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Abstract— In this paper, active safety enhancement for indi-
vidual wheel braking actuated vehicle dynamics is presented.
The nonlinear tire characteristics play an important role during
manoeuvering tasks since tire forces may be saturated when
the tire slip angle exceeds some a priori unknown slip value.
Saturated forces, especially in the lateral direction, may result in
an increase on the vehicle side slip angle and manoeuvering task
may not be accomplished safely while the vehicle is drifting out
of its trajectory. Regulation of tire forces may be very difficult
at controller development stage due to modeling and analytical
complexities and due to the presence of many unknown factors
such as the road-tire friction coefficient. This paper proposes a
controller methodology that may prevent the saturation of the
lateral tire forces by regulating the individually actuated wheel
brake actuators. The phenomenon of tire force saturation in
the lateral direction is detected by comparing the individually
estimated lateral tire force with its linear form simultaneously,
and regulating the decentralized individual hydraulic wheel
brakes to reduce the tire slip angles. Simulation results are
illustrated to show the effectiveness of the proposed approach.

I. INTRODUCTION

One of the main reasons of vehicle accidents is driver’s

inability to judge properly the limits of his/her vehicle.

When the speed of the vehicle exceeds a safe speed limit

with respect to the road curvature and the tire-road friction

coefficient, the driver may loose control of the vehicle. Since

accidents are mainly caused by the driver’s control authority

failure at sensing the vehicle limits and intervening before

the possible hazards, driver assistance systems have been

introduced to assure active safety. In [1], [2] and [3], using

a reference vehicle model, the desired yaw rate has been

calculated from the driver inputs. Regulating the differential

braking or coordinating the active steering and individually

actuated braking methods, the lateral stability of the vehicle

model has been shown to be assured. During short-time

emergency manoeuvering tasks, the driving physical limits

depend primarily on the tire-road friction coefficient. The

tire-road friction and consequently, tire forces in both of the

lateral and the longitudinal direction may be estimated to

accomplish safe manoeuvering tasks in the physical limits.

In [4], the tire-road friction coefficient has been estimated

by using a recursive least square identification algorithm
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during braking manoeuver.In [5], the tire forces by using an

Extended Kalman Filter has been estimated and compared

with a reference force, resulted by road friction coefficient

estimation. Road friction coefficient estimation may be com-

putationally complex on a real-time basis.

In this paper, safety is assured by comparing deviation

of each individual tire force in the lateral direction from

the linear characteristics, and then possible saturation effects

are detected. Lateral tire forces are calculated based on the

estimation of generated tire forces in the longitudinal direc-

tion during braking manoeuver. ABS control and extremum

seeking is revisited in order to estimate tire forces in a

finite time with high accuracy. And then the methodology

is proposed to regulate the individually actuated hydraulic

brake actuators and to operate in the stable region of the tire

characteristics at the lower slip angle values generating the

higher tire force output.

The remainder of this paper is organized as follows. In

Section 2 the vehicle model, wheel dynamics and tire model

is presented. Section 3 introduces the control algorithm and

estimation of lateral forces. Simulation results are given in

Section 4. Finally, some results are given to conclude the

paper.

II. MODELLING

A. Vehicle Model

A nonlinear double track vehicle model with nonlinear tire

characteristics is considered towards controller design. The

equations of motion dynamics are given by,

u̇ =
Fxsum

m
+ vr −

1

2
Aρ|u|u (1)

v̇ =
Fysum

m
− ur (2)

