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A Platform for Designing Solutions for Automotive Autonomous Driving
based on Evolutionary Robotics approach

F. Vicentini, M. Branciforte, R. Martorana, A. Rovetta

Abstract— We consider the autonomous driving of real ve-
hicles as a challenging framework where Robotics-oriented
approach might be effective in solve complex tasks. Here we
discuss some of the autonomous navigation features in order
to set up an environment to develop neural control systems
for automotive autonomous driving. In this work we introduce
the Evolutionary Robotics as a framework for automatically
evolve and select neuro-controllers to test in a conceptual
experiment reproducing the road scenario features. Preliminary
experiments of Cruise Control and Adaptive Cruise Control
were conducted in simulation, comparing the results of both
our simulator and a commercial dedicated simulator providing
a complete car library. The experiments help in evaluating the
feasibility of novel approaches in the development of controllers
for automotive vehicles.

I. INTRODUCTION

In autonomous driving of vehicles, the accomplishment of
tactical tasks, such as lane keeping/changing, speed setting,
leading vehicles following, avoiding collisions, has been
extensively studied as parts of a general solution in dy-
namically changing scenarios. Still, a complete automated
driving is unavailable for cars as a large-scale equipment,
with few exceptions like [1]. However, in such case of
rough terrain navigation the required equipment happens to
be quite demanding in terms of computational power and
of devices. Nonetheless this kind of applications reveals the
presence of next generation robot techniques in a pervasive
and familiar field such as car driving. Hence, we observe
a very promising convergence of the experience in mobile
robotics research and the evolution of real vehicles towards
autonomous driving. In this paper we consider the road sce-
narios and the basic navigation capabilities as a framework
for discussing a Robotics-oriented approach in automotive
autonomous driving. As a number of Al techniques have
been developed to autonomously control vehicles or robots
[2], we therefore discuss here the requirements, the feasibility
and the preliminary results of the application of Evolutionary
Robotics (ER, see [3]) in solving the navigation problem.
Roughly speaking, ER is a methodological tool to automate
the design of controllers. ER is based on the use of artificial
evolution to find sets of parameters for artificial neural
networks that guide agents to the accomplishment of their
objective, avoiding dangers. One the most relevant features
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of ER is to allow the design of artificial neural network
controllers for robots capable of facing circumstances never
experienced during the training phase. The main purpose
of our discussion is to look at the ER technique as a
tool for addressing some of the most relevant problems in
autonomous driving.

In addition to most of the related ER works ([4], [5] and
related bibliographies) that deal with cognitive and social be-
haviors, other examples of real-time controls for navigation
tasks have been successfully accomplished ([7], [8]). The
common purpose of such techniques is to develop simple
controllers, from both a computational and an architectural
point of view. Although not extendable to all the possible
sub-tasks of autonomous navigation of real vehicles, some
interesting features of ER-based controllers are promisingly
addressing the most relevant issues of autonomous driving.
As regards the related works, since the late nineties, a con-
siderable part of autonomous driving is performed by vision-
based systems (see one of the first successful experiments in
[9]). Perception modules for image processing set the core
information for lane or pedestrian detection in [10], [11],
before planning the vehicle behavior. Some other solutions
propose a mixed/extendable architecture of sensory level,
after which an expert system perform an adaptive selection
of the outputs to send to the operational control [12]. This
latter work (exploited also in [13]) assumes the use of neural
fields, i.e. a principle of neural network dynamics similar to
that coded by the class of neural network proposed by the
current work.

The paper is organized as follows: in session II we con-
sider the autonomous navigation requirements addressed by
the experimental framework. In particular we consider the
problems of robustness against noise in signals and against
environmental biases (unexperienced events). After setting
a number of required features of a robust controller, we
describe the subset of conditions to be preliminary tested and
evaluated. Hence, in session III we introduce the preliminary
work on autonomous vehicles, setting up the model and the
experiments in order to face some environmental condition
related to real vehicles. The validation of the tool and
the approach are exploited through a standard procedural
automotive simulator [14] able to reproduce real traffic
conditions. In session IV some results are shown in order to
highlight the feasibility of ER control in standard navigation
manoeuvres, before setting the path towards any autonomous
handling.
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II. FRAMEWORK FOR EXPERIMENTS ON AUTONOMOUS
NAVIGATION

