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Abstract— This article presents a validator stage for a pedes-
trian detection system based on the use of probabilistic models
for the infrared domain. Four different models are employed
in order to recognize the pose of the pedestrians; open, almost
open, almost closed and fully closed legs are detected. In an
attempt to overcome the drawbacks of template-matching in
far infrared images, two different approaches are proposed.
The algorithm has been tested on an experimental vehicle in
different situations and a Receiver Operating Characteristic has
been computed.

I. INTRODUCTION

In the last years, interests and topics of research on

Intelligent Transportation Systems have evolved. Recently,

an increasing focus has been paid on pedestrian protection,

in order to avoid the high number of casualties or injuries.

Several public and private research groups and therefore

actively pursuing and developing research in pedestrian de-

tection systems. In fact, the automatic recognition of people

or obstacles can improve safety both for regular vehicles and

for vulnerable road users.

In addition, this technology could be greatly beneficial for

a broad number of fields, such as driver assistance systems,

surveillance systems, and intelligent systems for autonomous

or semi-autonomous driving. In particular, the U.S. Army is

actively developing obstacle detection for mule operations,

path following and intent based anti-tamper surveillance or

its robotic vehicles safety [11], [14].

Unfortunately, pedestrian detection is a challenging task

and the complexity of the problem is augmented by fac-

tors like the use of moving cameras, uncontrolled outdoor

environments and variations in pedestrian’s appearance and

pose. In order to solve this problem, different approaches

have been chosen and tested.

This work presents a module for pedestrian validation and

classification that works on infrared images. It is part of a

more complex system that combines the output from a visible

and a far infrared stereo systems, with the aim of exploiting

the benefits of both approaches. The system exploits the use

of probabilistic templates for human shape detection.

This paper is organized as follows: section II describes

related work in pedestrian detection based on artificial vision.

The pedestrian detection system is discussed in III and

the module for pedestrian validation and classification is

1VisLab – Dip. Ing. Informazione, Università degli Studi di Parma,
ITALY, www.vislab.it

2Intelligent Systems Lab, Universidad Carlos III de Madrid, SPAIN,
www.uc3m.es/islab

3U.S.Army TARDEC, Warren, MI, U.S.A., www.tacom.army.mil

detailed in section IV. Finally, section V and VI present the

experimental results and conclusions.

II. RELATED WORK

For the U. S. Army the use of vision as a primary sensor

for the detection of human shapes is a natural choice since

cameras are non-evasive sensors.

Vision-based systems for pedestrian detection have been

developed exploiting different approaches; like the use of

monocular [21], [24], [30] or stereo [9], [18], [22], [25]

vision. Many systems based on the use of a stationary camera

employ simple segmentation techniques to obtain foreground

region; but this approach fails when the pedestrians has to

be detected from moving platforms. Most of the current

approaches for pedestrian detection using moving cameras

treats the problem as a recognition task: a foreground detec-

tion is followed by a recognition step to verify the presence

of a pedestrian. Some systems use motion detection [9], [20]

or stereo analysis [31] as a means of segmentation.

Other systems, substitute the segmentation step with a

focus-of-attention approach, where salient regions in feature

maps are considered as candidates for pedestrians. In the

GOLD system [3], vertical symmetries are associated with

potential pedestrians. In [8] the local image entropy directs

the focus-of-attention followed by a model-matching module.

For what concerns the recognition phase, recent research

are often motion-based, shape-based or multi-cue based.

Motion based approaches use the periodicity of human

gait [8], [9], [15], [17], [28] or gait patterns for pedestrian

detection [28]. These approaches seems to be more reliable

than shape based ones, but they require temporal information

and are unable to correctly classify pedestrians that are still

or have an unusual gait pattern.

