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Abstract— In this paper we optimize a time-triggered,
Kalman filter based, multi-sensor fusion system, used as an
environmental perception platform for advanced driver assis-
tance systems while satisfying constraints that are typical of a
safety-related application.

We argue that the overall system including effects from the
sensor, bus, and fusion schedules as well as the treatment
of measurements must be considered in order to optimize
the fusion accuracy. Due to differences in measurement pre-
processing data from sensors may not arrive in chronological
order which requires special treatment for this out-of-sequence
measurements (OOSM). As a result of this paper we identify
regions in the scheduling parameter space that minimize the
error covariance of the estimated states.

I. INTRODUCTION

Multi-sensor data fusion systems are the enabling technol-

ogy for advanced driver assistance systems. New features like

adaptive cruise control with active steering, lane departure

alert, parking pilot, and automatic emergency brake will be

standard in the next car generation as electronic stabilization

systems and anti lock braking systems are at present.

This paper deals with the optimization of a time-triggered,

Kalman filter based, sensor fusion system for driver assis-

tance systems consisting of two sensors, a bus system and

a fusion/prediction core. It tracks objects and is supposed to

deliver a real time image (model) of the environment at fixed

intervals with given accuracy to a safety related application

(see figure 1).
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Fig. 1. Information flow in sensor fusion

The rest of the paper is structured as follows: In sec-

tion II the system set-up is described. In section III OOSM
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treatment strategies are discussed. Section IV presents the

optimization approach. We analyse the optimal parameter

regions in section V. In section VI a conclusion is drawn.

II. SYSTEM DESCRIPTION

We consider a system with two identical sensors that

transmit their measurements via a time-triggered bus system

to a fusion/prediction core. The fusion/prediction core fuses

the incoming measurements and then predicts the fused

object states to real time as demanded by an application

(figure 1). We use the following definitions:

• the cycle time tC of a process is the time interval that

this process requires for completion of its service while

the start of two consecutive processes is tC apart

• the execution time tT of a process is the time interval in

which this process completes its service where the start

of two consecutive processes can be more than tT apart

• the phase tP of a process is defined as the time interval

between the start of this process relative to the start of

the first cycle of sensor 1

The two sensors have cycle times tsens1
C and tsens2

C , that are

identical to their preprocessing times and therefore adjustable

by the choice of the speed of the sensor’s processor. They de-

liver their measurement states ~zsens1
tk

and ~zsens2
tk

with constant

covariance matrices Rsens1
tk

and Rsens2
tk

over a time-triggered

bus system using time division multiple access (TDMA) with

fixed cycle time ttta
C (the bus is not exclusively used by the

sensor fusion system, hence the cycle time is assumed to

be determined by external constraints) to a fusion/prediction

core. There the information is processed in order to establish

a robust image of the environment.

In figure 2 the cycle times, slots for execution times and

phases of sensor preprocessing (tsens1
C , tsens2

C and tsens
P ), mea-

surement transmission (ttta
C , ttta1

P and ttta2
P ) and generation of

the application update (t
pre
C , t

pre
T and t

pre
P ) that are processed

within the fusion system are visualized.

To process the incoming measurements at the fu-

sion/prediction core, we use a Kalman filter approach as

described in [1]. As the Kalman filter is a widely used

and well known algorithm for tracking moving targets,

we will only give a short overview of the notation used

throughout this paper. The estimated state vector of the

tracked object ~̂x( tk−1| tk−1) is updated with measurements

at discrete points in time tk. The state prediction from tk−1

to tk is given by ~̂x( tk| tk−1) = F (tk − tk−1) · ~̂x( tk−1| tk−1).
The predicted state covariance matrix is computed as
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Fig. 2. System schedule

P( tk| tk−1) = F (tk − tk−1) · P( tk−1| tk−1) · (F (tk − tk−1))
T +

Qtk−1
. The measurement update of the predicted system state

is ~̂x( tk| tk) = ~̂x( tk| tk−1)+Ktk ·~νtk with Ktk = P( tk| tk−1) ·H
T
tk
·

(

Htk P( tk| tk−1)HT
tk

+Rtk

)−1
,~νtk =~ztk −~̂ztk and~̂ztk = Htk ·~̂x(tk).

The update of the covariance matrix is given by P( tk| tk) =
(

I −Ktk ·Htk

)

·P( tk| tk−1) ·
(

I −Ktk ·Htk

)T
+Ktk ·Rtk ·K

T
tk

. The

fusion/prediction core processes a measurement within t
f us
T .