In autonomous driving the notion of navigation may be
assumed as the capability of choosing direction and velocity
(a, kinematics), controlling locomotion parameters on board
of the real vehicle in real time mode (b, dynamics), detecting
the environment features (c, mapping) and taking some
tactical decision (d, knowledge). The collision avoidance, for
instance, is a compulsory skill and achieved by all (a)-(d)
capabilities. In partially autonomous driving, however or in
assisted driving such as ADAS (Adaptive Driving Assistance
Systems), some functions are neglected, such as the direction
steering that is not up to the autonomous controller. In
the following text the vehicle is referred as agent because
the proposed approach is originally developed for robots.
Unlike [1] or many other works with robots moving on
rough terrain, we consider the road scenario as the main
framework. The constraints are therefore not related to the
landscape or terrain features, but are due to the conditions
and rules of the traffic. As in related works (see seminal [15]
and related issues), we set the experiments in a non-urban
scenario for discussing some capabilities that an agent must
have to perform an adapted and robust navigation.

From a modeling point of view, the environment is affected
by a large uncertainty due to the variability of the mechanics
represented. The road surface, for instance, may present
different friction characteristics that affect the adherence of
the contact between the agent and the ground. Hence, the
physical phenomena are modelled with a certain amount
of inherent approximation and a number of such model
parameters are subject to large variance. The agent itself
is subjected to a relative degree of approximation due the
complexity of the real agent to be modeled. As long as the
embodiment problem in autonomous robotics is critically
relevant ([16], [17]) it may become disruptive whenever
any solution developed by simulation is coded into a real
controller. In an automotive framework this problem must
be addressed in the selection of the simulator and in the
portability of the developed solutions to the standard buses
and controllers. The simulation itself is affected by the ac-
curacy of the model especially in the required computational
power and in relative impact of the modeled details (surface
contact nonlinearity, for instance) over the feasibility of the
solution. Under these general assumptions, we make use
of the ER techniques considering simplified models of the
agents populating the simulated environment. Moreover, we
introduce the uncertainty of the environment and of the agent
as ranges of values that may be assumed by a number of
modeled mechanics. The simulated inputs, for instance, are
only partially reproducing the real physics of the sensors
applied, but a preliminary sampling analysis is used to affect
the simulated signal by a random noise whose parameters are
suitably verified in post processing, or validation phases. In
this way the evolved controllers experience any disturbed
condition during the development phase, and are therefore
able to robustly face the real conditions. Similarly, the envi-
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ronmental features, like road conditions, are experienced by
the agent during the simulation in a wide range of variability.
Finally, as in the approach of [18], the other agents popu-
lating the environment (like cars in the same road) are part
of a dynamically changing scenario, perceived by the agents
only by its input channels. The right or acceptable behavior
is therefore dependent on the particular set of interaction
of the agent with everything else. For this reason, even
if the mechanics of interactions are suitably described by
known models, the combinatorial nature of local interaction
agent-environment makes the coding of behavioral rules very
hard to establish. Setting the ER simulated process, these
environmental and procedural conditions are experienced
by many neuro-controllers. In such a framework, in fact,
the evolution selects throughout the generations the fittest
controller that can guarantee the higher robustness in facing
all the proposed (to the agent by the simulator) combinations
of conditions. In such a manner, the capabilities of evolved
neuro-controller are emergent and not predefined. In the
current preliminary work, the ER technique is used in a batch
mode, i.e. the selection of the fittest controller is simulated
off-line, then the resulting solution is re-evaluated in order
to check the validity of the controller with regard to the
constraints.

As regards the hardware features, the agents are usually
equipped with many sensors that generate a large amount
of data to use during the control process. However, we
here consider the case of only few noisy measures available
for getting information from the environment coming from
RADARSs. The simulation environment developed represents
a reconfigurable extra urban scenario where several vehicles
are moving independently. The navigation behavior is based
only upon the information from the onboard sensors and
the local perception of the agent. No supervisor or hierar-
chical infrastructure can steer the agent behavior because
the controller provide autonomously all the information for
the behavior. Since collective navigation is likely to be the
most common scenario in road environment, the capability of
recognizing the behavior of the other agents and dynamically
adapt the driving activity is fundamental for solving complex
tasks.
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Fig. 1. Highway traffic scenario. The presence of other vehicles, the traffic
constraints and the perception signals are translated in the experiment.
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In such a framework, the evolved neuro-controller must
manage different reactions to the detected situations. In
the current preliminary experiments the main purpose is to
reproduce basic navigation: a number of simplifications are
taken in order to prepare the experimental framework for the



attainment of the requirements previously stated.

