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Abstract—We propose a new video analysis method for 
counting vehicles, where we use an adaptive bounding box 
size to detect and track vehicles according to their estimated 
distance from the camera given the scene-camera geometry. 
We employ adaptive background subtraction and Kalman 
filtering for road/vehicle detection and tracking, respectively. 
Effectiveness of the proposed method for vehicle counting is 
demonstrated on several video recordings taken at different 
time periods in a day at one location in the city of Istanbul. 

I. INTRODUCTION

raffic congestion is one of the biggest problems in 
many metropolises, including the city of Istanbul.  

Istanbul has over 2.35 million motorized vehicles 
according to July 2006 figures. Any analysis aimed at 
improving the problems related to congestion and 
enabling efficient transportation within the city requires
collection of reliable data.  In order to monitor the traffic 
flow, Istanbul municipality has installed more than 110 
video cameras along the major arteries in the city [1], and 
this number is growing. Hence, it is of interest to digitally 
process and analyze these videos in real-time in order to 
extract reliable data on traffic flow and to detect traffic 
events. For example, as a result of such video analysis, 
traffic density in major arteries can be estimated and the 
least congested routes and travel time estimates can be 
computed and transmitted to drivers over cell phones. In 
addition, the videos may be analyzed to automatically 
detect events such as accidents and traffic violations, as 
well as snow accumulation and other weather conditions. 
The data may also be used as input for traffic models and 
related planning problems.

Several studies exist in the literature on automatic video 
analysis for vehicle detection and tracking. For example, a 
double-difference operator with gradient magnitude has
been used to detect vehicles [2]; however, it cannot easily 
handle interframe luminance variations. Adaptive 
background subtraction algorithms have been used for 
vehicle detection, which allows changes in lighting and 
weather conditions [3] [4], but they usually require a 
priori information about the scene without any moving 
vehicles and have problems with occlusions. Optical flow 
techniques have been used to estimate the motion between 
subsequent frames [5] [6]. Furthermore, 3-D models have 
been previously implemented such as Sullivan [7], which 

recover trajectories with high accuracy. However, this 
approach requires detailed geometric object models for all 
detected vehicles on the highway. Likewise, 3-D tracking 
algorithms based on detection of vehicles with 
probabilistic line feature grouping method such as [8] 
have been previously implemented. In [4], a feature based 
algorithm is used for tracking multiple vehicles in 
congested traffic with occlusion reasoning, where sub-
features such as corner locations are tracked. In addition, 
Kalman filter has been widely used in automatic traffic 
surveillance systems. For example, Xie et al. [9] use
position and size information as state variables to track 
vehicle positions with different set of features. Similarly, 
[10] uses Kalman filter for tracking vehicles extracted 
from background models. They implemented a shadow 
removal algorithm to extract the size and linearity features
of vehicles for the purpose of categorizing them.

In this study, we propose a new traffic video analysis 
method that accounts for the geometry of the scene, where 
adaptive bounding box size is used to detect and track 
vehicles according to their estimated distance from the 
camera. In the rest of the paper, we provide algorithms for 
vehicle detection and tracking, and report results obtained 
by implementing these algorithms on several video 
recordings taken at different time intervals at one location 
in the city of Istanbul. 

II. VIDEO ANALYSIS FOR VEHICLE DETECTION AND 

TRACKING

Video cameras were first introduced to traffic 
management for roadway surveillance by transmitting
closed-circuit television imagery to a human operator for 
interpretation. Present-day traffic management systems
utilize digital video processing to automatically analyze 
the scene of interest and extract information for traffic 
monitoring. A video processor (VP) typically consists of 
one or more cameras, a microprocessor-based computer 
for digitizing and analyzing the imagery, and software for 
interpreting the images and converting them into traffic 
flow data. The Traffic Control Center of Istanbul
Municipality collects real-time images using a VP system 
consisting of 110 cameras of various characteristics. 
Currently, all of the images are displayed at a control 
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room and are monitored by operators to detect any 
incidents such as accidents or unexpected road conditions.

Video processors can typically classify vehicles by their 
length and report vehicle density and speed for each class 
and lane. VPs that track vehicles may also have the 
capability to register turning movements and lane changes. 
Vehicle density and link travel time are potential traffic 
parameters that can be obtained by analyzing data from a 
series of image processors installed along a section of 
roadway.  

In the following, vehicle detection by background 
subtraction is addressed in Section II.A and vehicle 
tracking by Kalman filtering is presented in Section II.B. 
These algorithms are used for analyzing several video 
recordings taken at different time intervals at one location 
in the city of Istanbul. Results are provided in Section IV.

