
 
 

 

  

Abstract—Automotive systems are becoming increasingly 
dependent on electrical components, computer control, and 
sensors. It has become extremely critical to detect faults in the 
electrical system and predict the remaining useful life of failing 
components. This paper introduces an integrated methodology 
for monitoring, modeling, data processing, fault diagnosis, and 
failure prognosis of critical electrical components such as the 
battery. The enabling technologies include signal processing, 
sensor selection and placement, selection and extraction of 
optimum condition indicators, and accurate fault diagnosis and 
failure prognosis algorithms that are based on both the physics 
of failure models and Bayesian estimation methods. The 
proposed architecture is implementable on-board an Electronic 
Control Unit (ECU) requiring minimum computational 
resources.  Potential benefits include reduction in maintenance 
costs, improved asset reliability and availability and longer life 
of critical components.  

 

I. INTRODUCTION 
NCREASED complexity and criticality of the electrical 
system of modern day vehicles has resulted in a paradigm 

shift in the manner used to monitor, maintain, and repair 
critical equipment and processes on-board ground vehicles. 
Instead of the traditional breakdown or scheduled 
maintenance, on-line key condition indicators are monitored 
and equipment is maintained on the basis of their condition 
only. These condition indicators (if utilized by effective 
diagnosis/prognosis algorithms) can assist to detect, identify, 
and predict the evolution in time of potentially detrimental 
fault conditions for a typical automotive electrical system. 
This would not only assist the maintenance personnel in 
troubleshooting, but also prevent roadside breakdowns by 
giving a pre-warning for critical failures. This logistic 
support concept, often referred to as condition-based 
maintenance (CBM), includes prognostics and health 
management capabilities (PHM) as key enablers.   
 Diagnostic capabilities traditionally have been applied 
after the initial fault detection and before failure of a system, 
component or subcomponent. More recent intelligent 
diagnostic technologies are enabling detections to be made at 
incipient stages of the fault condition. This gap between the 
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early detection of incipient faults and progression to actual 
system (or component) failure is the realm of prognostics 
technologies [1]. Prognosis is the key component of any 
condition-based maintenance/prognostic health management 
(CBM/PHM) system. In that sense, a novel approach for 
accurate and precise prognosis based on particle filtering and 
learning strategies is proposed hereby, and applied for failure 
prognosis of vehicle electrical system components. It avoids 
both linearity and Gaussian noise assumptions of Kalman 
filtering, and it provides a robust framework for long-term 
prognosis while accounting effectively for uncertainties [2].     

This paper focuses on fault diagnosis and failure prognosis 
of vehicle Electrical Power Generation and Storage (EPGS), 
system which includes the battery, generator, electrical loads, 
and voltage controller. The system is modeled in SABER – a 
simulation platform widely used for electric systems. A 
Failure Modes and Effects Criticality Analysis (FMECA) is 
conducted to identify critical failure modes of the electrical 
system. Battery grid corrosion is presented as an instance of 
one of the failure modes focused on in this paper. These 
faults are seeded in the modeled system in SABER and fault 
data under various conditions are recorded. The data are 
analyzed to obtain robust feature/condition indicators, and 
diagnostic algorithms are developed using those features. 
Finally a particle filter approach is used to predict the time 
evolution of fault condition based on typical automobile 
usage pattern and stress factors such as temperature; 
subsequently, the probability density function of the time-to-
failure (TTF) is determined for a given failure mode. 

 

II. DIAGNOSIS/PROGNOSIS METHODOLOGY FOR 
VEHICLE EPGS SYSTEM  

A vehicle Electrical Power Generation and Storage 
(EPGS) system consists of the battery, generator, electrical 
loads, and controller as shown in Fig. 1. Electrically 
controlled and powered systems for braking, steering and 
stabilization need a reliable supply of electric energy. This 
system is becoming even more critical with the advent of 
hybrid and electrical vehicle technologies, thus making the  
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Fig. 1.  Vehicle Electrical Power Generation and Storage (EPGS)  System 
simulated in SABER  
 
 
EPGS system a prime candidate for the application of 
condition-based-maintenance (CBM) concepts. 

