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Abstract— We consider the autonomous driving of real ve-
hicles as a challenging framework where Robotics-oriented
approach might be effective in solve complex tasks. Here we
discuss some of the autonomous navigation features in order
to set up an environment to develop neural control systems
for automotive autonomous driving. In this work we introduce
the Evolutionary Robotics as a framework for automatically
evolve and select neuro-controllers to test in a conceptual
experiment reproducing the road scenario features. Preliminary
experiments of Cruise Control and Adaptive Cruise Control
were conducted in simulation, comparing the results of both

our simulator and a commercial dedicated simulator providing
a complete car library. The experiments help in evaluating the
feasibility of novel approaches in the development of controllers
for automotive vehicles.

I. INTRODUCTION

In autonomous driving of vehicles, the accomplishment of

tactical tasks, such as lane keeping/changing, speed setting,

leading vehicles following, avoiding collisions, has been

extensively studied as parts of a general solution in dy-

namically changing scenarios. Still, a complete automated

driving is unavailable for cars as a large-scale equipment,

with few exceptions like [1]. However, in such case of

rough terrain navigation the required equipment happens to

be quite demanding in terms of computational power and

of devices. Nonetheless this kind of applications reveals the

presence of next generation robot techniques in a pervasive

and familiar field such as car driving. Hence, we observe

a very promising convergence of the experience in mobile

robotics research and the evolution of real vehicles towards

autonomous driving. In this paper we consider the road sce-

narios and the basic navigation capabilities as a framework

for discussing a Robotics-oriented approach in automotive

autonomous driving. As a number of AI techniques have

been developed to autonomously control vehicles or robots

[2], we therefore discuss here the requirements, the feasibility

and the preliminary results of the application of Evolutionary

Robotics (ER, see [3]) in solving the navigation problem.

Roughly speaking, ER is a methodological tool to automate

the design of controllers. ER is based on the use of artificial

evolution to find sets of parameters for artificial neural

networks that guide agents to the accomplishment of their

objective, avoiding dangers. One the most relevant features
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of ER is to allow the design of artificial neural network

controllers for robots capable of facing circumstances never

experienced during the training phase. The main purpose

of our discussion is to look at the ER technique as a

tool for addressing some of the most relevant problems in

autonomous driving.

In addition to most of the related ER works ([4], [5] and

related bibliographies) that deal with cognitive and social be-

haviors, other examples of real-time controls for navigation

tasks have been successfully accomplished ([7], [8]). The

common purpose of such techniques is to develop simple

controllers, from both a computational and an architectural

point of view. Although not extendable to all the possible

sub-tasks of autonomous navigation of real vehicles, some

interesting features of ER-based controllers are promisingly

addressing the most relevant issues of autonomous driving.

As regards the related works, since the late nineties, a con-

siderable part of autonomous driving is performed by vision-

based systems (see one of the first successful experiments in

[9]). Perception modules for image processing set the core

information for lane or pedestrian detection in [10], [11],

before planning the vehicle behavior. Some other solutions

propose a mixed/extendable architecture of sensory level,

after which an expert system perform an adaptive selection

of the outputs to send to the operational control [12]. This

latter work (exploited also in [13]) assumes the use of neural

fields, i.e. a principle of neural network dynamics similar to

that coded by the class of neural network proposed by the

current work.

The paper is organized as follows: in session II we con-

sider the autonomous navigation requirements addressed by

the experimental framework. In particular we consider the

problems of robustness against noise in signals and against

environmental biases (unexperienced events). After setting

a number of required features of a robust controller, we

describe the subset of conditions to be preliminary tested and

evaluated. Hence, in session III we introduce the preliminary

work on autonomous vehicles, setting up the model and the

experiments in order to face some environmental condition

related to real vehicles. The validation of the tool and

the approach are exploited through a standard procedural

automotive simulator [14] able to reproduce real traffic

conditions. In session IV some results are shown in order to

highlight the feasibility of ER control in standard navigation

manoeuvres, before setting the path towards any autonomous

handling.
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II. FRAMEWORK FOR EXPERIMENTS ON AUTONOMOUS