On the other hand, shape-based approaches are more

sensible to false positives, so their performance rely on the

goodness of the detection phase. These methods are based

on pedestrians’ appearance, so can detect both moving and

stationary people [3], [5], [12]. In these cases, the challenge

is to model the several variations in the shapes, pose, size

and appearance of humans and their backgrounds. In [13]

a tree-based hierarchy of human silhouettes is constructed

and the matching follows a coarse-to-fine approach. In [16],

[23] probabilistic templates are used to take in account the

possible variations in human shape. To accomplish the recog-

nition step, other systems systems exploit pattern recognition

based on the use of classifiers [13], [19] or in combination

with a shape analysis with gait detection [18]. Most advanced

systems rely on histograms of oriented gradient descriptors
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for human detection, employing SVM for the recognition

step [10], or they built detectors based on both motion and

appearance information, using AdaBoost for the training

process [27].

Recently, infrared technologies (both far and near infrared

based) are becoming a popular approach for pedestrian

detection [2], [29] due to the decreasing cost of infrared

technology. Far infrared (FIR) cameras have demonstrated

to be adequate when the background is colder than the

human shape [1], in low illumination conditions or during

the night [26]. FIR images generally are less sensitive to

noise, easing the detection process, but these approaches can

fail if the background is warmer than the pedestrians or if in

the scene there are other objects that emit heat. Moreover,

human body does not emit heat uniformly. Therefore infrared

is not a complete solution to the task of pedestrian detection.

III. THE SYSTEM DESCRIPTION

In this paper, a pedestrian detection method based on

probabilistic models is proposed. The algorithm has been de-

veloped as a part of a tetra-vision based pedestrian detection

system [4], [6]; the whole system exploits the simultaneous

use of two infrared and visible cameras stereo pairs. The

main idea is to have both the advantages of far infrared and

visible cameras trying at the same time to cope with the

deficiencies of each system.

Images in the infrared (IR) domain convey a type of

information that is very different from images in the visible

spectrum. While in the visible spectrum the image of an

object depends on the amount of incident light on its surface

and on how well the surface reflects it, in the IR domain

the image of an object is related to its temperature and the

amount of heat it emits (see Fig. 1).

Fig. 1. Examples of typical FIR scenarios.

Pedestrians usually emit more heat than static objects,

such as trees, roads, etc. Therefore image regions containing

pedestrians or other ”hot” objects are usually brighter than

the background. On the other hand, infrared images are

blurred, have a poorer resolution and the contrast is low

compared with rich and colorful visible images.

Consequently, both visible and far infrared images are used

for reducing the search space. Different approaches have

been developed for pedestrian detection in the two image

domains: warm areas detection, vertical edges detection

and an approach based on the simultaneous computation

of disparity space images in the two domains. In the FIR

domain, a stereo match is performed in order to compute

the size and position in the real world of the bounding boxes

detected in the previous steps.
These first stages of detection output a list of bounding

boxes that enclose potential pedestrians. Since different ap-

proaches are used in both domains to process the same scene,

different bounding boxes often belong to the same obstacle;

therefore, a merging process is mandatory. A symmetry-

based approach is furtherly used to refine this rough result.

Then, a number of validators are used to evaluate the

presence of a human shape inside each bounding box. The

validation is performed searching for human shape character-

istics: head detection, shape detection and an active contour-

based approach. Figure 2 sketches the overall algorithm flow.

Fig. 2. Overall algorithm flow.

IV. THE PROBABILISTIC APPROACH

The overall shape of the object is also evaluated by means

of probabilistic models. The algorithm returns to the system

the probability that a box contains a human shape. This

probability is combined with the other decisors’ response

to take a final decision about the presence of a pedestrian.
In the following the validation process based on the use

of match against probabilistic models is detailed.

A. Feature Extraction for Infrared Images
The performance of a pedestrian detection system depends

heavily on the features extracted. In far infrared images, the

intensity of the pixels are representative of the temperature

of the objects. This can ease the detection phase, when

pedestrians are expected to appear with a brighter intensity

than the background. Unfortunately, other objects in the

infrared image produce regions that might be as bright or

brighter than pedestrians’ shapes. Therefore, the recognition

task can not depend on high intensity value alone. As an

alternative, pattern recognition techniques can be used to

reliably classify humans.
In addition, the intensity value in an infrared image

depends on other factors besides the temperature, such as

the body part, type of clothes and pose of the person. For

instance, it is typical that pedestrian regions concerning the

torso area are darker than head-regions and hand-regions.