SABER is a well known simulation platform within the 
Automotive/Aviation engineering field because of its rich 
component library, its ability to simulate mixed (electrical, 
mechanical, electrochemical, etc.) systems, and complex 
interconnects. Thus, the vehicle EPGS system was 
modeled in SABER and faults were seeded in the modeled 
system. Simulations were run and data were collected for 
various operating conditions and different levels of faults. 
The data was then exported to a MATLAB environment, 
analyzed to extract features/condition indicators, and finally, 
diagnostic algorithms were developed for each failure mode.  
The receiver operating characteristics (ROC) method was 
used as performance metric of diagnostic algorithms. Failure 
prognosis framework was based on particle-filtering 
approach that predicts time evolution of fault growth. Fig. 2 
shows the architecture for the methodology employed to 
design and analyze the diagnosis/prognosis algorithms for 
vehicle EPGS system. 

Based on the FMECA study of the system, a number of 
critical failure modes were selected for further analysis. 
Among the selected failure modes, battery grid corrosion is 
presented as a prototypical example.  

 
 

 
      

Fig. 2.  Architecture for the development of diagnosis/prognosis algorithm 
for vehicle EPGS system using SABER as a virtual test bed 

III. BATTERY GRID CORROSION DIAGNOSTIC 
ALGORITHM 

A. Algorithm development procedure 
 
Grid corrosion is a common failure mode for lead-acid- 

batteries in automobiles [3]. It results in increased real 
impedance, i.e., increased internal resistance of the battery 
[4]. Due to the slow nature of this fault growth, it is an ideal 
component of an automotive electrical system for the 
development and application of the condition-based-
maintenance (CBM) concept. To model this progressive 
failure mode, a resistor was placed in series with the battery 
model in SABER and different levels of failure severity were 
modeled as the resistance was increased from 1 to 9 mΩ. One 
crucial observation in these early simulations was that the 
effect of the battery internal resistance was most clearly 
evident during transient events, such as load start-times and 
load end-times. Based on this, a study was conducted during 
engine cranking. The focus on the start-up process is 
advantageous because the battery and starter motor are 
nearly isolated from other aspects of the power generation, 
control, and load components during this short time interval. 
Under a typical cranking load profile [5], simulations were 
run for batteries with 4 different state of charge (SOC): 70%, 
75%, 80% and 85% (all at a temperature of 25O C).  
Simulations were run for 6 different levels of increased 
resistance: 0 mΩ (ok), 1mΩ, 3mΩ, 5mΩ, 7mΩ and 9mΩ.    
For each simulation, the following parameters were 
recorded: 

 
  i) Battery voltage (Vbec) 
  ii) Battery current (Ibatt) 
 
Fig. 3 shows the battery voltage for a battery at 70% SOC 

for six levels of fault condition  
 By analyzing the simulation results, a scalar feature was 

developed based on the time interval immediately after 
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Fig. 3. Battery voltage during engine cranking for a battery with various 
levels of grid corrosion resistance 
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cranking begins. This feature is the energy flow observed at 
the battery terminals during the engine cranking; i.e., 

dtIVE BECBEC∫=
1

0
.  

 This procedure was repeated with initial battery SOCs of 
75%, 80% and 85%, with the result shown in Fig. 4. 

This figure indicates that a clear one-to-one 
correspondence exists between the extracted feature and the 
corrosion resistance of the battery. Therefore, by calculating 
the feature value during cranking, it is possible to determine 
the corrosion resistance and, hence, the battery’s state of 
health (SOH). The entire procedure can be thought of as a 
“virtual sensor” for the battery internal resistance.  

The implications of this study are crucial to the 
development of a diagnostic/prognostic algorithm for battery 
health. Based on such a characterization, it is straightforward 
to invert the functional relationships shown in Fig. 4 so that 
the internal resistance could be inferred from both the 
measured energy feature – with the knowledge of battery 
state of charge (SOC) – and temperature as shown in the 
block diagram of Fig. 5. Hence, it would be possible at each 
starting episode to get a reading of battery internal resistance 
and to track this parameter over time. Furthermore, the 
growth of this parameter could be correlated with various 
stress factors such as temperature, degree of 
overcharge/undercharge, amount of time that the battery is at 
low SOC, frequency of engine on/off’s per day, etc. This 
would allow adaptation of the model over time. This in turn 
forms the basis for accurate prognosis of the remaining 
useful life of the battery. 