ṙ =
Mzsum

Iz

(3)

where m denotes the vehicle mass, Aρ the aerodynamic drag

force coefficient, Iz is the yaw inertia, r is the yaw rate,

u and v denotes velocities in the longitudinal and lateral

direction, respectively, as illustrated in Fig.1. Fxsum, Fysum

and Mzsum are the sum of forces and moment acting on the

vehicle model

Fxsum = (Fx1 + Fx2) cos δf − (Fy1 + Fy2) sin δf

+ Fx3 + Fx4

Fysum = (Fx1 + Fx2) sin δf + (Fy1 + Fy2) cos δf

+ Fy3 + Fy4

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

ThE1.17

1-4244-1068-1/07/$25.00 ©2007 IEEE. 888



u

v

βr

Fx1

Fx2

Fx4

Fx3

Fy4

Fy3

Fy1

Fy2

lflr

δf

α1

α2

α3

α4

lw

Fig. 1. Top view of the vehicle model

Mzsum = ((Fx1 − Fx2) cos δf − (Fy1 − Fy2) sin δf )
lw

2
+ ((Fx1 + Fx2) sin δf + (Fy1 + Fy2) cos δf )lf

+ (Fx4 − Fx3)
lw

2
− (Fy3 + Fy4)lr

Here δf is the front wheel steering angle, lf and lr are the

distances from center of gravity (CG) to the front and rear

axle, lw denotes the front and rear track width. The tire slip

angles are calculated as follows:

α1 = δf − tan−1

(

v + rlf
u + rlw/2

)

(4)

α2 = δf − tan−1

(

v + rlf
u − rlw/2

)

(5)

α3 =− tan−1

(

v − rlr
u − rlw/2

)

(6)

α4 =− tan−1

(

v − rlr
u + r · lw/2

)

(7)

B. Wheel Dynamics

Rotational motion dynamics for each individual tire, i.e.,
for i = 1, 2, 3, 4, are given by,

ω̇i =
Td − Tbi − RFxi − dFzi

Iw

(8)

where ωi denotes the i − th tire angular velocity, Td is

traction moment, Tbi is individual wheel braking moment,

Fzi is tire vertical force, Iw denotes the wheel inertia, R is

the tire effective radius and d is the vertical tire force offset

as illustrated in Fig.2. For simplicity, the dynamic weight

transfer is neglected and the vertical tire forces are given by,

Fz1 = Fz2 =
mg

2

lr
lf + lr

(9)

Fz3 = Fz4 =
mg

2

lf
lf + lr

(10)

d

R

ω TdTb

Fz

Fx

Fig. 2. Forces and moments acting on the wheel model

C. Tire Forces

Modelling tire forces along the longitudinal and lateral

axes, Dugoff’s tire model is used. Towards controller deriva-

tion and analysis, Dugoff’s model presents significant ad-

vantage of being analytical where an alternative tire model

introduced Pacejka and Sharp is semi-empirical, [9].

Dugoff’s model may be analytically derived at controller’s

development stage. Combined longitudinal and lateral force

generation are directly related to the tire road coefficient in

compact form,

Fxi = Cxi

κi

1 + κi

f(λi) (11)

Fyi = Cyi

tan(αi)

1 + κi

fi(λi) (12)

where Cxi and Cyi are the i − th tire longitudinal and

lateral cornering stiffness, respectively. The variable λi and

the function fi(λi) are given,

λi =
µFzi(1 + κi)

2
√

(Cxiκi)2 + (Cyi tan(αi))2
(13)

fi(λi) =

{

(2 − λi)λi if λi < 1
1 if λi ≥ 1

(14)

where µ denotes the tire-road friction coefficient. The tire

slip ratios during braking are given by,

κi = −
uti − Rωi

uti

(15)

where uti is the velocity on rolling direction for i − th
individual tire given by,

ut1 = (u + r(lw/2)) cos δf + (v + rlf ) sin δf

ut2 = (u − r(lw/2)) cos δf + (v + rlf ) sin δf

ut3 = (u − r(lw/2))

ut4 = (u + r(lw/2)) (16)

III. CONTROL ALGORITHM

The proposed controller is built on the observation of the

deviation between the individual nonlinear tire force and the

linear characteristics. The main purpose of this approach

is to enforce the tire forces stay in the linear region and

to generate high tire force with respect to tire slip angle
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Fig. 3. Lateral tire force characteristics.
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Fig. 4. Individual braking operation region to prevent tire force saturation.

improving cornering and handling capability of the vehicle

motion. Even though the tire forces are entered into the

saturation region, so-called “unstable region”, where tire

forces outputs decrease while diverging with respect to the

increasing tire slip angle, the proposed controller intervenes

to this undesired transient operation by applying the required

individual wheel braking that may enforce tire forces towards

to the linear region. The nonlinear tire force characteristics

are plotted in Fig.3 for different road friction coefficients

where the proposed methodology is illustrated in Fig.4.