III. OUT-OF-SEQUENCE MEASUREMENT TREATMENT

In multi-sensor tracking systems, measurements from

the same object can arrive out of sequence [2], [3], that

means not in chronological order. Often, OOSM behavior

is caused by an indeterministic transmission system, where

the transmission time of a message may vary so much

that a message from a later measurement may overtake a

newer measurement. Such behavior is caused by transmission

protocols with many retries such as many Internet protocols

(e. g., TCP/IP) or in networks with dynamic routing (Internet,

wireless sensor networks).

However, even if communication protocols with deter-

ministic behavior, such as time-triggered approaches like

flexray [4], TTCAN [5], TTP [6], or TTP/A [7] are used,

the OOSM problem may arise.

Figure 3 depicts a situation with an OOSM problem

that is independent from communication system issues. Due

to different preprocessing times the indicated measurement

from sensor 2 is received earlier at the fusion core than the

indicated measurement from sensor 1 although the measure-

ment from sensor 2 is newer.

As the Kalman filter in the form of [1] can not handle

OOSMs, architectural and algorithmic solutions have been

developed.

Kaempchen et al. [8] use a measurement buffer between

bus and fusion core. No measurement is delivered to the fu-

sion/prediction core, before all measurements that have been

sampled earlier have arrived at the buffer. Within the buffer
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Fig. 3. Origin of out-of-sequence measurements

the measurements are sorted chronologically. Kaempchen et

al. further discuss the maximum latency (here defined as the

time difference between the instant of the composition of the

image representing the surrounding environment provided

by sensor fusion and the bygone instant where this image

was true) that arises between measurement recording and

measurement fusion. It is distinguished between situations

where only knowledge of the maximum measurement cycle

times and situations where full knowledge of the measure-

ment cycle times is available.

Another way to solve the OOSM problem are special

algorithms which will be called ”advanced algorithms”

throughout this paper. These algorithms deal with one-lag

and multi-lag delays, filtering and tracking, linear and non-

linear systems as well as single-model and multi-model

approaches [9], [10], [11], [12], [13], [14], [15], [16], [17],

[18].

For sake of discussion we will only consider the buffering

approach as presented in [8] referred to as BUFF and the

OOSM treatment algorithm Al1 of [10] referred to as ADVA.

IV. OPTIMIZATION APPROACH

As the application is safety related, it expects to pe-

riodically receive (cycle time t
pre
C ) real time object states

with bounded accuracy. Due to the fact that the fusion

output states always lag behind real time irrespective of the

specific OOSM algorithm used, the image of the environment

has to be predicted from state time tST to real time tRT .

The state time is the current time of the Kalman filter

state and coincides with the measurement time of the latest

fused sensor measurement, whereas real time is the actual

physical time. The real time covariance matrix of the state

can be determined by predicting the state time covariance

matrix from state time tST to real time tRT by P( tRT | tST ) =
F (tRT − tST ) ·P( tST | tST ) · (F (tRT − tST ))T + QST (see figure

4).

As the dependence of F (tRT − tST ) and QST on the pre-

diction interval is well known for a given system, it is thus

possible to consider the effect of the system parameters and

the strategy for the treatment of OOSM (see also section

III) on the system latency tRT − tST , state time and real time

covariance matrices of the state P( tST | tST ) and P( tRT | tST ).
The task is to analyse the effect of different OOSM

treatments and parameter sets on the accuracy (defined as
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Fig. 4. Prediction from state time to real time

the determinant of the real time covariance matrix, after the

Kalman filter has converged).

The optimization will be performed by simulating the

entire system including bus and sensor schedules at given

points in parameter space. We use a simple dynamic system

and measurement model in the fusion/prediction core (see

appendix) and employ a Kalman filter (by linearization

around a setpoint) as opposed to an extended Kalman

filter as our estimation algorithm. As the computation of

the covariance matrices of a Kalman filter is completely

independent of the state and measurement vectors we need

not input specific measurements and are thus independent

of the actual driving situation. After convergence of the

Kalman filter1 the maximum of P( tRT | tST ) is recorded. This

constitutes one iteration of the optimization (minimization of

det(P( tRT | tST ))) over the regions of the parameter space.

