
1

LaRASideCam: a Fast and Robust Vision-Based
Blindspot Detection System

Nicolas Blanc, Bruno Steux, Ecole des Mines de Paris. Thomas Hinz, NXP, Hamburg.

Abstract— While shifting lane on the road, the presence
of a car in the blindspot can cause many accidents, since
the driver does not always turn his head. Therefore, a
blindspot car detection is likely to become an essential
part of modern vehicles. We developed a program that
detects cars in the particular configuration of blindspot
using video data taken from the left or right mirror of
a car, using on the one hand edge detection and support
vector machine (SVM) learning and on the other hand
template matching. This makes this program simple, fast
and adaptative thanks to SVM learning. The program only
uses basical functions of the Ecole des Mines’ Camellia
open-source image processing library [1], which is close to
Intel’s IPL library. Thus the program is easy to adapt to
another API; it has already been adapted to an embedded
system currently in development at NXP Semiconductors
(formerly Philips Semiconductors). The source code was
tested using the valgrind code checking tool [3] and was
validated on real-world video sequences.

I. HARDWARE-SOFTWARE DESCRIPTION

The video camera is located close to the left wing
mirror of the car, with a 320 × 240, 30 fps resolution.
It provides YUV444 color frames, but since the entire
algorithm is based on grayscale images, only the Y
channel is used. A 19 minutes sequence was recorded in
Paris at daytime (figure 1), in normal weather conditions,
both in main roads and in the city, to enable application
development.

The program was written in C++, using the Ecole
des Mines’ Camellia image processing library [1] and
LaRAPerception development framework [2]. Since it
was intended to be subsequently implemented on an
embedded system, its core uses neither floating-point
nor dynamic memory allocation nor the C++ Standard
Template Library. It fully complies with the ANSI C++
standard and was tested using the valgrind code checking
tool [3].

The algorithm is divided into two parts: the first part
is intended to detect characteristical elements on the
front of the cars and uses SVM artificial learning. The
second part is intended to detect the wheels of the cars,
when their front is not visible any more, using template
matching.

Fig. 1. The Citroën C3 that was used for the video sequence recording,
with the CCD camera

II. CAR FRONT DETECTION ALGORITHM

A. Algorithm overview

Blindspot car detection using image processing can
be achieved in many different ways, for example optical
flow analysis [4] [5] or pattern recognition [6]. A very
common and promising way to detect a car both from
rear and frontal views is to look for horizontal edges
in the picture [7]. This is the first method used in
LaRASideCam; it is done here by warping the image
to align the horizontal edges of the car with the picture
borders, applying a morphological gradient and sum-
ming the resulting pixels row by row. Horizontal edges
are located thanks to the peaks they generate on the
resulting curve. Statistical values about each peak are
then computed, and used to characterize a vehicle. This
characterization was first done manually, but this first
characterization algorithm is not portable to any other
hardware configuration, since its parameters depend on
many factors such as the image resolution and the optic
parameters of the video camera. So a SVM artificial
learning algorithm is used to solve this problem auto-
matically. The whole algorithm is simplified by the fact
that there is no need to locate the car in its environment,
neither to detect a partially hidden car.

Proceedings of the
2007 IEEE Intelligent Vehicles Symposium
Istanbul, Turkey, June 13-15, 2007

WeE1.38

1-4244-1068-1/07/$25.00 ©2007 IEEE. 480

2

Fig. 2. Picture taken from the left wing mirror camera, with the
warping region of interest in red

Fig. 3. Resulting image after warping

B. Algorithm step by step

Figure 2 represents a typical example of what can be
seen using the camera located close to the left wing
mirror. The first thing to do is warping the image to
straighten the horizontal lines of the car (figure 3).