As a result, different body parts have different amount of

variations in their intensity. Therefore, uniform template-

matching or segmentation into regions are barely effectives.

Besides, traditional edge-based approaches are of no use due

to the low contrast and ghosting effects that may appear with

high temperature conditions.
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Consequently, a pixel-based representation is used. The

raw intensity values at each pixel are used to classify target

objects between pedestrians or non-pedestrians.

B. Human Shape Models’ creation

In the following, the way of creating the models is ex-

plained. A training data set of 240 images has been collected

for developing the probabilistic templates (see figure 3).

Pedestrians walking in front or laterally with respect to the

camera axis are considered. Under this scenario, the cyclic

nature of the walking action ensures that the shape of each

pedestrian is repeated. Consequently, the training data set

is previously divided in different classes, depending on the

position of the legs during the walking process as: open,

almost open, almost closed, and fully closed legs. Each

training set contains 60 images of pedestrians with a height

of 210 pixels. The width is not selected, since it changes

during the walking phase and, in addition, depends on the

position of the arms.

Fig. 3. A few examples of training data set images.

For developing the probabilistic templates, firstly, simple

thresholding is applied to the images on all training set

images.

Determining a threshold that correctly separates every

human from its background is not easy. In a previous

work [7], the threshold was selected based on heuristics.

Anyway, a more precise approach has been developed.

Several images containing only background has been

analyzed in order to establish the threshold more precisely.

The mean and standard deviation for each pixel in the images

was calculated. Because the non-pedestrian class follows a

Gaussian distribution, the threshold that differentiates pedes-

trian from non-pedestrian could be calculated based on the

following statement,

T = μ + 3σ (1)

Since pedestrian’s pixels are brighter than background’s

ones, only the upper limit is considered, ensuring that the

99% of the background pixels is below that threshold. The so

obtained threshold is also used for creating the probabilistic

models.

Once the threshold is computed, training images are

resized and overlapped in a manner that the center of all

the images is in the same position. After this normalization

step, the probabilistic models are computed: each pixel of

the model represents how frequently that pixel is above the

threshold namely the probability that it is belonging to a

pedestrian. The size of the final models is 210 × 90 pixels.

Fig. 4 shows the resulting models used for the recognition

step.

(a) (b) (c) (d) (e)

Fig. 4. (a) Mask-model obtained considering all kind of poses and models
used for the recognition step: (b) closed (c) almost closed (d) almost open
(e) open legs.

The bounding boxes enclosing potential pedestrians fea-

ture different sizes depending on the object distance from

the two stereovision systems; therefore in order to take in

account this the probabilistic models are resampled according

to the estimated distance of the potential pedestrian. In

the figure 7 is shown how the algorithm can recognize

pedestrians located both close and far from the cameras.

Since the scaling operations are time expensive, models at

different resolutions are computed off-line. This limits the

precision of the match, since not all possible resolutions are

computed but, at the same time, improve the efficiency of

the system.

C. Detection of target objects

Two different methods for extracting target objects from

the infrared images have been developed.

In the method proposed in [4] an average mask model

(see Fig. 4.a) was employed for performing the background

subtraction. To enhance the foreground and remove the

background, the following formula was used:

th(x, y) =

⎧⎨
⎩

255 if p(x, y) ≥ 0.75 AND I(x, y) > 127
0 if p(x, y) ≤ 0.20 AND I(x, y) ≤ 127
I(x,y) otherwise

(2)

Empirically, it was found that regions where p(x, y) ≥
0.75 corresponds to head and torso and p(x, y) is lower

than 0.20 in correspondence to the background. Intermediate

situations are generally due to legs or arms. In this way the

foreground is enhanced and consequently the contrast with

the background is increased. Figure 5.c shows the results

after applying this technique to the input images.