The estimation of front axle and rear axle lateral tire

forces is based on longitudinal tire force estimation, lateral

acceleration and yaw rate measurement, [8]. Estimation of

tire longitudinal force is based on tire angular velocity

measurement, [7]. The simplified longitudinal tire dynamics

may be given by,

Iwω̇i = Td − Tbi − RFxi (17)

δf

FxfFyfFyr

Fxr

m · ay

Iz · ṙ

Fig. 5. Forces and moments acting on a single track vehicle model

The rolling resistance effect hasn’t been taken into consid-

eration at observer design stage. Defining the variable ω̂i,

Iw
˙̂ωi = Td − Tbi + RMsign(ω̄i) (18)

where ω̄i = ωi−ω̂i is the error between the estimated and the

measured tire angular velocity. Subtracting (18) from (17),

Iw ˙̄ωi = −Msign(ω̄i)R − RFxi (19)

By choosing |M | > max |Fx|, the estimated state, ω̂i may

track the real state, ωi, due to discontinuous feedback in the

observer equation. In sliding mode, the equivalent value of

Msign(ω̄i) is equal to the longitudinal tire force,

F̂ xi = − (Msign(ω̄i))eq (20)

To obtain the equivalent value of Msign(ω̄i) during sliding

mode, a low pass filter is used. Hence, the equation of the

filter is given by, (see also [7]),

F̂ xi = −
(

1 − e−
t
τ

)

Msign(ω̄i) (21)

where τ is the time constant of the filter to be chosen

to attenuate the high frequency components in the original

signal.

Force and moment acting on a single track vehicle model

are illustrated in Fig.5. Equalizing moments to the rear and

front axles, respectively, lateral tire force may be estimated,

F̂ yf =
1

cos δf

(

maylr + Izṙ

lf + lr
− F̂ xf sin δf

)

(22)

F̂ yr =
maylf − Izṙ

lf + lr
(23)

where F̂ yf and F̂ yr are the estimation of front and rear

axle total lateral force and ay is the lateral acceleration.

F̂ xf is estimated front axle total longitudinal force and it

is calculated as follows:

F̂ xf = F̂ x1 + F̂ x2 (24)

A. Nonlinear Controller Development Based on the Individ-

ual Wheel Braking Actuated Vehicle Model

The error between the nonlinear front axle lateral force

and its linearized value is written as follows:

ef = Fyflin − Fyf (25)

= Cyfαf − Cy1

tanα1

1 + κ1

f1(λ1) − Cy2

tanα2

1 + κ2

f2(λ2)
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where Fyf is front axle total lateral force, Fyflin denotes

the linearized value, Cyf is the front axle total cornering

stiffness and αf is the front axle slip angle given by,

αf = δf − β −
lfr

u
(26)

The time-derivative of the error, given by (25), subjected to

the front axle in the lateral direction may be derived,

ėf = Cyf α̇f − Cy1

α̇1(1 + κ1)

cos2 α1(1 + κ1)2
f1(λ1) (27)

−Cy2

α̇2(1 + κ2)

cos2 α2(1 + κ2)2
f2(λ2)

+ Cy1

tanα1

(1 + κ1)2
f1(λ1)κ̇1 + Cy2

tanα2

(1 + κ2)2
f2(λ2)κ̇2

−Cy1

tanα1

1 + κ1

∂f1

∂λ1

λ̇1 − Cy2

tanα2

1 + κ2

∂f2

∂λ2

λ̇2

Deriving κ̇i in terms of the wheel states and reconsidering

the tire dynamics given in (8) during braking, for i=1,2,3,4,

ω̇i =
−Tbi − RF̂xi

Iw

(28)