The developed algorithm acts as a virtual sensor for the 
added internal resistance of the battery, based on 
measurement of voltage and current drawn from battery 
during cranking. The algorithm assumes that the nominal 
current drawn by the starter motor during cranking is known.  

  
 

 
 

 Fig. 4.  Plot of feature (E) vs. corrosion resistance for battery at various 
values for SOC at 25 C.   

 
 
Fig. 5.  Block diagram of the diagnostic algorithm using the energy feature 
obtained during engine cranking  
 
This is a strong assumption since the cranking current 
depends on several other factors. For practical 
implementation of the algorithm, this assumption would 
require further investigation.  

Another assumption is that the initial SOC of the battery is 
known. This is reasonable since the SOC of the battery is 
highly correlated with the Open Circuit Voltage [6] of the 
battery during idle times of the day. Any error in the initial 
SOC estimate would introduce some error into the SOH 
estimation. However, it must be noted that each time the car 
engine is started, another estimate of the internal resistance is 
obtained. Since the SOH of the battery is a relatively slow 
and monotonic function of time, improved estimates of the 
actual battery corrosion resistance are possible by averaging. 
As would be discussed in the following sections of the paper, 
a particle filter algorithm can be used not only to improve the 
present estimate of the internal resistance, but to predict 
future values. 

B. Algorithm Performance Evaluation 
In order to evaluate the performance of the developed 

diagnostic technique, it was tested under noisy 
measurements. Both the measurements used to extract the 
features “Battery Voltage” and “Battery Current” are 
assumed to be corrupted by additive white Gaussian noise 
(AWGN), with several signal-to-noise ratios (SNRs). Then, 
the feature is calculated for these noisy measurements and 
the result is used to estimate the corrosion resistance of the 
battery by employing the diagnostic algorithm shown in 
Fig. 5. For each set of conditions (initial SOC, corrosion 
resistance, SNR and temperature), a Monte Carlo procedure 
using 3000 noise records is conducted, generating 3000 
predicted values for the internal resistance. Through this 
procedure, a probability density function (pdf) of the 
measured corrosion resistance is obtained for each set of 
conditions. Fig. 6 shows an example of such a pdf obtained 
for various levels of grid corrosion for an SOC of 80% and  
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Fig. 6.  Corrosion resistance probability density function (pdf) obtained 
with noisy measurements (battery voltage SNR= 40 dB, battery current 
SNR= 40 dB) for a battery with 80% SOC at 25 C.     
 
SNR for both voltage and current of 40 dB at 25 Co. 

Research was conducted to determine if noise in the 
voltage signal was more (or less) important than noise in the 
current signal. From that study, it was concluded that the 
algorithm is more sensitive to voltage measurement noise 
than current measurement noise. Fig. 7a and 7b show the 
effect of increase in voltage sensor noise and the increase in 
current sensor noise, respectively.   

 

 
Fig. 7a.  Corrosion resistance probability density function (pdf) obtained 
with noisy measurements (battery voltage SNR= 30 dB, battery current 
SNR= 40 dB) for a battery with 80% SOC at 25 C.  
    

 
Fig. 7b.  Corrosion resistance probability density function (pdf) obtained 
with noisy measurements (battery voltage SNR= 40 dB, battery current 
SNR= 30 dB) for a battery with 80% SOC at 25 C.     
 

IV. A PARTICLE FILTER FRAMEWORK FOR 
PROGNOSIS 

Prognosis is the key component of a condition-based 
maintenance/prognostic health management (CBM/PHM) 
system. In this particular case, a particle filtering method for 
prognosis of the battery grid corrosion has been used. 

A. General background on particle filtering 
Prognosis, or the long-term prediction of a failure 

condition, is based on both an accurate estimation of the 
current state and a model describing the fault progression. If 
the incipient failure is detected and isolated at the early 
stages of the fault initiation, it is reasonable to assume that 
sensor data will be available for a certain time window 
allowing for corrective measures to be taken, i.e., 
improvements in model parameter estimates so that 
prognosis will provide accurate and precise prediction of the 
time-to-failure (TTF). At the end of the observation window, 
the prediction outcome is passed on to the user (operator, 
maintainer) and additional adjustments are no longer feasible 
since a strong corrective action must be taken to avoid a 
catastrophic event. 