To detect the edges on the resulting picture, the most
obvious solution would have been to use an operator
that selects the horizontal edges only, as for example an
horizontal Sobel operator. However, by testing different
operators it was noticed that such an operator is too
restrictive, since in practice all the cars do not have
exactly the same orientation on the image. Therefore
a morphological gradient operator with a 3 × 3 square
structural element is applied to the picture. The pixels in
each row of the resulting image are summed afterwards,
using an horizontal summing function (figure 4).

After having shifted all the values of the resulting
curve such that the minimal value is 0, the most simple
way to detect peaks in this curve would have been to do a
thresholding. However, this cannot be done here because

Fig. 4. Resulting image after having applied a morphological gradient,
with summation result and detected peaks

Fig. 5. Peak detection algorithm. The minimal height a peak should
have is in red, the maximal width in green. The first peak fills all
the conditions, the second “peak” is too wide, and the third peak is
not high enough. The statistical values extracted from the peaks are
computed inside of the red “minimal height” bounds.

there can be a variable background in the curve, mainly
caused by noise or by the edges that are not horizontal.
So a “peak template” has been defined by its minimal
height and maximal width, which are a percentage of
the standard deviation of the curve and the height of the
image respectively (figure 5), and the program looks for
peaks that fit this template.

Now, the most important step is to extract from the
curve all the possible information that could help to
characterize a car. The exhaustive list of the extracted
values is: mean value of the curve, standard deviation
of the curve, and for each peak: mean value, standard
deviation, third and fourth moment. For the peaks, these
values are computed inside of the left and right bounds
determined by the peak detection algorithm, which are

WeE1.38

481

3

the first values around the peak that fit the minimal
height condition (figure 5). All these values are then used
for the computation of the SVM prediction.

C. SVM artificial learning

Chih-Chung Chang and Chih-Jen Lin’s LIBSVM li-
brary [8] is used, with a radial basis kernel (K(xi, xj) =
exp(−γ ‖ xi − xj ‖2), γ > 0). Besides the SVM
classification and prediction algorithms, it provides an
useful grid search-based parameter selection tool that
looks automatically for the best-suited C and γ parame-
ters (respectively penalty parameter of the error term in
the optimization problem, and kernel parameter).

Before using SVM artificial learning, a hand-made car
detection algorithm was first built using all the statistical
values cited above. This allowed to understand how a
car could be distinguished from the environment. For
example it was possible to find out which of the statis-
tical values seemed relevant to distinguish the car and
no-car situations, and in which situation the algorithm
could reasonably be able to detect the car, which was an
essential information for the training data building. The
car and no-car situations are distinguished as follows:
there should be a positive answer only if an important
part of the car front is in the warping region of interest,
namely vertically from the bodywork bottom to the
headlight top, and horizontally at least one half of the
car front. This ensures that there will be enough relevant
information in the curve.

III. CAR SIDE DETECTION ALGORITHM

A. Algorithm overview

This second algorithm is complementary to the first
one: cars need to be detected even if their front is not
visible on the image, and in that case their wheels are
generally visible. Moreover they are very characteristic
for a car. To detect them, it was first tried to apply
the circular Hough algorithm to a straightened image
to detect the wheel rims, distinguishing the true wheels
from false detections by using the Hough accumulator.
This criterion however appeared not to be very useful,
since many wheel rims (and tires) did not have any
clear circular outline. It was chosen to apply a template
matching algorithm instead: a wheel can always be char-
acterized by a very dark ring surrounding a brighter area.
The car bodywork bottom was also detected to improve
the response of the algorithm, using an edge detection
algorithm similar to that that was used for the car front
detection. The algorithm detects potential wheels and
tracks the wheels once they have been recognized.

B. Algorithm step by step

First, Camellia’s inverse perspective mapping function
is used to have a plain view of the side of the car. This

Fig. 6. Input image with the warping region of interest in red. It has
been chosen to have a lateral view of the vehicules using as much area
as possible.

Fig. 7. Template matching algorithm

function computes a perspective inversion assuming that
the input region of interest corresponds to a vertical plane
in the input image (figures 6, 8).