κ̇i = − (κi + 1)
u̇ti

uti

−
R2

Iw

F̂xi

uti

−
R

Iw

1

uti

Tbi (29)

The time-derivative (27) may be rewritten,

ėf = Cyf α̇f − Cy1

α̇1

cos2 α1(1 + κ1)
f1(λ1) (30)

−Cy1

tanα1

1 + κ1

∂f1

∂λ1

λ̇1 −

(

Cy1

tanα1

(1 + κ1)2
f1(λ1)

)

·

(

(κ1 + 1)
u̇t1

ut1

+
R2

Iw

F̂x1

ut1

+
R

Iw

1

ut1

Tb1

)

−Cy2

α̇2

cos2 α2(1 + κ2)
f2(λ2)

−Cy2

tanα2

1 + κ2

∂f2

∂λ2

λ̇2 −

(

Cy2

tanα2

(1 + κ2)2
f2(λ2)

)

·

(

(κ2 + 1)
u̇t2

ut2

+
R2

Iw

F̂x2

ut2

+
R

Iw

1

ut2

Tb2

)

Modelling the vehicle dynamics, the tire velocities on rolling

directions are calculated in (16). At controller design stage,

the following equations denote the time-derivative of tire

velocities on the rolling direction,

u̇t1 = u̇ + ṙ(lw/2)

u̇t2 = u̇ − ṙ(lw/2)

u̇t3 = u̇ − ṙ(lw/2)

u̇t4 = u̇ + ṙ(lw/2) (31)

Time derivative of the longitudinal velocity is calculated in

(1). Here, it is simplified with neglecting aerodynamic drag

force and under small angle assumptions,

u̇ =
F̂ xtotal − F̂ yfδf

m
+ vr (32)

where

F̂ xtotal = F̂ x1 + F̂ x2 + F̂ x3 + F̂ x4 (33)

Through straight forward manipulations, the individual brak-

ing torque applied to the front tires are chosen such that

ef → 0 and ėf → 0 are satisfied outside the region ∆ as

t → ∞,

Tb1 =

[

Iw(1 + κ1)

R

(

−
F̂ xtotal

m
+

F̂ yf

m
δf − vr − ṙ

lw
2

)

−RF̂x1 +
Iwut1

R
(34)

· (k11|α̇f | + k12|α̇1| + M1) sign(tan(α1))

]

Γsign(ef )

Tb2 =

[

Iw(1 + κ2)

R

(

−
F̂ xtotal

m
+

F̂ yf

m
δf − vr + ṙ

lw
2

)

−RF̂x2 +
Iwut2

R
(35)

· (k21|α̇f | + k22|α̇2| + M2) sign(tan(α2))

]

Γsign(ef )

Without loosing of generality, the controller derived to reg-

ulate lateral deviation subjected to the front axle may be

repeated for the rear axle, defining,

ėr = Ḟ yrlin − Ḟ yr (36)

where Fyrlin is rear axle linearized total lateral force,

Fyrlin = Cyrαr (37)

where Cyr is the rear axle total cornering stiffness, αr is the

rear axle slip angle given by,

αr = −β +
lrr

u
(38)

To stabilize lateral deviation subjected to the rear axle, the

controller’s outputs are derived by,

Tb3 =

[

Iw(1 + κ3)

R

(

−
F̂ xtotal

m
+

F̂ yf

m
δf − vr + ṙ

lw
2

)

−RF̂x3 +
Iwut3

R
(39)

· (k31|α̇f | + k32|α̇3| + M3) sign(tan(α3))

]

Γsign(er)

Tb4 =

[

Iw(1 + κ4)

R

(

−
F̂ xtotal

m
+

F̂ yf

m
δf − vr − ṙ

lw
2

)

−RF̂x4 +
Iwut4

R
(40)

· (k41|α̇f | + k42|α̇4| + M4) sign(tan(α4))