NAVIGATION

In autonomous driving the notion of navigation may be

assumed as the capability of choosing direction and velocity

(a, kinematics), controlling locomotion parameters on board

of the real vehicle in real time mode (b, dynamics), detecting

the environment features (c, mapping) and taking some

tactical decision (d, knowledge). The collision avoidance, for

instance, is a compulsory skill and achieved by all (a)-(d)

capabilities. In partially autonomous driving, however or in

assisted driving such as ADAS (Adaptive Driving Assistance

Systems), some functions are neglected, such as the direction

steering that is not up to the autonomous controller. In

the following text the vehicle is referred as agent because

the proposed approach is originally developed for robots.

Unlike [1] or many other works with robots moving on

rough terrain, we consider the road scenario as the main

framework. The constraints are therefore not related to the

landscape or terrain features, but are due to the conditions

and rules of the traffic. As in related works (see seminal [15]

and related issues), we set the experiments in a non-urban

scenario for discussing some capabilities that an agent must

have to perform an adapted and robust navigation.

From a modeling point of view, the environment is affected

by a large uncertainty due to the variability of the mechanics

represented. The road surface, for instance, may present

different friction characteristics that affect the adherence of

the contact between the agent and the ground. Hence, the

physical phenomena are modelled with a certain amount

of inherent approximation and a number of such model

parameters are subject to large variance. The agent itself

is subjected to a relative degree of approximation due the

complexity of the real agent to be modeled. As long as the

embodiment problem in autonomous robotics is critically

relevant ([16], [17]) it may become disruptive whenever

any solution developed by simulation is coded into a real

controller. In an automotive framework this problem must

be addressed in the selection of the simulator and in the

portability of the developed solutions to the standard buses

and controllers. The simulation itself is affected by the ac-

curacy of the model especially in the required computational

power and in relative impact of the modeled details (surface

contact nonlinearity, for instance) over the feasibility of the

solution. Under these general assumptions, we make use

of the ER techniques considering simplified models of the

agents populating the simulated environment. Moreover, we

introduce the uncertainty of the environment and of the agent

as ranges of values that may be assumed by a number of

modeled mechanics. The simulated inputs, for instance, are

only partially reproducing the real physics of the sensors

applied, but a preliminary sampling analysis is used to affect

the simulated signal by a random noise whose parameters are

suitably verified in post processing, or validation phases. In

this way the evolved controllers experience any disturbed

condition during the development phase, and are therefore

able to robustly face the real conditions. Similarly, the envi-

ronmental features, like road conditions, are experienced by

the agent during the simulation in a wide range of variability.

Finally, as in the approach of [18], the other agents popu-

lating the environment (like cars in the same road) are part

of a dynamically changing scenario, perceived by the agents

only by its input channels. The right or acceptable behavior

is therefore dependent on the particular set of interaction

of the agent with everything else. For this reason, even

if the mechanics of interactions are suitably described by

known models, the combinatorial nature of local interaction

agent-environment makes the coding of behavioral rules very

hard to establish. Setting the ER simulated process, these

environmental and procedural conditions are experienced

by many neuro-controllers. In such a framework, in fact,

the evolution selects throughout the generations the fittest

controller that can guarantee the higher robustness in facing

all the proposed (to the agent by the simulator) combinations

of conditions. In such a manner, the capabilities of evolved

neuro-controller are emergent and not predefined. In the

current preliminary work, the ER technique is used in a batch

mode, i.e. the selection of the fittest controller is simulated

off-line, then the resulting solution is re-evaluated in order

to check the validity of the controller with regard to the

constraints.

As regards the hardware features, the agents are usually

equipped with many sensors that generate a large amount

of data to use during the control process. However, we

here consider the case of only few noisy measures available

for getting information from the environment coming from

RADARs. The simulation environment developed represents

a reconfigurable extra urban scenario where several vehicles

are moving independently. The navigation behavior is based

only upon the information from the onboard sensors and

the local perception of the agent. No supervisor or hierar-

chical infrastructure can steer the agent behavior because

the controller provide autonomously all the information for

the behavior. Since collective navigation is likely to be the

most common scenario in road environment, the capability of

recognizing the behavior of the other agents and dynamically

adapt the driving activity is fundamental for solving complex

tasks.

