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Abstract—The purpose of this paper is to demonstrate the 
application of a combination of neural network and an 
oscillating model facility as an approach in identification of 
aerodynamic coefficients of ground vehicle. In literature study, 
a method for estimating transient aerodynamic data has been 
introduced and the aerodynamic coefficients are extracted 
from the measured time response by means of conventional 
approach. The potential of neural network as an alternative 
method is explored. For simplicity, only the damped oscillation 
considered in this analysis while neglecting any unsteadiness or 
buffeting load. Two feedforward neural networks are 
constructed to estimate the damping ratio and natural 
frequency, respectively, from the measured time response 
recorded during the dynamic wind tunnel test. These two 
parameters are used to calculate the aerodynamic coefficients 
of the ground vehicle model. To validate the network approach, 
the resulted coefficients are compared with the ones retrieved 
conventionally. By simulating the system’s transfer function, 
the response generated from neural network results were found 
to be closer to the measured time response compared to the 
response generated using the conventionally estimated 
coefficients.  

I. INTRODUCTION 
EHICLE stability is one of the major measures for 
vehicle performance, and it means the ability of the 

vehicle to maintain its course upon subjected to any external 
disturbance [1]. These disturbances can be due to many 
external forces, one of them is the aerodynamic force and 
this is known in the automotive aerodynamic literature as 
“cross-wind” effect [2], [3]. The interest in this field started 
around the seventies, when the vehicles started to have 
considerable speeds on the high ways and the application 
grows steadily in other types of ground vehicles like trains 
[4]. One of the major tasks in this area is to estimate the 
aerodynamic coefficients required to calculate the 
aerodynamic moments and forces. Currently two main 
approaches are available, namely, the wind tunnel testing 
and the theoretical predictions. The experimental approach 
is still superior to the theoretical and CFD approaches till 
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now [3]. In the experimental approach, one major challenge 
is estimating the aerodynamic derivatives which is the 
subject of this paper. 
 Parameters identification is becoming an indispensable 
tool for many applications, the range of identification 
techniques is quietly wide ranging from conventional 
approaches which depend on the theoretical framework of 
the problem at hand to neural networks and similar modern 
approaches. 
 Parameter identification in aerodynamics is taking steady 
steps in aerospace applications since sometime [5] and 
specifically neural network which is gaining more popularity 
[6].  
 Neural networks have emerged as one of the promising 
tools in the area of system identification of nonlinear 
systems. The popularity of neural networks is due to their 
ability to learn from its environment in supervised as well as 
unsupervised ways, plus the universal approximation 
property of neural networks that makes them highly suited 
for solving difficult signal processing problems.   
 In automotive aerodynamics, identification is still new [7] 
and in this work neural network is used for the first time in 
getting the aerodynamic derivatives for simple automotive 
bodies. 

II. METHODOLOGY 
 
 A method for estimating the transient aerodynamic data 
from dynamic wind tunnel tests have been proposed and 
employed by Mansor [7] to investigate the unsteady 
response of simple automotive type bodies. The 
experimental setup consists of the test model mounted to the 
oscillating model facility and subjected to a single degree of 
freedom of pure yawing motion.  
 The oscillating rig is mounted on the roof of the 1.9 × 1.3 
m low speed wind tunnel in the Department of Aeronautical 
and Automotive Engineering at Loughborough University. 
The oscillator mechanism is mounted to a rigid support 
structure outside the working section and the circular section 
steel rod, of 20 mm diameter, passes through a clearance 
hole in the ceiling. Fig. 1 shows the model setup in wind 
tunnel test section. The model is mounted to the end of the 
support rod and is free to rotate in yaw. The angular position 
of the model is recorded using a low friction potentiometer 
mounted to the top of the support rod. The combination of the 
tunnel flow and model oscillation then represents an 
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unsteady wind input. 
 
 

III.  

IV.  
 
 
 
 
 
 
 
 
 
 
 
 
 The model employed in the study is a simplified bluff 
body that represents a road vehicle shape, a Davis model. 
The model is approximately 1/6 scale of an average road car. 
The detailed model specifications for 20° rear slant angle are 
given in Table I [7]. 
 

