9% 1 0
2 2257 98.7% 4 14
3 1231 98.9% 0 43
4 123 99.2% 1 10
5 5 100.0% 0 0

Total 4496 98.6% 6 67

correct, yet note it as a “merge error”. We reason that

errors associated with a lack of sophistication of our chosen

merging algorithm should not adversely affect the detection

rate, as our desire is to evaluate the effectiveness of color

and infrared stereo disparities to identify pedestrian areas and

not the robustness of the merging procedure. This is also a

fair assessment when using pedestrian detection for collision

mitigation, as finding all the critical areas in the scene is given

priority over discerning merged bounding boxes. Therefore,

false negatives were counted only when a bounding box did

not properly identify a pedestrian region and false positives

were counted when a bounding box enclosed an area where

no pedestrian existed. Still, had we incorporated the merge

errors, the total detection rate would decrease by only 1% for

color and 1.4% for infrared. Table I shows the compiled results

of the comparative experiments and Fig. 10 shows additional

examples for both color and infrared stereo inputs.

III. ANALYSIS OF STEREO-BASED PEDESTRIAN

DETECTION

Our comparative experiments with stereo-based pedestrian

detection for color and infrared imagery show a very high

level of detection accuracy and low false positive rate from the

both modalities. However, a deeper analysis of the experiments

is necessary to truly understand and evaluate the success of

these experiments. The experiments yielded such a high rate

of detection accuracy because our analysis equated low level

obstacle detection with the higher level analysis of pedestrian

determination. That is to say, since the experiments did not

include non-pedestrian obstacles, a detection of any obstacle

region is assumed to be a pedestrian. For the scope of our

experiments, this sort of assumption is appropriate, as we are

interested in evaluating the ability of color and infrared dense

stereo correspondences to be used in low level pedestrian

detection. In that respect, our experiments demonstrate that

color and infrared stereo disparities both achieve high rates of

low level obstacle detection, an imperative first step towards

robust pedestrian detection and collision mitigation.
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Fig. 10. Example of the final selection of pedestrian candidates with color and infrared stereo input images.

However, in real world driving scenarios, low level obstacle

detection, while an imperative initial step, is not sufficient

for pedestrian detection. Detected obstacles can include a

variety of objects found in common driving scenes other

than pedestrians, such as parked and moving vehicles, trees,

buildings, parking meters and other spurious candidates in the

scene. Additional processing is necessary to filter the detected

obstacles into appropriate pedestrian and non-pedestrian re-

gions.

In the disparity image domain, it is possible to filter some

of the detected obstacles based on the bounding box features

of typical pedestrian obstacles (e.g Bertozzi et al. [8]). Bounds

on pedestrian bounding box features such as size, disparity and

aspect ratio can be learned or heuristically selected to filter out

bounding boxes associated with other objects in the scene.

However, the success of such filtering techniques can prove

unreliable, as it will not filter non-pedestrian bounding boxes

that fall within the selected bounds of pedestrian candidates.

Additionally, the selection of appropriately robust bounds is

a challenging task, as bounding box sizes can vary with

pedestrian pose and disparity fidelity. To achieve more reliable

detection of pedestrian candidates, it is necessary to analyze

the specific image features of the chosen modality.

Color features that have been used for pedestrian classi-

fication attempt to identify the unique contours and shapes

that discriminate pedestrians from other objects. Such features

include Haar wavelet responses [12], Gabor filter response

[13], Sobel edge responses [6], Implicit Shape Models with

Chamfer distance matching [14], image countours with Mean

Field models [15], and local receptive fields for support vector

machine classification [16].

Infrared features for classification typically include features

that identify the specific thermal characteristics of the scene,

including hotspots [17], warm element and head template

matching [4], body model templates [18], shape independent

multidimensional histogram, inertial and contrast base features

[19] and Histograms of Oriented Gradients [20]. Obstacle

detection using stereo disparities derived from color or infrared

imagery is highly accurate with low false positive rates.

However, this level of detection is still too primitive to be

used for real world pedestrian detection, as it can include

obstacles not associated with pedestrians or other critical

regions. To supplement and filter these obstacle candidates,

specific features of color or infrared imagery can be extracted

and analyzed to determine the true pedestrian regions in the

scene. Although both color and infrared imagery have been

used to identify pedestrians in a scene, it is unclear which

camera system is preferred. However, our framework will

allow for a direct comparison of these approaches and will give

insight into how the disparate features in color and infrared

imagery directly affect pedestrian detection accuracy.

Additionally, a more interesting proposition would be to

use both modalities in concert to obtain all sets of available

features in color and thermal imagery. Naturally a detection

architecture that incorporates more features has a higher

potential for detection accuracy than one with a lesser feature

set. For example, the thermal “hotspots” of humans that often

make pedestrians easily segmentable can be used together with

the fine level of color image detail that has proven useful for

tracking multiple people in a scene.

Although it is possible to incorporate the advantages of

stereo color and infrared analyses by separately combining

the two camera systems and pedestrian detections [8], it is

costly and cumbersome to incorporate a four camera solution

from both a computational and vehicle integration standpoint.

A more economical and desirable solution would be to obtain

the benefits of each using a cross-spectral stereo approach

using a single color and single infrared camera. The challenge

is achieving the accurate and dense stereo correspondences

of unimodal stereo systems with cross-spectral stereo, where

conventional assumptions for matching do not hold. Because

of the disparate nature of color and infrared imagery, conven-
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(a) Color (b) Infrared

(c) Unaligned (d) Aligned

Fig. 11. Cross-spectral stereo approach [22] for pedestrian detection.
Pedestrian pixels can be associated across color and infrared imagery using
this approach.

tional and state-of-the-art stereo correspondence algorithms for

unimodal imagery are unsuccessful in providing any reliable

matches in multimodal imagery. As an advancement towards

a similar dense stereo algorithm for cross-spectral stereo

imagery, we have proposed a stereo registration algorithm that

can accurately align multiple people in a scene [21], [22]. Fig.

11 shows a typical result of how multiple pedestrians can be

aligned in the cross-spectral framework.

IV. DISCUSSION AND CONCLUSION REMARKS

The use of stereo imagery has helped researchers take large

steps towards achieving accurate and robust pedestrian detec-

tion. The depth estimates obtainable from vehicle mounted

stereo imagery give a straightforward approach to extracting

obstacle regions from the scene. We have outlined a general

algorithm for obstacle detection in either color or infrared

stereo imagery and have provided comparative experiments to

gauge the detection rates achievable with each. Our analysis

indicates that color and infrared-based stereo disparities are

capable of highly accurate pedestrian detection (> 98%) with

low false positives (� 1%).

Given the high detection rates obtainable from color and

infrared stereo imagery, the selection of an appropriate camera

system for pedestrian detection turns to the consideration

of each modality’s ability to further classify detected ob-

stacles into pedestrian and non-pedestrian regions. Because

the physical processes that give rise to color and thermal

imagery are disparate, the extractable features from color and

infrared imagery are also very different and largely unique

to each modality. Previous approaches have demonstrated

the usefulness of features from both color and infrared im-

agery for classifying pedestrian regions, and we have laid

the groundwork for a direct comparison of those features

for future work. Additionally, a complementary system that

utilizes all the available features of color and infrared imagery

is most desirable. Specifically, we suggest moving towards a

two camera, cross-spectral stereo solution to obtain the depth,

color and thermal features desirable for a pedestrian detection

system.
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