Particle Filtering is especially useful when dealing with 
difficult nonlinear and/or non-Gaussian problems, such as in 
the case of Prognosis [2]. Compared to classical Monte 
Carlo methods, sequential importance sampling enables 
Particle Filtering to reduce the number of samples required 
to approximate the distributions with necessary precision, 
and makes it a faster and more computationally efficient 
approach, than Monte Carlo simulation. This is of particular 
benefit in diagnosis and prognosis of complex dynamic 
systems, because of the nonlinear nature and ambiguity 
inherent to the system when operating under fault conditions. 
In addition, particle filtering allows information from 
multiple measurement sources to be fused in a principled 
manner, something that is of paramount importance in fault 
detection schemes.  

The underlying principle of the methodology is the 
approximation of the conditional state probability 
distribution p(zk/xk) by a swarm of points called “particles” 
(samples from the space of the unknowns) containing  a set 
of weights representing discrete probability masses. Particles 
can be easily generated and recursively updated [7] given a 
nonlinear process model (1) (which describes the evolution 
in time of the system under analysis), a measurement model 
(2), a set of available measurements z1:k =(z1,…,zk) and an 
initial estimation for the state pdf, p(xo). 

1 1( , )         ( | )k k k k k kx f x p x xω− −= ↔          (1) 

( , )         ( | )k k k k k kz h x p z xυ= ↔           (2) 

As in every Bayesian estimation problem, the estimation 
process can be achieved in two main steps, namely 
prediction and filtering. Prediction uses both the knowledge 
of the previous state estimate and the process model to 
generate the a priori state pdf estimate for the next time 
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instant, as it is shown in the expression below [8]: 

1: 1 1 1 1: 1 1( | ) ( | ) ( | ) k k k k k k kp x z p x x p x z dx− − − − −= ∫       (3) 

 On the other hand, the Filtering step considers the current 
observation zk and the a priori state pdf to generate the a 
posteriori state pdf, by using Bayes Formula [8]: 

 
1: 1

1:
1: 1

( | ) ( | )( | )
( | )

k k k k
k k

k k

p z x p x zp x z
p z z

−

−

=          (4) 

The actual distributions would then be approximated by a 
set of samples (5) and the corresponding normalized 
importance weights 

0:( )i i
k k kw w x= for the i-th sample [7].  

1: 0: 0: 0:
1

( | ) ( ) ( )
N

i i
k k k k k k

i
p x z w x x xδ

=

≈ ⋅ −∑         (5) 

where the update for the importance weights is given by: 

1
1

0: 1 1:

( | ) ( | )
( | , )
k k k k

k k
k k k

p z x p x xw w
q x x z

−
−

−

=            (6) 

Fault detection/diagnosis implies the fusion of the inner 
information present in the feature vector (observations) in 
order to determine the operational condition (state) of a 
system. In that sense, a Particle-filter-based Module for fault 
detection/diagnosis can be implemented by considering the 
nonlinear state model (7). 
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dd
        (7) 

where fk and hk are non-linear mappings, xd(k) is a 
collection of Boolean states associated with the presence of a 
particular operational condition in the system (normal 
operation, fault type #1, #2, etc.), xc(k) is a set of continuous-
valued states that describe the evolution of the system given 
certain operational conditions, n(k) is zero-mean i.i.d. white 
noise and w(k), v(k) are non-Gaussian noise distributions that 
characterize the process and feature noise pdf, respectively. 

The above mentioned implementation allows the 
algorithm to modify the probability masses associated with 
each particle, as new feature information is been received. 
Furthermore, the output of the Fault Detection/Diagnosis 
Module, defined as the percentage of the particle population 
that activates each Boolean state, gives a recursively updated 
estimation for the probability for any given fault condition 

Under this approach, long-term predictions are based on 
the current estimate of the fault dimension and the fault 
growth model with parameters refined in the posteriori state 
estimation. A novel recursive integration process based on 
both Importance Sampling and pdf approximation through 
Kernel functions is then applied to generate state predictions 
from (k+1) to (k+p). 

