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Abstract— This paper investigates the stochastic projective
properties of natural line segments in highway scenes for the
purpose of dynamically re-orientating the on-board camera.
We demonstrate there are geometric and statistic constraints
on the projection of such line segments. A new concept of
Inherent Vanishing Points associated with land vehicle boards
was employed to relate to the observed line segments and
rotation matrix. We show how these constraints greatly simplify
the re-orientation of the on-board camera. We validate a
dynamic re-orientation algorithm based on these constraints
with a real image sequence. Compared with the techniques
based on static calibration fields, the method based on our
proposed statistical constraints is effective, stable, and easy to
use.

I. INTRODUCTION

Camera calibration is a necessary step in 3D reconstruction
in order to extract metric information from 2D images.
Therefor, on-board camera calibration is an important task
for driver assistant or autonomous vision systems. Conven-
tionally, ignoring the specific property of motion on the
road, a man-made pattern or specially-made landmark is
used for calibration in a static situation. Ernst[1] painted a
calibration field on a piece of road, then used the points
of interest to calibrate both intrinsic and extrinsic camera
parameters.Wang and Tsai[2] employed a hexagon in their
approach. In Bucher[3], two well-arranged parallel lines on
the world plane were used.

Wang[4] considered that intrinsic camera calibration is
required only once for these kinds of applications, but
extrinsic camera parameters have to be calibrated many
times, and even constantly over extended operating periods.
In his approach for calibrating extrinsic camera parameters, a
simple and analytical procedure was suggested. But Wang’s
method employed a group of known calibration points, which
make it ineffective when land vehicle motion is taken into
account.

However, the approaches mentioned above stand on the
same weak presumption that the vertical axis of the reference
coordinate of the land vehicle body is perpendicular with

*This work was supported by the grants from the National Basic Research
Program of China (973 Program) (No. 2006CB708303), the National High
Technology Research and Development Program of China (863 Program)
(No. 20060101Z1059) and National Key Technologies Research and Devel-
opment Program of China (No. 2006BAK31B04).

the ground plane both in static and dynamic situations.
Furthermore, these approaches avoided the problem of how
to determine the frontage of the vehicle in practice.

In fact, the 3D reconstruction process might be possible to
implement even when the vehicle dynamic is severe There
is no change in the intrinsic parameters when it is in motion.
But a series of problems about relative orientation parameters
must be reconsidered as follows:

• The inclination angle between the local ground plane
and the image plane will change with the change in
velocity of vehicle[5][6]. This would lead to a slight dy-
namic bias in the inclination angle. As is already known,
the higher the vehicle speed, the farther the necessary
look-ahead distance. As a result, a serious error would
occur by triangulation in the 3D reconstruction process
when the vehicle is driven at high speed.

• It is almost impossible to determine the frontage of
the vehicle precisely in a static situation. There is no
visible and accurate reference for the longitude axes of
land vehicles; besides, the reference orientation would
be changed slightly in maintenance every time. So, the
definition of frontage is fuzzy when a land vehicle is
motionless. A possible reference method would be to
drive the vehicle along a long and straight line to define
the reference orientation, but the error boundary of this
definition is uncertain. Also, sequentially, the error of
calibration result is difficult to control.

Due to the requirement that the reconstruction must work
for long distances during fast movement, the dynamic re-
orientation process of the on-board camera is necessary. If
the camera never moved relative to vehicle after installation,
then it would be easy to refine the translation vector with
the re-calibrated rotation matrix. But for refining the rotation
parameters, a group of reliable constraints must be found in
the vehicle driving process.

Based on above facts, the primary difficulties of dynamic
re-orientation for the on-board camera are as follows:

• Uncertainty of scene content
The on-board camera is moving relative to the road
scenes, and the view field is highly uncertain. There is
no certain reference feature for parameter calibration.

• Changeability of the pose parameter
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The pose parameter will change as the velocity of
vehicle changes, besides the bumping effect.