III. BASIC EXPERIMENTS

The choice of ER techniques is based upon the possibility
to set an high level description of the desirable accomplish-
ment of the task without detailing any hand coded rule for
agent’s behavior. The principle of the task is coded in a
fitness function that describes the fundamental components
of the desired behavior. This function is used to measure
the degree of success of any controller that is evaluated.
In this way the agents are left to evolve a fit strategy
for accomplishing the task without a predefined sequence
of rules. The tasks in the experiments are mainly focused
on assisted driving applications (i.e. ADAS), in particular
the Adaptive Cruise Control (ACC). In this approach, the
neural controller is devoted to high-level functions (dynamics
actions), i.e. setting the driving variables according to the
elaboration of the current situation.

A. The agent

The agent (equipped with the ACC neuro-controller) is a
vehicle equipped with a RADAR sensor to detect the other
vehicles. The model of vehicle chosen for the experiments is
a standard library car included in veDyna simulator. The con-
trol variables for the model are the engine torque and brake
force. The RADAR has a distance range % = [30, 150]m and
an azimuth angle of 15°. A typical ACC controller output is
a required acceleration ([19], [20]). The model is provided
with a transform function of the required acceleration into the
engine torque and brake force. The vehicle model introduced
is used to test the ACC controller on either real car or
veDyna simulation. Recall that the transform function is
parametrized on a particular real car. As introduced in II
about modeling issues, and as being clearer in subsection III-
B about the computational demands of the evolutionary
process, the simplified model (with transform function of the
vehicles dynamics) is first used for the development of the
ACC controller and then validated with veDyna simulator,
using the same controller’s output (acceleration) to compare
the results (vehicle acceleration and speed). As shown in
figure 2 the acceleration of the vehicle in simplified model
is well approximated by the veDyna complete vehicle. High
order dynamics discrepancies, which depend on not modeled
gear shifts, are beyond the purpose of the testing of the
feasibility of the ER control in basic driving. However, the
velocity response is almost equal for both simulators-

B. The controller and the evolutionary algorithm

A genetic algorithm is employed [21] to set the parameters
of the controller (see Equation 1) and to select, generation
after generation, the best performing one according to the
fitness function score (see Equation 2). Every individual
in each generation represents a controller.Then the agent
is simulated during a limited lifespan in order to test its
behavior due to the individual controller. Generations of
individuals following the first one are produced by a com-
bination of genetic operators, i.e. selection with elitism,
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Fig. 2. Comparison between the response of model from veDyna and
simplified stimulator given the same input. The veDnyna acceleration is
well approximated by our model, the high order dynamics discrepancies
are due to gear shifts (a). The velocities are almost equal (b).

recombination and mutation. The agent is equipped with
controller that is made up of a feed-forward multilayer
network (see figure 3). The network neurons are ruled by
the following state equation, first introduced by [22]:

N
Tk = —xi+ Y 0;;0(x;,Bj.8;) + gili (D

j=1
where o(x,f,8) = m and N is the number of neu-

rons. This formulation is an extension of Hopfield net-
works [23]. The cell potential (x;) of the 7' neuron, mapped
into [0,1] by the sigmoid function (o), is then linearly scaled
into [—3m/s?,2m/s*] [24] in order to set the requested ve-
hicle acceleration. The following parameters are genetically

REQUIRED ACCELERATION

INPUTS FROM SENSORY APPARATUS

Fig. 3. The network topology.

encoded: (i) the strength of synaptic connections ®;;; (ii)
the decay constant 7; of the inter-neurons N3, Ns, N5 and
Ng; (iii) the bias term f; and (iv) the gain term g; for the
neurons in the input and hidden layers. All the neurons of
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each layer share the same bias term and gain term for the
firing rate function. The neuron N7 has not-evolved 3; = 0.0
and g7 = 1.0. The decay constant 7; of the sensory neurons
and of the output neurons are set equal to dr (see below).
Cell potentials are set to 0 any time the network is initialized
or reset, and circuits are integrated using the forward Euler
method with an integration step-size of dt = 0.01s.