Fig. 1. Highway traffic scenario. The presence of other vehicles, the traffic
constraints and the perception signals are translated in the experiment.

In such a framework, the evolved neuro-controller must

manage different reactions to the detected situations. In

the current preliminary experiments the main purpose is to

reproduce basic navigation: a number of simplifications are

taken in order to prepare the experimental framework for the
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attainment of the requirements previously stated.

III. BASIC EXPERIMENTS

The choice of ER techniques is based upon the possibility

to set an high level description of the desirable accomplish-

ment of the task without detailing any hand coded rule for

agent’s behavior. The principle of the task is coded in a

fitness function that describes the fundamental components

of the desired behavior. This function is used to measure

the degree of success of any controller that is evaluated.

In this way the agents are left to evolve a fit strategy

for accomplishing the task without a predefined sequence

of rules. The tasks in the experiments are mainly focused

on assisted driving applications (i.e. ADAS), in particular

the Adaptive Cruise Control (ACC). In this approach, the

neural controller is devoted to high-level functions (dynamics

actions), i.e. setting the driving variables according to the

elaboration of the current situation.

A. The agent

The agent (equipped with the ACC neuro-controller) is a

vehicle equipped with a RADAR sensor to detect the other

vehicles. The model of vehicle chosen for the experiments is

a standard library car included in veDyna simulator. The con-

trol variables for the model are the engine torque and brake

force. The RADAR has a distance range R = [30,150]m and

an azimuth angle of 15◦. A typical ACC controller output is

a required acceleration ([19], [20]). The model is provided

with a transform function of the required acceleration into the

engine torque and brake force. The vehicle model introduced

is used to test the ACC controller on either real car or

veDyna simulation. Recall that the transform function is

parametrized on a particular real car. As introduced in II

about modeling issues, and as being clearer in subsection III-

B about the computational demands of the evolutionary

process, the simplified model (with transform function of the

vehicles dynamics) is first used for the development of the

ACC controller and then validated with veDyna simulator,

using the same controller’s output (acceleration) to compare

the results (vehicle acceleration and speed). As shown in

figure 2 the acceleration of the vehicle in simplified model

is well approximated by the veDyna complete vehicle. High

order dynamics discrepancies, which depend on not modeled

gear shifts, are beyond the purpose of the testing of the

feasibility of the ER control in basic driving. However, the

velocity response is almost equal for both simulators-

B. The controller and the evolutionary algorithm

A genetic algorithm is employed [21] to set the parameters

of the controller (see Equation 1) and to select, generation

after generation, the best performing one according to the

fitness function score (see Equation 2). Every individual

in each generation represents a controller.Then the agent

is simulated during a limited lifespan in order to test its

behavior due to the individual controller. Generations of

individuals following the first one are produced by a com-

bination of genetic operators, i.e. selection with elitism,

Fig. 2. Comparison between the response of model from veDyna and
simplified stimulator given the same input. The veDnyna acceleration is
well approximated by our model, the high order dynamics discrepancies
are due to gear shifts (a). The velocities are almost equal (b).

recombination and mutation. The agent is equipped with

controller that is made up of a feed-forward multilayer

network (see figure 3). The network neurons are ruled by

the following state equation, first introduced by [22]:

τiẋi = −xi +
N

∑
j=1

ωi jσ(x j,β j,g j)+ giIi (1)

where σ(x,β ,g) = 1

1+e−g(x+β) and N is the number of neu-

rons. This formulation is an extension of Hopfield net-

works [23]. The cell potential (xi) of the 7th neuron, mapped

into [0,1] by the sigmoid function (σ ), is then linearly scaled

into [−3m/s2,2m/s2] [24] in order to set the requested ve-

hicle acceleration. The following parameters are genetically

Fig. 3. The network topology.

encoded: (i) the strength of synaptic connections ωi j; (ii)

the decay constant τi of the inter-neurons N3, N4, N5 and

N6; (iii) the bias term β j and (iv) the gain term g j for the

neurons in the input and hidden layers. All the neurons of
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each layer share the same bias term and gain term for the

firing rate function. The neuron N7 has not-evolved β7 = 0.0
and g7 = 1.0. The decay constant τi of the sensory neurons

and of the output neurons are set equal to dt (see below).