To do the template matching, different wheel tem-
plates are used, each one of them being defined by its rim
and tire radii. It appeared that only three templates al-
ready cover a wide range of different wheels sufficiently,
since these templates work well even if the wheel does
not have exactly the same dimensions. The principle of
the template matching algorithm used afterwards is, for a
given possible wheel position on the screen, to compute
the sum of all the pixels in the rim and in the tire areas
(nr and nt respectively), and to compute their quotient
q = nr

nt
. The probability of being a wheel at this position

is proportional to the value of the quotient (figure 7).
In the main algorithm, each possible wheel position is
tested in a certain image part with a certain pace, and
the position with the best quotient is selected.

The algorithm can be divided into two main steps:
a hypothesis generation step where the full image is
scanned for a wheel, but with a poor accuracy and
discrimination, and a hypothesis verification step where
only a limited area is scanned with a more accurate
precision. Furthermore, since there can never be two
wheels close to each other, the image is vertically

WeE1.38

482

4

Fig. 8. Situation after having run the inverse perspective mapping and
the rough template matching in the left part of the image: a potential
wheel was found in this part of the image (orange). The blue wheel
in the right part corresponds to the position of a previously tracked
wheel in the last frame.

Fig. 9. Situation after having run the accurate template matching:
the positions of the potential wheels have been refined, especially for
the tracked wheel. The (rim pixels/tire pixels) quotients have become
much more significant, too.

split into two parts where the algorithm is run almost
independently.

The hypothesis generation step is only run if there
was no wheel in the considered image part in the
precedent frame. In that case, the considered image
part is roughly scanned for a wheel using the template-
matching algorithm, typically with a 6 pixels pace. The
hypothesis generation algorithm uses a different template
at each time it runs (figure 8).

In the next step, a more accurate scanning is carried
out in a limited area close either to the position deter-
mined by the hypothesis generation step or to the posi-
tion of the wheel in the precedent frame (depending on
the context), and using the same template as previously.
Here the typical pace is two pixels. Even if the scanning
carried out in the hypothesis generation step is sufficient
to locate a wheel in the image if there is one, this
more accurate scanning is needed to determine whether
there is actually a wheel at this position using the (rim
pixels/tire pixels) quotients of the supposed wheels, that
are much more significant using an accurate scanning
(figure 9).

The bodywork bottom of the cars is also detected
by applying the same morphological gradient, horizontal
summing and peak detection functions as in the car front
detection algorithm. If the Y-coordinate of the axle of

Fig. 10. Resulting image after having applied a morphological
gradient, with summation result and detected peaks. The line shown
in blue has been selected as the bodywork bottom of the car.

Fig. 11. The final result, after having modified the quotient of the
right wheel because of the detected bodywork bottom and compared
the (rim pixels/tire pixels) quotients to their respective thresholds. Only
the wheel in the right screen part was considered as a real wheel.

a wheel is close enough to a detected peak, the (rim
pixels/tire pixels) quotient of this wheel is multiplied by
a determined factor, depending on the wheel template
that was used to detect the wheel. There can be only
one detected bodywork bottom in a given frame, so if
each potential wheel has a different bodywork bottom
candidate, only the potential wheel with the best quotient
(which is supposed to be the most likely to be a
real wheel) becomes associated to its bodywork bottom
(figure 10).

The final wheel presence determination is done by
comparing the quotient of each potential wheel to a
detection threshold; this threshold being different for
each wheel template (figure 11).

If the wheel detected in the latter step does not belong
to the same part of the image as its predecessor, there
can be the possibility of two detected wheels in the same
image part. In that case, only the one with the biggest
(quotient/detection threshold) ratio is kept.