We will discuss both the area of the covariance el-

lipse at state time det(P( tST | tST )) as well as at real time

det(P( tRT | tST )). With the system latency ∆t = tRT − tST ,

det(P( tRT | tST )) is given by

det(P( tRT | tST )) =

det(F(∆t) ·P( tST | tST ) ·F(∆t)⊤ +QST ) =

det(P( tST | tST ))+∆t ·P( tST | tST )(1,1) ·q+O
(

∆t2
)

(1)

This allows us to separate the influence of the sensor

schedules and the OOSM algorithms that affect the covari-

ance at state time P( tST | tST ) and the influence of the bus,

fusion and prediction schedules. From eq. 1 we see that given

det(P( tST | tST )) the leading order increase of the covariance

area at real time is linear in ∆t. As will be demonstrated in

section V, the variations in P( tST | tST ) are negligible and it

1Convergence of the Kalman filter here means that the covariance
matrices have assumed a regular, periodic pattern. A constant steady state
covariance matrix cannot be expected since the Kalman filter receives
measurements from different sensors at different times.

then suffices to minimize ∆t in order to maximize the fusion

accuracy at real time.

V. OPTIMAL PARAMETER REGIONS

As ttta
C and t

pre
C are fixed (see sections II and IV), tsens1

C ,

tsens2
C , t

f us
T and t

pre
T are the only system parameters whose

modification changes the hardware of the system and affects

such the overall system costs. In contrast, tsens
P , ttta1

P , ttta2
P

and t
pre
P can be modified without affecting the costs of

the system by simply changing software parameters. There-

fore, for every configuration of tsens1
C , tsens2

C , ttta
C , t

f us
T and

t
pre
T , we choose the phases that minimize the maximum of

det(P( tRT | tST )) which has been computed numerically over

a simulation time of 20 seconds performed with a simple

dynamic system and measurement model (see appendix).

Furthermore we consider the algorithmic overhead of the

advanced algorithms in comparison to the simple buffering

approach by adding a penalty term to t
f us ADVA
T = t

f us
T +

tOverhead
T . tOverhead

T was empirically determined as tOverhead
T ≈

t
f us
T . t

pre
T is approximated by t

pre
T ≈

t
f us
T
3

. Note that all temporal

parameters are varied in 1 ms steps.

In figures 5 and 6 we visualize the state-

time determinant of the error covariance matrix

minttta1
P ,ttta2

P
(maxt (det(P( tST | tST )))) and the real-

time determinant of the error covariance matrix

minttta1
P ,ttta2

P
(maxt (det(P( tRT | tST )))) for tsens1

C = 50 ms,

tsens2
C = 40 ms, ttta

C = 2 ms, t
f us
T = 1 ms and t

pre
C = 30 ms by

variation of tsens
P and t

pre
P for both advanced algorithms and

buffering.
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Fig. 5. State-time and real-time accuracy of the advanced algorithms
approach for tsens1

C = 50 ms, tsens2
C = 40 ms

As Rsensor1
tk

and Rsensor2
tk

are constant in time (see appenix)

and the variation of minttta1
P ,ttta2

P
(maxt (det(P( tRT | tST )))) is

negligible (as can be seen in figures 5 and 6), the influence of

the prediction from state time tST to real time tRT dominates

all other factors. Given that the variability of the state time

covariance is seen to be small, equation 1 shows that the co-

variance at real time is linearly determined by the prediction

ThB1.5

572



0
10

20
30

40

0

10

20

30
2

3

4

5

6

7

x 10
−4

 

tsens
P [ms]tpre

P [ms]

 

minttta1

P
,ttta2

P

(

maxt

(

det(P BUFF ( tRT | tST ))
))

minttta1

P
,ttta2

P

(

maxt

(

det(P BUFF ( tST | tST ))
))

Fig. 6. State-time and real-time accuracy of the buffering approach for
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C = 50 ms, tsens2

C = 40 ms

time interval that is visualized for the buffering approach in

figure 7, which shows the same structural behavior as the

upper surface in figure 6.
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Fig. 7. tRT − tST profile for buffering approach for tsens1
C = 50 ms, tsens2

C =
40 ms

In order to understand the periodic structural behavior, it

is important to note that every parameter set (tsens1
C , tsens2

C ,

tsens
P , ttta

C , ttta1
P , ttta2

P , t
pre
C , t

pre
T and t

pre
P ) results in a series

of prediction intervals from state time to real time tRT − tST

that is periodically repeated over the simulation time with

a periodicity determined by the least common multiple of

all cycle times tC. The shift between two cyclic processes

is changing as well over simulation time and forms a shift

series, where two consecutive shifts differ by t1
C − t2

C or

min(t1
C, t2

C). From every shift series one prediction interval

series can be derived. If the phase is varied by n ·
(

t1
C − t2

C

)

(n integer) it can happen, that the shift series has the same

set of shifts and only starts at a different shift element. As

only the maximum of tRT − tST is important to us it does

not matter at which shift element our simulation starts. As

tsens1
C −tsens2

C = 10 ms and tsens2
C −t

pre
C = 10 ms and we observe

a 10 ms periodicity by variation of tsens
P as well as t

pre
P this

”10 ms shift invariance” is the case this parameter set.