TABLE  I. SPECIFICATION OF DAVIS MODEL 
Parameters 

 
 

Width (m) 0.225 
Height (m) 0.160 
Length (m) 0.625 
Ground Clearance (m) 0.040 
Frontal Area (m2) 0.036 
Side Area (m2) 0.063 
Mass (model + oscillating mechanism) (kg) 4.689 
Moment Inertia (kgm2) 0.11 
Material  GRP/ 

Composite 
 
 The moment of inertia of the system (model and support 
system) is determined experimentally from the wind-off free 
oscillation tests. The moment of inertia is given by the 
relationship between the natural frequency and torsional 
stiffness for a series of different spring stiffness.  
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The characteristic of the series of different springs used in 
the study is shown in Table II.  
 
 
 
 
 
 
 

 

TABLE  II. SPRINGS TORSIONAL STIFFNESS AND THE CORRESPONDING 
MEASURED OSCILLATION FREQUENCY 

Spring Number Torsion Stiffness 
(Nm/rad) 

Measured 
frequency (Hz) 

Wind tunnel working section 
Wind 

Oscillating model 

Rigid support 

Potentiometer 

Spring 

to data acquisition 
Spring 

Fig. 1. Oscillating model in the wind tunnel working section [7] 

1 0.98 0.4915 
2 2.38 0.7749 
3 4.28 1.0667 
4 6.12 1.3167 
5 16.12 2.0333 
6 21.02 2.3083 
7 35.02 2.8167 
8 44.84 3.3917 
9 51.88 3.5917 

10 67.98 4.1407 
 
 A graph is plotted for a series of Kr against ωn and the 
moment of inertia is given by the gradient of the graph.    
 The yaw motion was measured at 1 kHz sampling 
frequency. The experiment was carried out in two modes; 
wind-off oscillation and wind-on oscillation [7]. For a one 
degree of freedom system, the equation of motion to 
represent the dynamic response with pure yawing motion is 
given by: 

∑=++ )(tNKCI arrzz βββ &&&  (2) 

Where β ,  and  are yaw angle, yaw rate and yaw 
acceleration respectively while I

β& β&&

zz, Cr and Kr representing 
model yaw inertia, mechanical damping and mechanical 
stiffness. The term in the right-hand side of the equation, 

∑ )(tNa  is the total aerodynamic yaw moment 

representing the input function. For simplicity, only the 
dynamic yaw moment are considered as the input function. 
The stiffness and damping approach is adapted to estimate 
the unsteady aerodynamic derivatives. The dynamic yaw 
moment can be written as: 

rCKtN aadynamica += β)(  (3) 

 The Ka that is in phase with the displacement of motion is 
regarded as the aerodynamic stiffness while Ca that is in 
phase with the velocity of the motion is considered as an 
aerodynamic damping. The aerodynamic damping and 
aerodynamic stiffness, respectively is given by: 

ββρ NAlCVK na == 2

2
1

 (4) 

 

rnra N
V
lAlCVC == 2

2
1 ρ  (5) 

where ρ, V, A and l represents the air density, wind runnel 
speed, frontal model area and characteristic model length 
respectively. Cnβ and Cnr are the yaw moment derivative and 
the yaw damping derivative. 
 Combining equation (2) and (3) and rearrange it, the 
system’s characteristic equation is presented as: 
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aerodynamic yaw moment, and the aerodynamic yaw 
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A. Conventional Approach for Aerodynamic Coefficient   
   Estimation 

 From the measured time response data, the transient 
aerodynamic loads were extracted by means of a 
conventional method where the frequency of oscillation was 
obtained through power spectral density and the time to half 
amplitude was calculated from the rate of decay of the peak 
amplitude.  
 The two parameters are used to calculate the aerodynamic 
damping and stiffness by using Eq. (7) and (8). 
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The symbol f represents the damped frequency and t1/2 is the 
time to half amplitude. The subscript o denotes the wind-off 
condition. Through equation (4) and (5), the non-
dimensional aerodynamic derivatives of and are 

obtained. 
βnC nrC

 However, the existence of nonlinearity in the real system 
makes the conventional linear method less appropriate. In 
the next chapter, Neural Network is introduced as an 
alternative technique to estimate the aerodynamic 
coefficients.  
 