]

Γsign(er)

where the gains ki1, ki2 and Mi are chosen to be positive

constants to satisfy ef → 0 and ėf → 0 outside the region

∆ as t → ∞. Also the discontinuous function Γsign(·)
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is a function with deadzone, (see Fig.6), assuring the time

responses of the error between the linear and nonlinear forces

to stay bounded, as illustrated in in Fig.4. Also, the terms

sign(tan(αi)) satisfy that the control inputs to be always

positive for both of the signs of the lateral forces, Fyi,

for i = 1, 2, 3, 4. When the lateral force changes its sign,

see for instance (12), i.e., they take negative values, the

multiplicative term in the input term sign(tan(αi)) satisfy

its positiveness. And the derived control inputs act on the

wheel dynamics after being multiplied by “-1” as given in

(28). Inside the region ∆, when the nonlinear tire force

is increasing linearly with respect to tire slip angle, the

individual brake torque, i.e. controller output, is equal to

zero.

Stability may be proven based on Lyapunov analysis

through straigh forward manipulations and omitted due to

space limit.

+M

−M

output

error

−∆

∆

Fig. 6. Discontinuous function with deadzone.

IV. SIMULATION STUDIES

In this section, the performance of the proposed control

algorithm is investigated through simulation studies. It is

shown that the controller improves the vehicle’s cornering

capability considerably even on low road friction coefficients.

During all scenarios, the deadzone in the discontinuous

functions Γsign(ef ) and Γsign(er) are chosen to be same

constant value, ∆ = 200N . These constants denote the

braking operation point from which the nonlinear tire force

saturates. The nonlinear Magic Formula tire model is per-

formed with the numerical values given in [6] whereas the

other vehicle model parameters belong to sedan type vehicle

model. In the simulation scenarios, initially the vehicle

model is traveling in a straight line with 20 m/s speed.

The driver steering input is simulating an obstacle avoidance

manoeuver, it is plotted in Fig.7. Simulations are performed

by using the tire-road friction coefficient µ = 0.5. The

time-responses of the vehicle side slip angle β are plotted

in Fig.8 for controlled and uncontrolled cases. It is shown

that in the controlled case, the time responses of the side

slip angle are more stable compared to the uncontrolled

case assuring an improved cornering capability. In Fig.9 the

yaw rate responses are plotted for both of the controlled

and the uncontrolled cases compared with the generated

desired yaw rate. Driver’s desired yaw rate is calculated by
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Fig. 8. The vehicle side slip angle for controlled (solid) and uncontrolled
(dashed) scenarios.

using the driver’s steering input and vehicle speed in the

longitudinal direction as follows, [3]: rdes =
uδf

lf +lr+Kuu2 ,

where Ku = m(lrCyr − lfCyf )/((lf + lr)CyfCyr). It is

shown from Fig.9 that the controlled vehicle model can fol-

low the desired yaw rate while the uncontrolled vehicle can

not follow closely. In Fig.10, the vehicle model trajectories

are plotted for controlled and uncontrolled cases. While the

vehicle is skidding dangerously without control, with the

proposed control algorithm, the vehicle model trajectories

may follow the requested manoeuvering task. In Fig.11,

the time responses of the longitudinal velocity are plotted.

The uncontrolled velocity decreases considerably due to the

dangerous skidding motion ended by heading instability. The

controlled velocity in the longitudinal direction decreases due

to the correcting individually actuated wheel braking effects,

whose time responses are plotted in Fig.12.
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V. CONCLUSIONS

In this study, a control algorithm improving vehicle cor-

nering capability is introduced. Simulation scenarios are

performed to validate the effectiveness of the proposed

controller. The algorithm prevents lateral tire force saturation

and keeps vehicle on the desired trajectory. Detecting the

possibility of lateral tire force saturation through observing

estimated lateral tire forces and their linearized values, the

controller reduces the tire slip angles through regulating the

individually actuated braking actuators to prevent saturation

of lateral tire forces.
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