• Low accuracy of the data
Generally, the look-ahead distance is far in high speed
driving. Furthermore, for real-time processing, the res-
olution power of the camera is limited. These lead to a
low accuracy of the data.

Accordingly, we investigated the constraints between the
reference coordinate and surrounding road scenes, and sug-
gested an effective statistic work frame for dynamic re-
orientation based on these constraints. It overcomes the
drawbacks in the work of Ma et al.[7], which are too
dependent on snaking driving.

In section II, a new concept of Inherent Vanishing Points
associated with the land-vehicle board is introduced, and the
relationship between these points and the rotation matrix
is demonstrated. In section III we analyze the stochastic
processes in vehicle motion and lead the estimation formulas
of the statistic features. In section IV we show the results of
our experiments. Section V draws some conclusions.

II. INHERENT VANISHING POINTS

The projection of the land vehicle board orientation is
examined in this section. We start with the notation used
in this paper.

A. Notation

When several different coordinate systems are considered
at the same time, it is convenient to follow Craig[8] and
Firsyth[9], and denote by

F
P (resp.

F ν) the coordinate vector
of the point P (resp. vector ν) in the frame F–that is

F
P =

F −→
OP =




x
y
z


⇐⇒−→

OP = xi+ yj+ zk . (1)

In this paper, we consider four coordinate systems: the
2D image plane frame (Π ′), the 3D camera frame (C), 3D
reference frame associated with vehicle board (B), and the
3D world frame (W ).

(Π ′) = (OΠ ′ , iΠ ′ , jΠ ′ ) ;

(C) = (OC , iC , jC ,kC) ;
(B) = (OB , iB , jB ,kB) ;
(W ) = (OW , iW , jW ,kW ) .

(2)

We use homogeneous coordinates to represent points,
vectors, and planes. A pixel point (u,v) in image plane Π′
is represented as a vector p = [u,v,1 ]T . A 3D space point P
is represented in the world frame as

W
P = [

W
X ,

W
Y,

W
Z, 1 ]T ,

in the reference frame as
B
P = [

B
X ,

B
Y,

B
Z, 1 ]T , and in the

on-board camera frame as
C
P = [

C
x,

C
y,

C
z, 1 ]T .

As shown in figure1, we use a pinhole camera model in
this paper: that means the following equation is satisfied[9]

p =
1
cz

K (
C
BR t)

B
P (3)

Fig. 1. On-Board Camera Model

where

K
de f
=




α −α cotγ u0
0 β/sinγ v0
0 0 1


 ,

is called the camera intrinsic matrix, cz is the depth of
point

C
P in camera frame, (u0,v0) are the coordinates of the

principal point, α and β the scale factors in image u and v
axes, and γ is the angle between the two image axes u and
v. (

C
BR t) is called the camera extrinsic matrix,

C
BR is the

rotation matrix, and t =
COB is the translation vector.

B. Inherent Vanishing Points and Rotation Matrix of the On-
Board Camera

Definition 2.1 (Inherent Vanishing Points):
The point VX = [uX ,vX ,1 ]T in the on-board camera image

plane Π ′ is called the Inherent Vanishing Point associated
with the XB axes, if all 3D parallel lines with orientation iB

project to converging lines with intersections at point VX in
image plane Π ′.

Vector iB is also called the corresponding vector of van-
ishing point VX , and the orientation of iB is called the
corresponding orientation of VX .

Similarly, VY = [uY ,vY ,1 ]T and VZ = [uZ ,vZ ,1 ]T are re-
spectively called Inherent Vanishing Points associated with
the YB axes and ZB axes. Vectors jB and kB are respectively
called the corresponding vectors of vanishing points VY and
VZ .

VX , VY , and VZ are called by a joint name: Inherent
Vanishing Points of the On-Board Camera.

According to the definition 2.1, the 3D orientations cor-
responding to Inherent Vanishing Points are respectively
parallel to the relative axes. Therefore, the corresponding
unit normal vectors of these Inherent Vanishing Points are
the column vectors of the rotation matrix[9].