Cell potentials are set to 0 any time the network is initialized

or reset, and circuits are integrated using the forward Euler

method with an integration step-size of dt = 0.01s.

C. The task

The chosen basic navigation task in the framework of

assisted driving systems (ADAS) is the test of an Adaptive

Cruise Control (ACC). A simulated vehicle for ACC is

equipped with a RADAR to measure the current distance

from vehicles ahead, as well as the speed sensor is con-

sidered. The task is established by the fitness function as

a principle to get the desired behavior, that is to keep the

reference speed whenever the distance from the proceeding

car is computed to be safe, otherwise to slow down the car

until the safe distance is reached and maintained. The main

task is analyzed and modeled splitting the desired behavior

into 2 different subtasks: cruise speed and safe distance

control (see session IV), that are coded into the global fitness

function. As a result it was possible to obtain a single neural

controller which satisfies both the subtasks. This controller

has 2 input (see figure 3): the curent velocity and the safe

distance errors. The inputs are acquired by a model of real

noisy sensors, in order to let the neural network to develop

a filtering and pattern recognition capability.

D. The environment

As introduced in II, the simulation environment suitable

of evolving a robust neural controller using an evolution-

ary optimization must be a able to reproduce real traffic

situations in combinatorial way. The developed simulator is

based on a single host vehicle provided of ACC controller

and a number of n target vehicles. The performance of each

individual, which represents a single NN controller, has to

be evaluated with different conditions of traffic and road

geometry (evaluations for each individual in IV description).

The simulator randomly generates the number of target

vehicles, their speed profiles and number of lane change. The

handling manoeuvres are fixed and not up to the controller

in the current experiment. A generic road geometry with 9

parameters is used to generate the test track for each evalua-

tion (see figure 4). All possible variables (i.e. target vehicle

speed profile, curve radius, etc.) are chosen complying real

situations. In order to limit the number of input nodes of the

NN controller, the range covered by the RADARs is split in

6 areas (3 for Short Range and 3 for Long Range RADAR)

and for each area only one target vehicle is considered with

its distance, angle of view and relative velocity (see figure 5)

in manage eventual overlapping in the sensing. The measures

of distance, view angle and relative velocity are biased with

a Gaussian distributed noise. Moreover two sources of error

are take in account: false alarms and fault detections. For

each area of the RADAR range, 3 measures are recorded

(distance, angle and relative velocity). In our preliminary

Fig. 4. Testing track where the vehicles move. With the 9 selected
parameters, it possible to simulate almost every real extra urban situation.

Fig. 5. Host vehicle is equipped with long range and short range RADAR.
Six different areas are shown, for each of them just one vehicle can be
detected (i.e. car T3 is hidden by T2).

experiments we use the distance of target vehicles on the

central area of long range RADAR out of the 18 records can

be used as input to the NN controller.

Fig. 6. 3D image from the environment simulator. It shows the radar
equipped vehicle and several other vehicles moving independently.

E. The fitness function

According to the described features of main task (ACC),

the complete fitness function used for evolutionary selection

is made of 3 terms:

F = P
{ T

∑
t=i

f1(ti) f2(ti)
}

(2)

where time steps are indexed by t , T is the final step of the

trial. The F components are:
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• P = 0 if any collision occurs during the trial. Otherwise

P = 1;

• f1(ti) rewards the host vehicle moving at speed near to

the reference speed:

f1(ti) = 1− tanh

{

k

∣

∣

∣

∣

1−
v(ti)

vACC

∣

∣

∣

∣

}

(3)

where v(ti) is the vehicle speed, vACC is the reference

speed and k is a severity parameter;

• f2(ti) punishes the reduction of safe distance measured

by the host vehicle:

f2(ti) =
{

1− tanh{(ds(ti)−d(ti))k} if ds ≥ d

1 else
(4)

where ds(ti) is the safe distance related to the current

speed, d(ti) is the distance from the target vehicle and

k is a severity parameter.