As an alternative to this method, another way to extract

target objects has been developed. In this case, objects

are segmented using intensity thresholding as expressed in

following equation:

th(x, y) =
{

255 if I(x, y) > threshold
0 if I(x, y) ≤ threshold (3)

where th(x, y) is the thresholded image, I(x, y) is the

raw input image and the value of threshold is obtained as

explained in (1). The pixels that belong to the background

are given a negative value and the pixels that correspond to
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(a) (b)

(c) (d)

Fig. 5. Foreground enhancement and background removal: (a) original
bounding boxes, (b) search areas (blue) and rectangles (red) that correspond
to the size of the mask model, (c) result of the first and (d) second
approaches.

the foreground are replaced by 1. Fig. 5.d shows the results

of this method.

D. Pedestrian detection

Once the foreground is extracted, the recognition phase

follows a model matching approach. The four probabilistic

models are matched against the extracted potential pedestri-

ans. As mentioned in section III, this algorithm is part of

a more complex system and is fed with a list of bounding

boxes that contain potential pedestrians to be validated [7].

Since sometimes the bounding boxes are not sufficiently

accurate, the search region is enlarged proportionally to the

bounding box size (see figure 5.b). In order to get rid of

false positives, a filter relying on size and aspect ratio has

been devised. After enlarging the bounding boxes, small

or huge boxes are discarded, assuming that they can not

contain human shapes. After this filtering phase, a list of

regions that can contain potential pedestrians is obtained.

The probabilistic models are scaled to fit each region and

the corresponding matching values are computed.

On this purpose, two different formulas have been tested,

being the second one an attempt to cope with the limitations

of the first one. In the case in which potential regions

were extracted using (2) formula, a correlation C1(x, y) is

computed as:

C1(x, y) =
m∑

i=1

n∑
j=1

(thxy(i, j) − 127) ∗ (p(i, j) − 0.5) (4)

where m and n are the model width and height and

thxy(i, j) is the image after the enhancement operation. The

function C1(x, y) encodes the probability that the area m×n
centered in (x, y contains a pedestrian. The contribution

of a pixel (i, j) in the extracted region thxy is given by

(th xy(i, j) − 127) ∗ (p(i, j) − 0.5) (where p are the values

of the mask pixels). If a pixel’s value thxy(i, j) is higher than

127, it will have a positive contribution proportional to the

product of its closeness to white i.e. (thxy(i, j) − 127) and

the confidence measure of it being white i.e. (p(i, j) − 0.5).
The same formula works for pixels lower than 127. The

contribution is going to be positive when the considered pixel

features a value close to the value of model’s corresponding

pixel (i.e. a black pixel, thxy(i, j) < 127) is the same as

what it is expected p < 0.5.

However, the formula, originally proposed by [16], had

an inconvenience when applied to infrared images. Exper-

imental results showed that the intensity of the majority

of the pixels was below the given threshold, therefore the

contribution to C1(x, y) of darkpixels is higher than the one

obtained from bright pixels. As a result, most of the pixels

give a negative contribution. Moreover, even if the correlation

values are within a range, the interval limits are not known.

For these reasons, an improvement was made to this

method proposing a new matching formula to face the prob-

lem. The matching is performed onto the regions extracted

by the second method (3). This time, the mask model used

before is not needed. The aim of using such a model, was

to enhance the intensity value of the foreground pixels. As

a result the contrast with the background was increased

and the segmentation task eased. On the contrary, using the

equation (3) to extract the target objects, there is no need to

increase the intensity of the image, as their values are either

0 (background) or 255 (foreground).

The new matching formula is defined as:

C2(x, y) =

m∑
i=1

n∑
j=1

(thxy(i, j) − 127) × (p(i, j) − 0.5)

m∑
i=1

n∑
j=1

|p(i, j) − 0.5|
(5)

where thxy(i, j) is the thresholded input image after

applying the filter sketched by equation (3). In this way, the

contribution of the pixels is proportional to the correspondent

values on the probabilistic template; by only considering

the sign of the input pixels –positive if it is foreground

and negative otherwise– instead of the intensity values, the

resulting correlation value is more accurate, as it does not

promote some pixels rather than others.