C
BR =

(
C
iB

C
j
B

C
kB

)
(4)

Thus, the problem of determining of the camera rotation
matrix relative to the reference frame is translated into a
new problem to estimate the Inherent Vanishing Points or
their corresponding orientations.
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However, as mentioned above, the view field of the on-
board camera is highly uncertainty. There is no method to
estimate the Inherent Vanishing Points in a single image.
For this reason, we establish the statistic corresponding
relationship between image features and Inherent Vanishing
Points by taking into account the constraints in the vehicle
motion process.

III. BASIC CONSTRAINTS IN VEHICLE MOTION

In this section, we examine the statistic vision information
associated with the orientation of the land vehicle board.
When considering a land-vehicle driving on a highway,
in general, the vehicle motion must satisfy two classifica-
tion constraints correlated with the road surface and road
boundaries. At the same time, we limited singularly extreme
situations that would not appear in our permission application
conditions, such as a road segment with an excess transect
gradient.

A. Some Concepts about Road Surface

Assume that the real ground surface in the world frame is
represented as

Σ :
W
Z = h(

W
X ,

W
Y ) (5)

If we smooth Σ by a window h with scale ε the same as the
vehicle tread width, a new surface will be obtained as

Σ :
W
Z = h(

W
X ,

W
Y )

=
∫ ∫

wε(s−W
X , t−W

Y ) ·h(s, t)dsdt , (6)

where

h(x,y) =





1
ε2 abs(x)≤ ε

2
, abs(y)≤ ε

2
0 abs(x) >

ε
2

, abs(y) >
ε
2

.

If
W

hX and
W

hY , the derivative of h, is continuous at point
(

W
X ,

W
Y ), we could obtain n

Σ
, the normal of surface Σ at

point (
W
X ,

W
Y,

W
Z ), which is represented in the world frame

as
W
n

Σ
= [

W
hX ,

W
hY , −1 ]

T
(7)

Because the vertical axis of the land vehicle is more
parallel to n

Σ
, we use the surface Σ as the constraint surface

in the following text. Furthermore, we limited the surface
with the concept of a Restricted Gradient Curve Surface.

Definition 3.1 (Restricted Gradient Curve Surface):
A curve surface Σ ε0 is called ε0-Restricted Gradient

Curve, if

∀ P(
W
X ,

W
Y,

W
Z ) ∈ Σ ε0 ,

∃
∣∣∣∣∣

∂W
Z

∂WX

∣∣∣∣∣
2

+

∣∣∣∣∣
∂W

Z
∂WY

∣∣∣∣∣
2

< ε2
0

(8)

where ε0 > 0 could be easily confined by the general
construction standards of highways. So, we identify all
smooth ground surfaces Σ with ε0-Restricted Gradient Curve
Surface in the following text.

Definition 3.2 (Ideal Driving Trace):

A curved line Γ ⊂ Σ is called an Ideal Driving Trace,
if the normal plane, ΠΓ

P , is also perpendicular to Λ at any
point P on Γ , where Λ is the center line of road lane. And
the distance from P to Λ is a constant 0 < δ < W/2, where
the W is the width of road lane.

Assuming that Q ∈ Σ is a point in road lane, there are
also two definitions as follows:

The plane ΠΓ
Q is called a normal plane of Γ relative to

point Q, if ΠΓ
Q is a normal plane of Γ and Q ∈ΠΓ

Q .
Vector lΓ (Q) is called unit tangent vector of Γ relative to

point Q, if lΓ (Q)⊥ΠΓ
Q and ‖lΓ (Q)‖= 1.

B. The Statistic Constraints Between Moving Vehicle and
Road

• Lane Constraint
Generally, the driver must keep the land vehicle between
lane boundaries.

Assume that the vehicle is driven fluctuating about an
Ideal Driving Trace Γ , and its velocity is v(t) at time t.
The algebraic distance from OB , the origin of vehicle frame,
to Γ is d(t) which is positive when OB is leftward to Γ .
The angle between driving velocity v(t) and vector lΓ (OB)
is ψ(t) which counter-clockwise is positive. Especially, we
represented vector lΓ (OB) as

ClΓ (t) at time t in the camera
frame.