The fitness function F in Equation (2) is used to obtain

the NN controller for the main task which includes the 2

subtasks. In the experimental set up, a NN controller for each

subtasks was obtained. The equation (3) represents the fitness

function used for the cruise speed control subtask. Instead the

equation (4) slightly modified represents the fitness function

for the safe distance control subtask.

IV. EXPERIMENTAL RESULTS

The first experiments regards the Cruise Speed control.

The goal is to evolve a NN controller able to provide an

acceleration required to reach and maintain a predefined

cruise speed. The input of NN is the difference between

the current vehicle speed and the cruise speed, the output

is the required acceleration. The NN is composed of 1

input neuron, 1 output neuron and 4 hidden neurons and

it is obtained after 200 generations, a population of 200

individuals, 20 evaluations for individual taking 100s of

lifespan each. The results, depicted in figure 7 shows that

NN is able to solve its task. Recall that NN controller is

tested with the ER simulation environment and with veDyna

simulator, the vehicle behaviour is the same in both cases.

Fig. 7. The result of CruiseControl subtask is shown. Velocity - veDyna

simulator is the host velocity coming from the accurate automotive simulator
software veDyna; Velocity - ER simulator is the host velocity from the
simulator used to obtain the NN control; reference velocity is the velocity
that the host vehicle has to maintain.

The second experiment regards the Safe Distance control.

The goal is to evolve a NN controller able to provide an

acceleration required to reach and maintain a safe distance

from the following vehicle considering a straight road and

a single target vehicle. The input of NN is the difference

between the current distance from the vehicle ahead and the

safe distance, the output is the required acceleration. The NN

structure and the evolution parameters are the same of the

previous ones. Two important aspects have to be underlined.

The NN controller is able to filter the noisy measurement

from the RADAR and the host vehicle reaches the safe

distance from a target which move at constant speed (see

figure 8a). If the proceeding vehicle changes its speed the

safe distance changes, in this case the NN controls the car

to maintain the variable safe distance (see figure 8b).

Fig. 8. The result of Safe Distance subtask is shown. Measured distance

is the distance from the following vehicle measured by a noisy radar; safe

distance is the distance that the host vehicle has to maintain; distance is
the distance from the following vehicle. The NN control works with noisy
measured distance (a). If the following vehicle changes its speed, the safe
distance change consequently (b).

The third experiment regards a NN controller which is able

to satisfy the main task, ACC control, re-evaluated in case

of a straight road and a single target vehicle. The NN has

to control the vehicle to maintain the cruise speed if there

is not car in the RADAR range, otherwise the host vehicle

has to maintain the safe distance. The NN has two input,

one neuron for each (velocity and the safe distance error), 1

output neuron (acceleration request) and 4 hidden neurons.

It is obtained after 200 generations, a population of 250

individuals, 20 evaluations taking 200s of lifespan each. The

NN control meets the requirements of the task (see figure 9).

V. CONCLUSIONS

In this work we addressed the problem of designing a

driving assistance system for automotive from a Robotics

point of view. We therefore selected a subset of navigation

features to study the possibility of application of a typically

robot-oriented technique such as ER in automotive field. This
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Fig. 9. The result of ACC task is shown. The host vehicle reaches and
maintain the reference speed till about 80s (a). After this time the target
vehicle gets in the radar range and the host vehicle reaches and maintains
the safe distance (b).

is particularly relevant whenever considering the adoption of

non hand-coding methodologies in designing the controllers

for the vehicles.

We designed an environment scenario, which includes

road geometry and traffic generation, as a framework for

development of neuro-controllers in order to address that

subset of requirements. We then designed three experiments

that conceptually reproduces some basic task features.