A. Vehicle Detection

In order to distinguish moving vehicles from the static 
background, we model the background scene with GMM 
(Gaussian Mixture Modeling) as in [11]. Each pixel color 
is modeled by a mixture of K Gaussian distributions with 
specified weight parameters (K is some number from 3 to 
5) over a time interval. The weight parameter of a certain
mixture is the data proportion that is accounted for by the 
corresponding mixture. The idea for moving object 
detection lies in the wider color characteristic of moving 
objects due to different reflecting surfaces during the 
movement. Since steady objects form tight color clusters, 
the rule to decide whether a new pixel belongs to the 
background or the foreground is based on the variance of 
this pixel in comparison to the background model. That is,
the color value of every pixel is checked to decide 
whether it matches the GMM or not. A pixel color value 
that is less than 2.5 standard deviations from the mean of 
any of the K distributions is decided to belong to the 
background. If a match occurs, then that mixture (weight 
parameter, mean and covariance) is updated with the new 
pixel color value; if no match occurs then a new mixture 
model is created with the mean at that pixel value and an 
initially high variance value. The Least probable (smallest 
weighted) mixture is replaced with the new model with a 
small weighting. 

It is important to adapt the background model to small 
changes such as brightness variations or new entries to the 
background. For this purpose, an online update algorithm 
is implemented. The probability of observing a certain 
pixel value for a channel (a vector for R-G-B channels, or 
a scalar value for a single Gray level channel) after t
frames is given as 
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where wi,t  is the weighting parameter of the thi  Gaussian 
mixture. Here, µi,t and ∑it represent the mean value and 
covariance matrix, respectively, of the ith Gaussian 
distribution computed from ‘n’ channel pixel value 
history. In our implementation we set n=3. Mixtures are 

ordered in descending probabilities according to their time 
interval in the scene. For background modeling, the first T 
mixtures among K Normal distributions are used. The 
number T is found from
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where the parameter thr represents the minimum portion 
of the data required to form a background model. 

Difference images are formed by subtracting the current 
frame from the background model in each channel. By 
thresholding each channel (difference images), three
single channel binary foreground images are obtained and 
by intersecting these foreground images, which belong to 
different channels, a final single channel binary 
foreground image is obtained. Then, the foreground 
objects are detected and labeled using connected 
component analysis with adaptive blob size, where the 
blob size varies according to the position of the blob in the 
picture and imaging as explained below.

Adaptive Blob Size Fitting
For a fixed camera configuration, in imaging geometries 

where the road is along the z-axis of the camera, vehicles 
further away from the camera are expected to be smaller 
in size; hence are modeled by smaller blobs (Fig. I). The 
adaptation of the blob size depends on the relative 
position of the camera with respect to the road. First, a
mask of the road is extracted from vehicle trajectories to 
reduce the search space (Fig. II). This mask is also used to 
fit a cubic road equation that approximates the road 
curvature (for example the highway in Fig. III).

Fig. I. Adaptation of blob sizes. For a fixed camera set-up, blob size of 
a vehicle is approximated using its distance from the camera position.

The relative road equation is calculated from estimated 
center strip by fitting a 2nd or higher order curve. 
Experimentally, we observed that a 3rd order curve
equation fits better to road curvature. The relative road 
equation enables us to approximate the values of  
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parameters such as the relative pixel speed and vehicle 
size. These parameters can later be used to estimate traffic 
flow, and give information about imaging geometry 
without having camera calibration parameters. Moreover, 
by setting an upper threshold value for blob sizes gives 
priori information about anomaly cases such as occlusion 
and traffic congestion.

Fig. II. Mask of the road is extracted from the vehicle positions and 
their trajectories’.   

Fig. III. Road equation, shown as the white curve, is extracted from 
the mask of detection region.

Finally, bounding rectangles are fitted to each detected
blob, and the centers of the rectangles are marked as the 
vehicle position (Fig. III).

B. Vehicle Tracking

In each frame, each detected vehicle is represented with 
a two-state Kalman filter, based on the constant-velocity 
motion model

1 , 1

1 , 1

t t x t

t t y t
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where T denotes the frame capture rate of the acquisition 
system. Velocities in vertical and horizontal directions are
represented with vx and vy. Here xt and, yt denote the 

center of mass of the rectangles. The state-space model is 
formulated with state st and observation zt as:
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where,
st = [xt  yt  vx,t  vy,t ]
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The process noise ut and the measurement noise ot are 
assumed to be uncorrelated, with zero-mean white 
Gaussian distributions and corresponding covariance
matrices Q and R as in [12]. Moreover, the rectangle 
center that is obtained by foreground segmentation is used 
as the observation, z, for the Kalman filter.