Driving on a highway, generally, the angle ψ(t) is re-
stricted to a narrow field, and the sideslip angle between
driving velocity v(t) and vector iB is negligible relative to
ψ(t). So, the angle between lΓ (OB) and iB is identified as
the same with ψ(t) in the following text.

Assume that, the delay time of driver active could be
neglected. So, the Lane Constraint could be predigest as the
following dynamic[10]

{
ḋ(t) = v(t) · sin(ψ(t))≈ v(t) ·ψ(t)

ψ̇(t) =−λ1 ·d(t)−λ2 · ḋ(t)+u(t)
(9)

where λ1 > 0 and λ2 > 0 are the gains of driver-vehicle
system respective to trace offset d(t) and trace offset rate
ḋ(t), and u(t) is a stationary white Gaussian noise with auto
correlation function Ruu = qδ (τ).

As the speed response time of the vehicle is far greater
than sampling interval, we consider that the velocity of
vehicle is a constant in this process, that is v(t) = v. Then
formula (9) could be rewritten as a linear time-invariant
system

ψ(t) = L[u(t)] (10)

and the expectation of ψ(t) is

E{ψ(t)}= L[E{u(t)}] = 0 (11)

The state-space equation of the system (10) is

ẋ = Ax+Bu(t)
ψ(t)= Cx

(12)
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Fig. 2. Sketch map about Lane Constraint

where

x =
[

d(t)
ψ(t)

]
,A =

[
0 v
−λ1 −λ2v

]
,

B =
[

0
1

]
,C =

[
0 1

]
.

(13)

Then, we could obtain the transfer function

G(s) = C(sI−A)−1B

=
s

s2 +(λ2v)s+λ1v
(14)

and impulse response function

h(t) = L[δ (t)]

= L −1[G(s)]

=
1

b−a

(
be−bt −ae−at

)
U(t) ,

(15)

where

λ 2
2 v2−4λ1v > 0,

a =
λ2v+

√
λ 2

2 v2−4λ1v

2
> 0,

b =
λ2v−

√
λ 2

2 v2−4λ1v

2
> 0.

(16)

And then obtain the auto covariance of ψ(t) as follows

Cψψ(τ) = Rψψ(τ)

=
q

2(b2−a2)

(
ae−aτ −be−bτ

)

−−−→
τ→∞

0 .

(17)

So, ψ(t) is an ergodic process with zero mean value: that is

1
2T

∫ T

−T
ψ(t,ξ )dt a.e.−−−→

T→∞
E{ψ(t)}= 0 (18)

Furthermore, as mentioned above, the physical meaning of
ψ(t) is the angle between

ClΓ (t) and
CiB , so

〈
C

lΓ (ξ ),
C
iB

〉
a.e.−−−→

T→∞

∥∥∥C
lΓ

∥∥∥∗
∥∥∥C

iB

∥∥∥ (19)

where
C lΓ (ξ ) denote the time averaged

ClΓ (t,ξ ) in a single
observation.

C
lΓ (ξ ) =

1
2T

∫ T

−T

C
lΓ (t,ξ )dt (20)

The equation (19) indicates that the orientations of
C lΓ (ξ )

and
CiB are parallel with probability 1, when T → ∞. As

a result, for a large sample number N, we could estimate
C lΓ (ξ ) by the sample average

C ˆlΓ (ξ ) =
1
N

N

∑
i=1

C
lΓ (i,ξ ) . (21)

• Road Surface Constraint
As a fact that the vehicle must running on ground, the
axis

B
Z of reference coordinate and the normal vector

of surface Σ at local position are parallel, that is〈
W
kB(t),

W
n

(W
X(t),

W
Y (t)

)〉

=
∥∥∥W

kB(t)
∥∥∥∗

∥∥∥W
n

(W
X(t),

W
Y (t)

)∥∥∥ .
(22)

• The Hypothesis of Plentiful Vertical Line Segments
in Vision Field
In this paper, a hypothesis is presumed that there are
plentiful vertical line segments in the vision field on
the highway, and the orientation of these line segments
are approximate to vector kW at local position partici-
pated of Gaussian noise with 0 mean and σ standard
deviation.