The diagonal edges of the advanced algorithms approach

result from the fact that a measurement is processed just

before the prediction to real time is performed. Therefore

the prediction interval from real time to state time is smaller

which results in increased accuracy. The difference to the

buffering approach is due to the fact that the measurement

buffer influences the real time prediction interval profile in

comparison to the advanced algorithms by delaying the mea-

surements from the faster sensor, which partly compensates

the change in tsens
P .

In figures 8 and 9 we visualize the state-

time determinant of the error covariance matrix

minttta1
P ,ttta2

P
(maxt (det(P( tST | tST )))) and the real-

time determinant of the error covariance matrix

minttta1
P ,ttta2

P
(maxt (det(P( tRT | tST )))) for tsens1

C = 51 ms,

tsens2
C = 40 ms, ttta

C = 2 ms, t
f us
T = 1 ms and t

pre
C = 30 ms by
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Fig. 8. State-time and real-time accuracy of the buffering approach for
tsens1
C = 51 ms, tsens2

C = 40 ms
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Fig. 9. State-time and real-time accuracy of the advanced algorithms
approach for tsens1

C = 51 ms, tsens2
C = 40 ms
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variation of tsens
P and t

pre
P for both buffering and advanced

algorithms.

We see that the periodic structure disappears if tsens1
C −

tsens2
C 6= tsens2

C − t
pre
C

As far as the influence of ttta1
P and ttta2

P is con-

cerned, we visualize mintsens
P t

pre
P

(maxt (det(P( tST | tST ))))

and mintsens
P t

pre
P

(maxt (det(P( tRT | tST )))) for tsens1
C = 50 ms,

tsens2
C = 40 ms, ttta

C = 2 ms, t
f us
T = 1 ms and t

pre
C = 30 ms by

variation of ttta1
P and ttta2

P for both buffering and advanced

algorithms in figures 10 and 11. Please note, that there exist

two transmission schedule versions 1 and 2. In version 1

sensor 1 sends in the first slot and sensor 2 sends in the

second slot. In version 2 it is vice versa.
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Fig. 10. State-time and real-time accuracy of the buffering approach for
tsens1
C = 50 ms, tsens2

C = 40 ms
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Fig. 11. State-time and real-time accuracy of the advanced algorithms
approach for tsens1

C = 50 ms, tsens2
C = 40 ms

The results show that the influence of ttta1
P and ttta2

P is

sufficiently small and can be neglected.

VI. CONCLUSION

We have performed the optimization of a sensor fusion

system consisting of two sensors, a bus system and a

fusion/prediction core with respect to the schedule parameter

space (tsens1
C , tsens2

C , tsens
P , ttta

C , ttta1
P , ttta2

P , t
pre
C , t

pre
T and t

pre
P ).

The area of the covariance ellipse was chosen as the opti-

mization criterion. We have shown that by a judicious choice

of selected schedule parameters that are adjustable at no or

little cost the fusion accuracy can be improved. The time

interval between the state time and the real time at which

an application expects a new image of the environment was

identified as the dominant factor on fusion accuracy. This

means that for analytically tractable OOSM algorithms such

as the buffering approach the optimization can be performed

on the basis of explicit formulae (see also [19]) without

model dependent simulations.

APPENDIX

The example that is used in this paper corresponds to the

one used in [10]. It is governed by the state transition matrix

F(tk+1 − tk) =

[

1 (tk+1 − tk)
0 1

]

(2)

where the state consists of position and velocity of one

coordinate. The dynamical system is corrupted by a zero-

mean, white, discretized continuous time process noise with

covariance matrix Qtk

Qtk =

[

(tk+1−tk)
3

3

(tk+1−tk)
2

2
(tk+1−tk)

2

2
tk+1 − tk

]

·q (3)

with q = 0.5 m2

s3 being the power spectral density of the

continuous time process noise. The measurement matrix for

both sensors is

H
sensor1/2
tk

=

[

1 0

0 1

]

(4)

i. e. both position and velocity are assumed to be measur-

able. The measurement noise of both sensors is characterized

by the diagonal covariance matrix

R
sensor1/2
tk

=

[

1m2 0

0 0.1 m2

s2

]

. (5)
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