C. The task

The chosen basic navigation task in the framework of
assisted driving systems (ADAS) is the test of an Adaptive
Cruise Control (ACC). A simulated vehicle for ACC is
equipped with a RADAR to measure the current distance
from vehicles ahead, as well as the speed sensor is con-
sidered. The task is established by the fitness function as
a principle to get the desired behavior, that is to keep the
reference speed whenever the distance from the proceeding
car is computed to be safe, otherwise to slow down the car
until the safe distance is reached and maintained. The main
task is analyzed and modeled splitting the desired behavior
into 2 different subtasks: cruise speed and safe distance
control (see session IV), that are coded into the global fitness
function. As a result it was possible to obtain a single neural
controller which satisfies both the subtasks. This controller
has 2 input (see figure 3): the curent velocity and the safe
distance errors. The inputs are acquired by a model of real
noisy sensors, in order to let the neural network to develop
a filtering and pattern recognition capability.

D. The environment

As introduced in II, the simulation environment suitable
of evolving a robust neural controller using an evolution-
ary optimization must be a able to reproduce real traffic
situations in combinatorial way. The developed simulator is
based on a single host vehicle provided of ACC controller
and a number of n target vehicles. The performance of each
individual, which represents a single NN controller, has to
be evaluated with different conditions of traffic and road
geometry (evaluations for each individual in IV description).
The simulator randomly generates the number of target
vehicles, their speed profiles and number of lane change. The
handling manoeuvres are fixed and not up to the controller
in the current experiment. A generic road geometry with 9
parameters is used to generate the test track for each evalua-
tion (see figure 4). All possible variables (i.e. target vehicle
speed profile, curve radius, etc.) are chosen complying real
situations. In order to limit the number of input nodes of the
NN controller, the range covered by the RADARs is split in
6 areas (3 for Short Range and 3 for Long Range RADAR)
and for each area only one target vehicle is considered with
its distance, angle of view and relative velocity (see figure 5)
in manage eventual overlapping in the sensing. The measures
of distance, view angle and relative velocity are biased with
a Gaussian distributed noise. Moreover two sources of error
are take in account: false alarms and fault detections. For
each area of the RADAR range, 3 measures are recorded
(distance, angle and relative velocity). In our preliminary
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Fig. 4.  Testing track where the vehicles move. With the 9 selected
parameters, it possible to simulate almost every real extra urban situation.

Fig. 5. Host vehicle is equipped with long range and short range RADAR.
Six different areas are shown, for each of them just one vehicle can be
detected (i.e. car 73 is hidden by 72).

experiments we use the distance of target vehicles on the
central area of long range RADAR out of the 18 records can
be used as input to the NN controller.

Fig. 6. 3D image from the environment simulator. It shows the radar
equipped vehicle and several other vehicles moving independently.

E. The fitness function

According to the described features of main task (ACC),
the complete fitness function used for evolutionary selection
is made of 3 terms:

F ZP{ iﬁ (ti)fz(ti)} )

where time steps are indexed by ¢ , T is the final step of the
trial. The F components are:
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e P =0 if any collision occurs during the trial. Otherwise
P=1;
« fi(t;) rewards the host vehicle moving at speed near to
the reference speed:
} 3)

where v(;) is the vehicle speed, vacc is the reference
speed and k is a severity parameter;

o f2(t;) punishes the reduction of safe distance measured
by the host vehicle:

£ :{ 1—tanh{(dsgti)—d(ti))k}

where d;(;) is the safe distance related to the current
speed, d(#;) is the distance from the rarget vehicle and
k is a severity parameter.

fl(ti)—l—tanh{k‘1_@

Vacc

ifdy>d
else

“)

The fitness function F in Equation (2) is used to obtain
the NN controller for the main task which includes the 2
subtasks. In the experimental set up, a NN controller for each
subtasks was obtained. The equation (3) represents the fitness
function used for the cruise speed control subtask. Instead the
equation (4) slightly modified represents the fitness function
for the safe distance control subtask.