• The Distribution Hypothesis of Road Transverse
Gradient
At time t, the road transverse of local position is
denoted by ε⊥(t). We presume that the ε⊥(t) on selected
highway is an ergodic process with N(0,σ) distribution.

According to above constraints and hypotheses, the side-
wise inclination of vehicle body εB

j
(t) is approximate to the

road transverse gradient

εB
j
(t) =

〈
C
j
B
,

C
kW (t)

〉

=
〈

W
j
B
(t),

W
kW

〉

≈ ε⊥(t) .

(23)

Consider that the ψ(t) is not only a restricted small value
but also an ergodic process with 0 mean, the difference
betweenεB

j
(t) and ε⊥(t) is negligible. Of course the εB

j
(t)

could be treated as an ergodic process, that is
〈

C
j
B
,

C
kW (ξ )

〉
=

1
2T

∫ T

−T
εB

j
(t,ξ )dt

a.e.−−−→
T→∞

E{εB
j
(t)}= 0 ,

(24)

where
CkW (ξ ) denote the time average of

CkW (t,ξ ), the
observed vertical vector of world frame.

C
kW (ξ ) =

1
2T

∫ T

−T

C
kW (t,ξ )dt . (25)

The formula (24) state that
CkW (ξ ) and

Cj
B

are perpendicular
each other with the probability 1, when T →∞. And so, for a
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large sample number N, we could estimate
CkW (ξ ) by simple

average
C
k̂W (ξ ) =

1
N

N

∑
i=1

C
kW (i,ξ ) . (26)

Note that although most real highway circumstances could
satisfy the constraints and hypotheses mentioned above, there
are still a few situations that would not satisfy the Hypothesis
of Plentiful Vertical Line Segments in the Vision Field and
the Distribution Hypothesis of Road Transverse Gradient.
Therefore, the application scene must be well selected before
using the method suggested in this paper.

C. Estimate the Rotation Matrix

To estimate the camera rotation matrix relative to the ve-
hicle body by formula (4), the statistic relationships between
frame vectors

CiB ,
Cj

B
and scene features

ClΓ (t,ξ ),
CkW (t,ξ )

are discussed in formulas (19) and (24), which may be
reduced further to the following equations:

C
îB =

C ˆlΓ (ξ )∥∥∥C ˆlΓ (ξ )
∥∥∥

(27a)

C
ĵ
B

=
C ˆlΓ (ξ )×Ck̂W (ξ )∥∥∥C ˆlΓ (ξ )×Ck̂W (ξ )

∥∥∥
(27b)

C
k̂B =

C
îB ×

C
ĵ
B

(27c)

So, if the sample vectors
ClΓ (i,ξ ) and

CkW (i,ξ ) have been
detected by the vision method[11][12][13], then the rotation
matrix in formula (4) could be obtained easily by equations
(21), (26) and (27a-27c).

IV. EXPERIMENTAL RESULTS

To validate the performance of our algorithms with respect
to all of the noise, we calibrated rotation parameters of
the on-board camera in various real scenes. The videos
were captured using a PULNIX TMC-9700 camera mounted
on our prototype vehicle, Springrobot. Its image resolu-
tion is 384× 216. It has constant internal parameters u0 =
258.7,v0 = 81.6,α = 625.6,β = 596.6 and γ = 0, which is
calibrated by Zhang’s method[14].

Fig. 3. Two typical re-calibration images in different real scenes

The samples
ClΓ (i,ξ ) and

CkW (i,ξ ) of each frame
were extracted by a method combining Collins’s[11] and
Lutton’s[13]. Figure3 shows some typical images captured
from these road videos. The Statistical Vanishing Points were
estimated from these images and from the previous, where
the Vanishing Point associate with

C ˆlΓ (ξ ) was shown as a
light square and

Ck̂W (ξ ) was out of the image.