In order to decide if an observed vehicle position 
belongs to one of i) a previously existing vehicle, ii) a new 
incoming vehicle, or iii) a missing vehicle that occluded in 
the previous frames, we use the Euclidean distance 
between the optical flow estimate of the ith vehicle’s center 
position (It,i) and the observed vehicles’ position at time t
(θt). We denote this distance by δ(It,i, θt). Decision varies 
according to the vehicles’ positions in the imaging 
geometry. Since displacement would be higher for closer 
pixel locations, a higher threshold value is used for those 
regions.

The goal of optical flow calculation is to find the 
location v = u+d in the frame at time t+1 for an image 
point u = [ux uy]

T at time t, such that the windowed image 
regions centered at locations u and v, respectively It(u)
and It+1(v), are “similar”. The vector d = [dx dy]

T is called 
the pixel motion or the optical flow vector at u. Similarity 
is defined in the mean square sense, and d is the vector 
that minimizes the residual function
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where wx and wy  are integers that define the search 
neighborhood for optical flow calculation. For each match 
of observed vehicle position with optical flow estimate of 
an existing vehicle, matched vehicles’ Kalman filter is 
updated with the observed vehicle position.

C.Occlusion Reasoning

Different cases are studied by relating observed 
rectangle centers with optical flow results. Occlusion of 
multi-vehicles is classified into two categories: occlusion 
of vehicles and split of occluded vehicles. In each frame, a 
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log is used to keep track of the points, whether they are
new observations or observations correspond to existing 
vehicles, including their occlusion status in terms of 
occluded frame number. The following steps are used to 
match an observed rectangle center with an existing 
vehicle and track them.
In each frame:

1. For each optical flow estimate vehicle center, 
rectangle centers are matched according to their 
Euclidean-distance δ(It,i, θt) as explained below.

a. If the distance δ(It,i, θt) is below the threshold, an 
exact match occurs and the current Kalman filter (Kt,i) 
is corrected with matched rectangle center (θt).

b. If the mean-square distance is above the threshold,
there appears a split of an occluded vehicle. Kalman 
filter belonging to the split object is corrected with its 
prediction. For vehicles entering the scene, new Kalman 
filters are initialized at step 2.

c. If the distance is above the threshold and two 
different optical flow estimates match with the same 
rectangle center, occlusion case is valid for the objects. 
A new Kalman filter is initialized at step 2 and 
prediction values are used as observations for the 
occluded objects’ Kalman filter.

d. If there is no match, i.e., distance is too high for 
the optical flow of a vehicle (It,i), the vehicle’s Kalman 
filter is corrected with its prediction since there is not 
enough observation for the existing vehicle. 
2. A new Kalman filter is initialized for each unmatched

rectangle center.
By keeping a log table, split objects’ centers and their 

corresponding Kalman filters can be removed while
tracking for occluded vehicles for a desired frame period.
Also for the no match case, vehicles that are no longer in 
the scene can be detected and it is possible to estimate a 
traffic flow from the acquired data.  

In order to count passing vehicles, we define a 
boundary on the image for each outbound and inbound 
lane to form a region of interest as in Figure IV. When we 
detect that the position of a tracked vehicle gets out of this 
region in terms of pixel values, the counting algorithm 
increases the vehicle count by 1 for the corresponding 
lane. 

III. SPECIAL CONSIDERATIONS

In order to create a robust, adaptive tracking system that 
can handle environmental and lighting changes, the 
proposed algorithm is tested under different video scene 
conditions such as night time and weather condition.

A. Night Time

For night time recordings, a simple modification is 
applied to the algorithm. To reduce lighting effects, a 
higher threshold is set for the bounding blob size and a 
smaller threshold is set for difference images (Fig. V). 

Fig. IV. A tracking output: Detected vehicles are shown by rectangles 
while tracked positions are shown by dots. White line indicates the 
boundary of inbound and outbound lanes for counting. 

Fig. V. The white solid line represents the lower limit of the tracking 
boundary whereas yellow dots represent tracked vehicles and blue 
rectangles are detected vehicles.  

B. Weather Conditions

The algorithm is further improved with histogram and 
bounding box size constraints to handle weather 
conditions such as snow accumulation. To eliminate non-
vehicles, histogram of every detected rectangle’s 
background model is calculated. A vehicle or non-vehicle
decision is made based on the intensity distribution of the 
background model for the corresponding rectangle. 
Moreover, height to width ratio of detected rectangles 
gives information about the classification of detected 
objects such as: human, truck, or small vehicle.  