C. Parameters setting

The parameters for the wheel/bodywork detection
algorithm are: wheel templates (rim and tire radii), peak
width and depth for the edge detection algorithm, factors
for the quotients of wheels to be multiplied by if there
is a bodywork bottom close to their axles, thresholds for
wheel presence determination. There was no possibility

WeE1.38

483

5

Recall rate False detection rate
51,1% 1,5%

TABLE I
RESULTS FOR THE VALIDATION OF THE WHEEL DETECTION

ALGORITHM

to implement a SVM prediction easily to determine these
parameters because the wheels are tracked: the answer
for a given frame depends on the previous frames.
Moreover the training phase would have last a very long
time since it is necessary to run the whole algorithm
once again for each parameter change. Therefore all the
parameters were set empirically.

IV. PERFORMANCES AND VALIDATION

To build the training data for the car front detection
algorithm, 16252 frames (that is, 9 minutes video data
at 30 fps) were selected from our video record, corre-
sponding to 3 continuous slots. Many various situations
were taken into account: various car models and various
environments (main road, city, car park). The remaining
10 minutes were used as testing data.

The same test conditions were used to test each
algorithm separately, and then both algorithms working
at the same time. A recall situation was defined by the
negative response of the algorithm whereas there was
either a very visible car front (same criterion as for the
SVM training set building in section II-C) or an entirely
visible wheel on the screen. A false detection situation
was defined by the positive response of the algorithm
whereas there was strictly no car nor car part visible on
the screen. The frames that are not included in any of
the two categories below are regarded as indifferent.

To test only the car front detection algorithm without
the other one, many different values for the detection
threshold on the SVM prediction output were tried,
in order to build a recall rate vs. false detection rate
diagramm (results in figure 12).

The wheels detection algorithm was then tested using
the same criterion. There is no sensibility parameter here
(results in table I). The high recall rate is due to the fact
that a frame could be regarded as positive even if there
was no entire wheel visible on the screen.

The global efficiency of both algorithms was then
tested using the only available sensibility parameter,
namely the detection threshold for the SVM output
(results in figure 13).

CONCLUSION

With the LaRASideCam project, we had the opportu-
nity to build a fast vision-based blindspot car detection
system with interesting results, as can be seen in sec-
tion IV. This application uses an innovative technique,

Fig. 12. Results for the validation of the car front detection algorithm

Fig. 13. Results for the global validation

namely SVM-based artificial learning. The combination
of an appearance-based algorithm (car front detection
using SVM learning) and a template-based algorithm
(wheels and bodywork bottom detection) brings an in-
creased reliability and allows further developments, as
for example the determination of the position and the
speed of a detected car (using position of the wheels on
the screen, displacement of the peaks...). This project
was achieved with the help of two instutions: Ecole
des Mines de Paris and NXP Semiconductors (formerly
Philips Semiconductors) and its Innovation Center in
Hamburg, where this development was conducted.

REFERENCES

[1] The Camellia Open Source Image Processing Library:
http://camellia.sourceforge.net

[2] The LaRA Project: http://www-rocq.inria.fr/imara/lara2/
[3] Nicholas Nethercote and Jeremy Fitzhardinge, “Bounds-Checking

Entire Programs Without Recompiling.”. Informal Proceedings of
the Second Workshop on Semantics, Program Analysis, and Com-
puting Environments for Memory Management (SPACE 2004),
Venice, Italy, January 2004.

[4] P.H. Batavia, D.E. Pomerleau, C.E. Thorpe, “Overtaking Vehicle
Detection Using Implicit Optical Flow”, IEEE Conference on
Intelligent Transportation Systems, 1997

[5] Blind Spot / Lane Change by Mobileye: http://www.mobileye-
vision.com

[6] Blind Spot Information System (BLIS) by Volvo:
http://www.volvo.com

WeE1.38

484

6

[7] Z. Sun and G. Bebis, “On-Road Vehicle Detection: a Review”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, pp. 694-711, 2006

[8] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: a Library
for Support Vector Machines”, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

WeE1.38

485