B. Neural Network Approach for Aerodynamic     
      Coefficient Estimation 

 The system’s characteristic equation in (6) is similar to 
the standard second order dynamic system equation. 

sss nn Δ=++ 22 2 ωζω   (9) 
Comparing equations (6) and (9), 
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 The mechanical terms, i.e. 
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determined from wind-off test while the aerodynamic terms 
can be evaluated by extracting the mechanical terms from 
equations (10) and (11). 
 The estimation of the aerodynamic coefficients is carried 
out based on the recorded time series data. Thus, a 
construction of a static neural network to represent this 
dynamic system is adequate. Multilayer feedforward neural 
network (MFNN) is utilized to determine the damping ratio, 
ζ and natural frequency, ωn of the oscillation. The structure 
of the network is selected based on trial and error approach. 
  Two MFNNs are constructed, each to determine the ζ and 
ωn respectively. The first network is a 100-5-5-1 network 
with the time response data as the input and ζ as the output. 
The second network’s structure is   2-2-5-1 with ζ and the 
period-of-3 cycles, t3, as the input, and ωn as the output.  
 For this static network, batch training is used where the 
weights and biases are only updated after all of the inputs 
and targets are presented,  The data was first preprocessed 
before it is fed to the network since the training of the 
network can be more efficient if certain preprocessing steps 
are performed on the network inputs and outputs. The time 
response data are normalized and with zero mean. For the 
second network input, the mean is also removed and it has 
unity standard deviation. These steps are very useful so that 
the data always fall within a specified range before using it 
for training the network. 

III. NEURAL NETWORK TRAINING AND VALIDATION 
 Since the estimation of the aerodynamic derivatives in [7] 
was based on a conventional standard second order dynamic 
system, a set of data can be generated from the standard 
normalized time response of a second order transfer 
function: 
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 The network was trained using a set of impulse response 
of the transfer function for various ζ and ωn values. The y-
axis was normalized such that the maximum amplitude is 1 
and the x-axis is the value of ωnt. 
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Fig. 2. Standard plot for impulse response of standard second order system 
 
 Only the first complete three cycles is used as the input to 
the first network as shown in Fig. 2.  The training data 
covers the damping ratio range of 0.001-0.35 and the ωn 
ranges from 0.4-26 rad/s. The range of the training data was 
selected based on the resulted natural frequency and 
damping ratio from the conventional method. For the second 
network, the resulted ζ and t3 were used as the inputs. The 
inputs were scaled with appropriate scaling factor before 
feeding it to the second network. The outputs then were 
scaled back to give the estimated ωn value.  
 The networks were trained using backpropagation (BP) 
algorithm. The BP algorithm is a basic and the most 
effective weight updating method of MFNN [8]. However, 
BP algorithm has an issue in determining the optimal 
number of input and hidden neurons as well as the hidden 
layers, and usually they have to be determined by trial and 
error.   
 Sometimes, overfitting may occur during training the 
network. The error of the training set is driven to a very 
small value, but when a new data is presented to the 
network, a large error is produced. The network managed to 
memorize the training examples but yet, failed to learn to 
generalize new situations. 
 Generalization may be achieved by the network by means 
of regularization. This involves modifying the performance 
function, which is normally chosen to be the sum of squares 
of the network errors on the training set. The network error, 
e, is defined as the difference between the target output, t, 
and the network output, a. A typical performance function 
that is used for training feedforward neural networks is the 
sum of squares of the network errors.  
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It is possible to improve generalization if the performance 
function is modified by adding a term that consists of the 
sum of squares of the network weights and biases, w.   

wereg FFF )1( γγ −+=  (14) 

where γ is the performance ratio, and   
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 Using this performance function will cause the network to 
have smaller weights and biases, and this will force the 
network response to be smoother and less likely to overfit 
[9]. 
 The weight and bias values are updated according to 
Levenberg-Marquardt optimization.  It minimizes a 
combination of squared errors and weights and, then 
determines the correct combination so as to produce a 
network which generalizes well.  The process is called 
Bayesian regularization. 
 The Bayesian framework of David MacKay [9] is an 
approach used to determine the optimal value of the 
performance ratio in an automated fashion. In this 
framework, the weights and biases of the network are 
assumed to be random variables with specified distributions. 
The regularization parameters are related to the unknown 
variances associated with these distributions. These 
parameters can be estimated using statistical techniques. 
Detailed of the Bayesian regularization, in combination with 
Levenberg-Marquardt training, can be reviewed in [10].  
  After proper training, the networks were tested with 
another set of data. Fig. 3 shows the errors produced by the 
network when the networks were simulated with another set 
of training data, a set of generated data that were not used 
during network training. The error between the estimated 
damping ratio and natural frequency and the corresponding 
target value were calculated. From the percentage error plot, 
it shows that the networks are capable to give a very close 
estimation with the real value.   