A. Estimation of the Statistical Vanishing Points

A working video frame set was found using the current
frame and the N-1 previous ones. The tangents of the road
boundary image at the close end in these frames were
clustered into a group, and the edge segments of vertical line
segments were clustered into the other group. For each group,
we represented the line segments as normals of the associated
great circles on the Gaussian sphere. The Vanishing Point
Estimation problem fell well within the domain of direction
statistics[11][15][16].

B. Rotation Matrix Calibration

The vectors from the origin point of the Gaussian sphere
pointing toward these vanishing points were just what we
needed to determine the vectors associated with Inherent
Vanishing Points in formulas (27a)(27b) and (27c),

ClΓ (i,ξ )
and

CkW (i,ξ ). Then the rotation matrix
C
BR could be derived

from formula (4). At last, we could obtain the Euler angles
as follows: 




φ = arccos
C
BR33

ψ = arctan
C
BR23
C
BR13

θ =−arctan
C
BR32
C
BR31

(28)

TableI shows the mean and σ standard deviation of the
estimated Euler angles in various scenes. As is clear, the
results are stable after about 90 calibration frames in different
scenes. We also note that there is a little uncertainty about
σ < 0.0025 that could hardly be decreased. It is acceptable
in application.

Zhang’s flexible calibration method[14] has been used to
obtain the contrasted data in the static calibration field, in
which frontage is defined by gingerly driving the vehicle
along a 50m straight line. TableII shows contrasted calibra-
tion results in different static calibration fields.

It’s clear that there is obvious uncertainty in the results
uncertainty between different calibration fields. As we men-
tioned in sectionI, the angle ψ has a standard deviation of
about 0.0222 that will lead to a great reconstruction error
when a far vision distance is considered.

V. CONCLUSION

For resolving the extrinsic parameter of an on-board
camera dynamically, we suggested to treat the essential
vanishing points of the on-board camera as the invariable
visual cues, which are invisible but accessible. As shown
throughout the paper, this is motivated by the fact that such
cues naturally enclose the rotation matrix describing the
coordinate frame associated with vehicle in the coordinate
system with the on-board camera. In most conditions, statis-
tically, the tangents of the road boundaries beside the position
of vehicle are coherent with the vehicle orientation and the
natural vertical edges perpendicular to the lateral axis of
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TABLE I
RESULTS WITH TWO REAL SCENES OF 90 TROUGH 270 VIDEO FRAMES

after 90 frames after 150 frames after 210 frames after 270 frames
Eular ang. σ Eular ang. σ Eular ang. σ Eular ang. σ

φ 1.5804 0.0008 1.5806 0.0007 1.5807 0.0006 1.5810 0.0005
scene1 ψ -0.0292 0.0019 -0.0293 0.0018 -0.0295 0.0017 -0.0296 0.0016

θ 1.5843 0.0024 1.5834 0.0019 1.5835 0.0016 1.5836 0.0014
φ 1.5809 0.0009 1.5809 0.0008 1.5811 0.0007 1.5815 0.0006

scene2 ψ -0.0296 0.0002 -0.0295 0.0001 -0.0296 0.0001 -0.0297 0.0002
θ 1.5794 0.0015 1.5788 0.0014 1.5789 0.0012 1.5790 0.0010

TABLE II
CONTRAST RESULTS DERIVED IN DIFFERENT STATIC CALIBRATION FIELDS

Eular ang. in field 1 Eular ang. in field 2 Eular ang. in field 3 Eular ang. in field 4 σ
φ 1.5728 1.5934 1.5749 1.5681 0.0096
ψ -0.0260 -0.0396 0.0202 -0.0131 0.0222
θ 1.6018 1.6120 1.5986 1.6173 0.0075

vehicle. This information is enough to determine the so-
called essential vanishing points and the rotation matrix. We
have shown that there exist compact and efficient algorithms
to compute very accurate solutions online. Algorithms have
been tested on real scene data online. Our approach shows
the convenience and dependability in the scenes that met our
simple restriction.
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