IV. EXPERIMENTAL RESULTS

The first experiments regards the Cruise Speed control.
The goal is to evolve a NN controller able to provide an
acceleration required to reach and maintain a predefined
cruise speed. The input of NN is the difference between
the current vehicle speed and the cruise speed, the output
is the required acceleration. The NN is composed of 1
input neuron, 1 output neuron and 4 hidden neurons and
it is obtained after 200 generations, a population of 200
individuals, 20 evaluations for individual taking 100s of
lifespan each. The results, depicted in figure 7 shows that
NN is able to solve its task. Recall that NN controller is
tested with the ER simulation environment and with veDyna
simulator, the vehicle behaviour is the same in both cases.
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Fig. 7. The result of CruiseControl subtask is shown. Velocity - veDyna
simulator is the host velocity coming from the accurate automotive simulator
software veDyna; Velocity - ER simulator is the host velocity from the
simulator used to obtain the NN control; reference velocity is the velocity
that the host vehicle has to maintain.
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The second experiment regards the Safe Distance control.
The goal is to evolve a NN controller able to provide an
acceleration required to reach and maintain a safe distance
from the following vehicle considering a straight road and
a single target vehicle. The input of NN is the difference
between the current distance from the vehicle ahead and the
safe distance, the output is the required acceleration. The NN
structure and the evolution parameters are the same of the
previous ones. Two important aspects have to be underlined.
The NN controller is able to filter the noisy measurement
from the RADAR and the host vehicle reaches the safe
distance from a target which move at constant speed (see
figure 8a). If the proceeding vehicle changes its speed the
safe distance changes, in this case the NN controls the car
to maintain the variable safe distance (see figure 8b).
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Fig. 8. The result of Safe Distance subtask is shown. Measured distance
is the distance from the following vehicle measured by a noisy radar; safe
distance is the distance that the host vehicle has to maintain; distance is
the distance from the following vehicle. The NN control works with noisy
measured distance (a). If the following vehicle changes its speed, the safe
distance change consequently (b).

The third experiment regards a NN controller which is able
to satisfy the main task, ACC control, re-evaluated in case
of a straight road and a single target vehicle. The NN has
to control the vehicle to maintain the cruise speed if there
is not car in the RADAR range, otherwise the host vehicle
has to maintain the safe distance. The NN has two input,
one neuron for each (velocity and the safe distance error), 1
output neuron (acceleration request) and 4 hidden neurons.
It is obtained after 200 generations, a population of 250
individuals, 20 evaluations taking 200s of lifespan each. The
NN control meets the requirements of the task (see figure 9).

V. CONCLUSIONS

In this work we addressed the problem of designing a
driving assistance system for automotive from a Robotics
point of view. We therefore selected a subset of navigation
features to study the possibility of application of a typically
robot-oriented technique such as ER in automotive field. This
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Fig. 9. The result of ACC task is shown. The host vehicle reaches and
maintain the reference speed till about 80s (a). After this time the target
vehicle gets in the radar range and the host vehicle reaches and maintains
the safe distance (b).

is particularly relevant whenever considering the adoption of
non hand-coding methodologies in designing the controllers
for the vehicles.

We designed an environment scenario, which includes
road geometry and traffic generation, as a framework for
development of neuro-controllers in order to address that
subset of requirements. We then designed three experiments
that conceptually reproduces some basic task features.

Finally, we observed the capability of neuro-controllers,
evolved with model that necessarily does not reproduce all
the physical features, to achieve the assigned tasks in pres-
ence of unknown situation and noisy measures. The results
are compared with those obtained with real a car-dedicated
simulator, equipped with the same neuro-controller. In this
way the capabilities of the neuro-controller in extending the
navigational properties has been proved to suit a completely
modeled vehicle. Hence, the simplified model used during
the evolutionary phase does not hinder the possibility for
the neural network to control a more complex agent in the
re-evaluation phase.

As a future work we expect to enlarge the capabilities
developed by ER considering more complex situations (i.e.
tactical maneuvers like lane change, etc.) exploiting the
features of our developed environment of simulation. We
expect that the results coming from the preliminary observed
capabilities of the controller, might improve the robustness
of the application in order to set up some basic tactical
experiments with real vehicles.
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