An example can be seen in Figures VI and VII, where 
the moving pedestrians are eliminated with the 
improvement in the algorithm.  
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Fig. VI. Tracking result without any improvement.

Fig. VII. Tracking result with histogram information. The moving 
pedestrians are eliminated.

IV. RESULTS

In this section we present the results from an initial 
investigation of the proposed algorithm’s effectiveness by 
implementing it on several video recordings taken at 
different time periods in a day.   Images of a two sided 
highway in Camlica, Istanbul are taken by a stationary 
camera at 2 different time periods: (CM1) beginning at 
12.01 pm and (CM2) at 4.00 pm. The algorithm is 
implemented with C++ on a Laptop with 1.60 GHz speed, 
512MB Ram, and Intel Pentium(R) M processor under 
Windows OS. In this platform our implementation 
processes 1000 frames in 357 seconds. The algorithm runs 
at 3 fps at real time, but it is possible to increase its speed 
by optimizing the code and by modeling the background 
only for the extracted foreground mask region. In Table I 
we report the number of departing vehicles counted by the 
proposed algorithm, and by inspection of the video scenes
in order to measure the effectiveness of the algorithm.

TABLE I
AVERAGE COUNTS OF TRACKED VEHICLES

Duration 
of video CM1(A) CM1(I) Error CM2(A) CM2(I) Error
1380 (1) 55-44 54-56 1-12 47-31 50-42 3-11

2760 (2) 51-65 54-66 3-1 59-65 60-60 1-5

4140 (3) 43-51 53-56 10-5 37-60 57-70 20-10

5520 (4) 31-56 34-61 3-5 57-53 61-48 4-5

6900 (5) 43-67 50-46 7-21 55-50 65-42 10-8

8280 (6) 53-43 66-52 13-9 58-56 65-46 7-10

9660 (7) 50-65 66-67 16-2 60-62 59-52 1-10

AVG 47-56 54-58 7,6-7,8 53-54 59-51 6,5-8,4

SUM 326-391 377-404 53-55 373-377 417-360 46-59

%Error 14-13 11-16
Std 5,65-6,93 6,75-2,5

Table I gives the number of vehicles departing from the 
scene in one minute time intervals. During each minute of 
the video 1380 frames exist. Cameras used in this work 
operate at 23 frames per second; hence each row of the 
table corresponds to approximately a one-minute time 
interval. In the columns, (A) represents the counts 
calculated by the algorithm and (I) represents the 
inspection counts. The two numbers in each column are 
the counts of the number of departing vehicles in both 
directions of traffic, separately. For example, during the 
time period CM1, the algorithm counted the number of 
vehicles departing in both directions during the first 
minute of the video and found 55 vehicles in the inbound 
lanes and 44 vehicles in the outbound lanes (Fig. IV). 

In Table I, it is seen that, the tracking algorithm 
underestimates the count of the vehicles in general; the
intuition behind this fact is that for long durations
occluded vehicles are assigned as a single vehicle. By 
extending the tracking time of vehicles, these results can 
be further improved. The reason for the high difference in 
algorithm and inspection results at 5th and 7th intervals of 
CM1 is due to the environment conditions. The proposed 
algorithm is implemented for stationary setups but 
cameras are affected from environmental factors such as 
wind.

Since our proposed model forces to assign a Kalman 
filter to every new bounding box (rectangle) and keeps the 
other objects’ Kalman filters, problems with tracking
mostly occur from foreground segmentation. For example, 
in over 4500 frames there are only 4 tracking errors due to 
the nature of the adaptive bounding box size in CM1; 
small objects in high threshold regions are omitted while 
implementing connected-component analysis. On the other 
hand, 29 vehicles’ tracking is lost only in the left lane of 
the highway in 4500 frames in CM2. This is the result of 
assigning foreground regions to background due to the 
high similarity between the objects and the background 
modeling for low resolution images.
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V. CONCLUSIONS  

Although the obtained results are promising, the 
algorithm still needs further modifications. To enable 
detecting and tracking in day and night recordings, 
background subtraction with shadow elimination 
techniques can be used. In order to improve results lane 
based tracking of vehicles can be implemented rather than 
tracking vehicles all over the highway., Cross-roads can 
be added as an extension to special considerations since it 
becomes challenging to track vehicles as they change 
directions. To differentiate the no-vehicle case from the
congested traffic case, bounding-box sizes of detected 
vehicles will be used.
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