1: 0: 1 : 1
1
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=

∏∫

∑ ∏∫ ∫

 (8) 

Long-term predictions can be used to estimate the 
probability of failure in a process, given a hazard zone that is 
defined by its lower and upper bounds (Hlb and Hup, 
respectively). The prognosis confidence interval as well as 
the expected time-to-failure (TTF) can be deduced from the 
TTF pdf: 

( )( ) ( )

1

( ) Pr | , ,
N

i i
TTF ttf lb up ttf

i

p ttf Failure X x H H w
=

= = ⋅∑    (9) 

 

B. Implementation of particle filter framework for 
prognosis of battery grid corrosion 
The particle filter technique has been applied to the 

problem of battery grid corrosion prognostics. The objective 
is to determine the current level of grid corrosion 
(diagnostics). Once a problem has been detected, the 
algorithm determines the probability of the time-to-failure 
(TTF).  The algorithm has been implemented on a computer 
and tested using simulated data. The computer program 
generates a number of graphics that update in “real time” to 
supply the user with up-to-date diagnostic and prognostic 
information. Samples of these graphical indicators are 
included in the following paragraphs. 

As indicated above, there are two items required by the 
particle filter procedure. First and foremost, the procedure 
requires a mathematical model relating the damage evolution 
of the battery to a particular stress factor. Arrhenius model is 
widely accepted as such a model for electrochemical system 
degradation due to temperature as a stress factor [9]. The 
model is of the form 


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       (10)  

 
where: 
C1 and C2 are model constants.  
R(k) is the value of the battery internal resistance at time k 
α(k) is the estimated value of the unknown model parameter 
at time k 
T  is the predicted ambient temperature in degrees Kelvin, 
specified as a function of k  
v1 and  v2 are Gaussian white noise signals  
n is an Uniform white noise signal 
 

The second item required by the particle filter procedure 
is a set of measurements or observations, so that the filter 
parameters and the estimate can be updated. The 
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observations are provided here by the “virtual sensor” for the 
battery internal resistance. This virtual sensor, discussed in 
Section III, is based on the energy delivered during a brief 
cranking episode, i.e. dtIVE battbec∫=

1

0
. This feature and an 

estimate of the initial battery SOC under given temperature 
is used to form an estimate of the internal resistance of the 
battery, cf  Fig. 6. Thus, each time that the car is started, an 
observation is provided to the particle filter. 

In the case of battery degradation, it is known that there 
are a variety of stress factors including temperature, degree 
of overcharge/undercharge, amount of time that the battery 
has at low SOC, frequency of engine on/off’s per day, etc. In 
this study, only temperature was considered and an 
appropriate temperature forecast was used based on data for 
the past few years, considering that the hypothetical test were 
to be conducted in Atlanta, GA. 

Results obtained under these assumptions have shown that 
the Arrhenius model can be successfully implemented to 
solve the prognosis task. In addition, the performance of the 
proposed Particle Filtering (PF) framework approach has 
been tested and compared with an Extended Kalman 
Filtering (EKF) framework for prognosis. Fig. 8a and 8b 
shows the comparison between the PF approach and the EKF 
approach in the case of the Arrhenius model of equation 
(10).  It is seen that the precision of the TTF pdf from the PF 
approach is higher than that of the EKF approach. In 
particular, the dispersion of the TTF pdf’s of the PF 
approach (magenta in Fig. 8b) is smaller than that of the 
EKF approach (cyan in Fig. 8b).  

Several factors contribute for the dispersion of the TTF 
pdf obtained through the EKF implementation. The most 
important source of uncertainty for long term predictions 
using the Arrhenius Model is the assumption of Gaussian 
white noise for all the states in the model, while the model is 
considering uniform white noise for the second state. The 
error in the covariance matrix estimation is successively 

 
 

 
Fig. 8a. Long-term prediction for the internal resistance. The red/orange bar 
represents the hazard zone. 
 

 
Fig. 8b. Comparison between the TTF pdf estimates obtained respectively 
from the PF (magenta) and EKF (cyan) prognosis approach. 
 
propagated through future time instants, and again, the 
absence of feature data in predictions does not allow 
compensating the estimation error.   

V. CONCLUSIONS 
This paper discusses a methodology by which diagnosis 

and prognosis of failure modes in an automotive EPGS 
system can be accomplished. A specific fault is presented as 
an example i.e. battery grid corrosion. A feature based on 
observable signals is developed that is correlated to the 
underlying fault. The performance is tested through 
numerical simulations using SABER. Finally, a prognostic 
algorithm based on particle-filtering is used to determine 
accurate statistics of the battery's time-to-failure.   
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