Besides, the matching is calculated separately for the

background and the foreground pixels, in an attempt to give

the same weight to the contribution of either region. Con-

sequently, the overall correlation value is obtained summing

up the two normalized terms,

C2(x, y) =
1
2

(C2background(x, y) + C2foreground(x, y))
(6)

In addition, the second formula (5) is normalized between

[-1, 1], allowing an easier way to compare the matching

values than before applying equation (4). Since four different

models are used, the classification in both cases is solved

as a maximization problem. The model that gets the higher

probability value is considered as the best match and the

probability itself is considered as the final vote and fed to the
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(a) (b)

(c) (d)

Fig. 6. Pedestrian is labelled as having closed legs in (a) or (b), having
almost closed legs in (c) and as open legs in (d).

decisor (see figure 2). Bounding boxes featuring a probability

lower than a given threshold are discarded.

Moreover, pose recognition can be achieved because four

different models are created considering different position

of the legs. Therefore, the model that gets the best matching

value is used to label the legs’ pose as open, almost open,

almost closed, or closed (see Fig. 6).

V. RESULTS

The developed system has been tested in different situa-

tions using an experimental vehicle equipped with the tetra-

vision system. The proposed algorithm has been run in real

time on several FIR sequences.

Figure 7 shows some results of the match with the

probabilistic model. If the confidence on the detection is

above a given threshold, the bounding box is drawn using

red, meaning the region has a high probability of containing

a human shape, or using blue if the confidence is low. It can

be seen in results that the algorithm is able to detect one

or more pedestrians even if they are close to each other, in

presence of complex background or partially occluded.

Nonetheless, a template-matching approach fails when the

human shape in the image strongly differs from the training

set. In figure 7.* pedestrian sitting on a motorcycle is not

*

Fig. 7. Results of the probabilistic model validators: detected pedestrians
are shown using a superimposed red box when the confidence on the
classification is high, blue when the confidence is low, or none for discarded
boxes.

Fig. 8. Wrong results: objects having pedestrian size can be misdetected.

Fig. 9. ROC graph obtained using equation (4).

Fig. 10. ROC graph obtained using equation (5).

recognized, since the probabilistic models do not encode

humans that are sitting.

The most critical problems concern aspect ratio and im-

precise bounding boxes. Sometimes aspect ratio is not a good

evaluation criterion for filtering results. Figure 8 shows that

some objects in the scene can produce a bounding box that

is compatible with a pedestrian. This problem can cause the

system to get false positive results despite of the human

shape matching filtering.

Another problem concern bounding boxes containing part

of a pedestrian. This can cause false negatives, as the human

shape is not complete and the matching fails. Similar failures

occur due to occlusions or missing parts of the body, but this

problem is observed only in few frames, thus tracking could

be used to cope with these particular cases. On the other

hand, the integration of other validators in the whole system

reduces the false positives.

The performance of the algorithm has been evaluated

obtaining ROC curves shown in figures 9 and 10 and

acting on correlation threshold. The first curve has been

obtained running the system using the matching equation (4).

Using this method, correct detection percentage smoothly

increases. The second curve has been obtained employing

the formula (5) onto the regions extracted using equation (3).
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The data set used for the ROC curves is composed of 100

bounding boxes containing pedestrian and non-pedestrian.

It can be seen that in this condition the system is able to

correctly detect more than 85% of pedestrians in scene, with

a very low number of false detection per frame. Therefore,

the robustness of the algorithm is increased by means of the

improvements made to the first implementation.

VI. CONCLUSIONS

In this paper a human shape detection system in FIR

images has been presented. The discussed algorithm is based

on the use of a match against probabilistic human shape

templates and is part of a more complex system [7].

The match-based process has been tested in urban and

extraurban environments using an experimental vehicle

equipped with two FIR cameras and two daylight cameras.

The algorithm is based on the validation of a list of areas

of attention obtained from the tetra-vision system. In order

to validate the presence of pedestrians and to detect their

poses, four different probabilistic models of human shape

are matched against the potential pedestrians.

Experimental results show that the system is promising;

the detection rate is high while maintaining a low false

positive rate. The system has proven to work also when

pedestrians are partially occluded or when parts of the body

are missing. False detections are due to the lack of the

corresponding model or to the noise produce by other objects

in scene.
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