Finally, we observed the capability of neuro-controllers,

evolved with model that necessarily does not reproduce all

the physical features, to achieve the assigned tasks in pres-

ence of unknown situation and noisy measures. The results

are compared with those obtained with real a car-dedicated

simulator, equipped with the same neuro-controller. In this

way the capabilities of the neuro-controller in extending the

navigational properties has been proved to suit a completely

modeled vehicle. Hence, the simplified model used during

the evolutionary phase does not hinder the possibility for

the neural network to control a more complex agent in the

re-evaluation phase.

As a future work we expect to enlarge the capabilities

developed by ER considering more complex situations (i.e.

tactical maneuvers like lane change, etc.) exploiting the

features of our developed environment of simulation. We

expect that the results coming from the preliminary observed

capabilities of the controller, might improve the robustness

of the application in order to set up some basic tactical

experiments with real vehicles.
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Winfield, A.F., eds.: Proceedings of the 9th International Conference
on the Simulation of Adaptive Behavior (SAB06). LNAI, Springer
Verlag, Berlin, Germany (2007)

[9] Broggi, A., Bertozzi, M., Fascioli, A., Conte, G.: Automatic Vehicle
Guidance: the Experience of ARGO Autonomous Vehicle. World
Scientific Co. Publisher (1999)

[10] Bucher, T., Curio, C., Edelbrunner, J., Igel, C., Kastrup, D., Leefken,
I., Lorenz, G., Steinhage, A., von Seelen, W.: Image processing and
behavior planning for intelligent vehicles. IEEE Trans. Industrial
Electronics 50 (2003) 62–75

[11] Ramstrom, O., Christensen, H.: A method for following of unmarked
roads. In: IEEE Intelligent Vehicles. (2005) 650–655

[12] Edelbrunner, H., Handmann, U., Igel, C., Leefken, I., von Seelen,
W.: Application and optimization of neural field dynamics for driver
assistance. In: IEEE Proceedings Intelligent Transportation Systems.
(2001) 309–314

[13] Pellecchia, A., Igel, C., Edelbrunner, J., Schoner, G.: Making driver
modeling attractive. Intelligent Systems, IEEE [see also IEEE Intelli-
gent Systems and Their Applications] 20 (2005) 8–12

[14] TESIS, ed.: veDyna 3.9 - User Manual. TESIS DYNAware (2005)
[15] Agogino, A., Goebel, K., Alag, S.: Intelligent sensor validation

and sensor fusion for reliability and safety enhancement in vehicle
control. Technical Report UCB-ITS-PRR-95-40, California Partners
for Advanced Transit and Highways (PATH) (1995)

[16] Jakobi, N.: Half-baked, ad-hoc and noisy: Minimal simulations for
evolutionary robotics. In Husbands, P., Harvey, I., eds.: Proceedings
of the 6th European Conf. on Artificial Life, MIT Press, Cambridge,
MA (1997) 348–357

[17] Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Dis-
tributing an evolutionary algorithm in a population of robots. Robotics
and Autonomous Systems 39 (2002) 1–18

[18] Beer, R.D.: A dynamical systems perspective on agent-environment
interaction. Artificial Intelligence 1 (1995) 173–215

[19] Vibhor L. Bageshwar, W.L.G., Rajamani, R.: Model predictive control
of transitional maneuvers for adaptive cruise control vehicles. IEEE
Transaction on Vehicular Technology 53 (2004) 1573–1585

[20] Wang, J., Rajamani, R.: Should adaptive cruise-control systems be
designed to maintain a constant time gap between vehicles? IEEE
Transaction on Vehicular Technology 53 (2004) 1480–1490

[21] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA (1989)

[22] Beer, R.D.: On the dynamics of small continuous-time recurrent neural
networks. Adaptive Behavior 4 (1995) 469–509

[23] Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model.
Science 233 (1986) 625–633

[24] AA.VV.: ISO 15622 - Transport Information and Control Systems -
Adaptive Cruise Control sysmtems - Preformance requirements and
test procedures. International Standard (2002)

ThE1.19

905