 
Fig. 3. Error from neural network estimation (a) damping ratio, (b) natural 
frequency 
 
  For validation, the networks were simulated with the 
measured time response data. With the resulted ζ and ωn, 
another response was generated from the system transfer 
function: 
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and compared with the measured data as shown in Fig. 4 and 
the magnified view in Fig. 5. 

 
Fig. 4. Comparison between the measured time response data and the 
response generated based on networks results 

 
Fig. 5. Magnified view of Fig. 4 
  
 The result shows that the response that was generated 
based on the neural network results are close to the original 
measured time response. However, when the networks were 
simulated with the following 3 cycles consecutively from 
the same measured time response, the results varies 
especially the ζ value as summarized in Table III. This 
variation indicates the inherent nonlinearity in the system. 

 
 
 
 
 
 
 
 
 
 

 
TABLE  III. VARIATION IN THE RESULTS AS THE FOLLOWING 3 CYCLES 

CONSECUTIVELY ARE RUN THROUGH THE NETWORK 
Cycle sequence 
 

ζ ωn

1st            

 3 cycle 
0.0091 12.4332 

2nd  
3 cycle 

0.0086 12.4992 

3rd  
3 cycle 

0.0079 12.5074 

4th  
3cycle 

0.0074 12.5658 

5th          
3 cycle 

0.0059 12.5570 

6th          
3 cycle 

0.0056 12.5654 

7th         
3 cycle 

0.0065 12.5824 

8th          
3 cycle 

0.0065 12.6331 

 
 Here it is clearly shown that the representation of 3 
complete cycles from the measured time response does not 
accommodate the whole response due to nonlinearity. 
However, the choice of feeding 3 complete cycles to the 
network is justifiable for the network can work on a wider 
range of ζ.  
 Due to the nonlinearity, the average value of ζ and ωn will 
be used to calculate the stability derivatives for solving case 
in hand.  

IV. APPLICATION OF NEURAL NETWORK 
 By subtracting the mechanical terms i.e. that are evaluated 
from the wind-off test, from equation (10) and (11), the 

normalized aerodynamic yaw moment and normalized 

aerodynamic yaw damping  are obtained.  

βN̂

rN̂
 The non-dimensional aerodynamic derivatives of 

and are given by the following expressions: βnC nrC
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 Table IV compares the aerodynamic derivatives estimated 
via neural network and the conventional method. The results 
from neural network are close to the results obtained from 
the conventional method.  
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TABLE  IV 
 

βCn   rCn  

Derivatives 
obtained from  
Neural Network 

0.4719 -0.1033 

Derivatives 
obtained from 
Conventional 
method 

0.49519 -0.11397 

 
 Fig. 6 shows the time response plot based on estimated 

and  between conventional method and neural 

network, and the measured time response. It is shown that 
the plot from neural network estimation is closer to the 
measured response. However, both estimated aerodynamic 
derivatives either from the conventional method or the 
neural network approach are based on the average values of 
the damping ratio and natural frequency of the response.  

βnC nrC

 
Fig. 6. Comparison of time response plot based on estimated and  

between conventional and neural network, and measured data 

βnC

nrC

V. CONCLUSION 
 In this study, the combination of Neural Network and an 
oscillating model facility as a novel approach in estimating 
the aerodynamic derivatives of simple automotive bodies is 
used. The technique was compared with conventional 
approach which was used earlier in the literature for the 
same test data and the results were in favor of the neural 
network. This could be resulted from the inherent nonlinear 
nature of the problem which the conventional methods, that 
are linear in nature, can not accommodate properly. 
However the ability of neural network in estimating 
aerodynamic derivatives for a nonlinear response will 
require further research. 
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