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Abstract— There exist many systems in our daily lives which
are underactuated, subject to limits in actuation and which must
navigate in constrained spatial environments. Furthermore,
these systems can be described in uniform relative degree strict
feedback form. Foremost among these are wheeled vehicles like
passenger cars. Systems which navigate the physical environ-
ment often must follow precise geometric paths, but do not
need to traverse the path at a specific speed profile. Hence we
will utilize a path following approach, whereby path speed is
considered an additional control degree of freedom.

For such systems we present a control design method
which will follow an arbitrary path with bounded error. The
path following error itself is controllable. We then investigate
conditions under which zero path following error is possible.
Finally, we develop path speed limit conditions for a given path
which guarantee zero path following error with control actions
restricted to feasible values.

I. INTRODUCTION

We interact with many systems in our daily lives which

are underactuated, subject to limits in actuation and which

must navigate in constrained spatial environments. Foremost

among these are wheeled vehicles like passenger cars, air-

craft and watercraft. For reasons ranging from expense to

limited human ability, most of these vehicles are underac-

tuated. That is to say the number of independent degrees

of freedom of control are less than the degrees of freedom

which the driver/pilot must control. Traditional tracking

controllers cannot be designed for such non-invertible sys-

tems. Moreover, most vehicles need only navigate geometric

path (space) type problems, and not space-time problems

simultaneously. A simple example is a passenger car parking

maneuver. It is critical that the car control its position

and orientation such that it ends up in the right spot, and

avoids striking other vehicles. However, it is not critical that

it perform this maneuver with precise timing, just that it

completes the maneuver within a reasonable time period.

In addition to being underactuated, all vehicles have finite

bounds on control actuation, and most linear or non-linear

controllers do not account for this explicitly. While both

optimal controllers, Model Predictive Controllers (MPC)

and Bang-Bang type controllers do explicitly address limits

in actuation, they do so at the expense of computational

complexity and difficult to realize discontinuous controls

respectively.
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As work towards more autonomous vehicles proceeds,

it is of interest that vehicles be capable of selecting their

own paths, negotiating them all while remaining within their

limits of actuation. It is also desirable to achieve this with a

continuous controller which guarantees a level of robustness

to model uncertainties and external disturbances.

To address these limitations, we present the following

control method which produces a robust, computationally

efficient, controller for underactuated systems in vectorial

strict feedback form which decouples the path planning

problem from the dynamic control problem and respects

actuator limitations. The method is an extension of Skjetne

et. al. [1] combined with concepts from Dacic et. al [2]. It

utilizes vectorial backstepping, nonlinear damping, stability

of interconnected systems and path following.

The control design presented here is applicable to systems

in vectorial strict feedback form with uniform relative degree

r or systems which, through a coordinate transformation, can

be placed in this form.

η̇ = φ(η, ξ, u)

ξ̇1 = f1(ξ1) +G1(ξ1)ξ2

ξ̇2 = f2(ξ̄2) +G2(ξ̄2)ξ3
...

ξ̇r = fr(ξ) +Gr(ξ)u (1)

y = ξ1

ξi ∈ R
n, i = 1, . . . , r, ξ̄i = (ξT1 ξT2 · · · ξTi )T

Where ξ = ξ̄r is the stack of the ξi sate vectors, y = ξ1 is

the system’s output, r is the system’s uniform vector relative

degree and φ(η, ξ, u) represent the system’s zero dynamics,

which are assumed to be locally input to state stable (ISS).

The term u ∈ U ⊂ R
m is the control. An underactuated

system implies that the function Gr(ξ) ∈ R
n×m, m < n is

not square. Thus the control law given in [1] is not directly

implementable as it requires a square, nonsingular Gr.
While the design method presented in this paper can be

applied without modification to systems with any finite rel-

ative degree, for simplicity of presentation and for focus on

wheeled vehicles, we will use the following relative degree

two rigid Newtonian dynamics which effectively describes

the steering dynamics of a car.

ξ̇1 = f1(ξ1) +G1(ξ1)ξ2

ξ̇2 = f2(ξ̄2) +G2(ξ̄2)u (2)

Where ξ1 = (x y ψ)T are the planar position and orientation

variables in global coordinates and ξ2 = (vu vv vψ)T are
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the longitudinal, lateral and angular velocities respectively

in body coordinates. Three tire forces are accounted for, the

longitudinal force Fu, the front tire lateral force Fvf and the

rear tire lateral force Fvr. The control u = (Fu Fvf )
T is

comprised of the longitudinal and lateral forces on the front

tire in vehicle coordinates.

This paper is organized in the following sections: Section

two presents the path following based navigation concept,

explaining the advantages and formulation of a decoupled

navigation and control problem. Followed by Geometric path

following control design, where vectorial backstepping is

employed to drive the state to follow a geometric path. This

section includes the control design and error system analysis.

The fourth section discusses the design of the path speed

controller, which accomplishes a dynamic task. We present

our conclusions in the last section.

II. PATH FOLLOWING BASED NAVIGATION CONCEPT

Whether performed by a human or autonomously via a

navigation algorithm, path planning to achieve a navigational

goal requires information beyond the immediate state of

the vehicle and its immediate surroundings. Average people

in cars, athletes on the field and race car drivers all use

sensors capable of scanning ahead of their current state,

then choose a path which gets them closer to their next

goal while avoiding obstacles. Moreover, each of the above

examples constructs their paths as a sequence of practiced

maneuvers. Passenger car drivers negotiate a right angle

turn at an intersection by first picking a straight approach

at an appropriate speed, then executing an arc followed by

another straight line to exit the turn and continue on the

road. Each aspect of each path segment was trained with

an instructor. Similarly, a football (soccer) player has a

finite set of moves or maneuvers. When playing, the athlete

continually constructs a sequence of these moves to avoid an

opponent and achieve higher level goals. The race car driver

is the most explicit example as these athletes meticulously

plan their line (i.e. path) through each curve in a course, and

then for each lap adjust their car’s actuators to stay on their

line.

Given a geometric path, denoted yp(θ(t)), where θ ∈ R≥0

is a scalar parameter defining the location along the path,

the pilot/driver (i.e. controller) then continually adjusts the

vehicle’s actuators to keep the vehicle output ξ1(t) on the

path. In our path following approach yp is parameterized

by scalar θ which itself can be controlled, thus gaining an

extra degree of freedom for the control designer. The key

difference between tracking, in which case the path yp(t)
is an explicit function of time, and path following, is that

with path following both the path position and speed can be

controlled. For example, should a moving obstacle intersect

yp(θo), then the path velocity θ̇ can be brought to zero to

wait for the obstacle to leave. Similar to a pedestrian walking

in front of a car during a parking maneuver.

Another advantage of the path following dichotomy is that

there is a strong correlation between required actuation force

and path speed. For a car on the road the available cornering

and/or tractive force is ultimately limited by the downforce

of the vehicle and the coefficient of friction and tire slip.

Thus a car cannot negotiate a 10m radius turn at an arbitrary

velocity. Rather, it has a path speed limit determined by the

tire force limits. For a given coefficient of friction, this path

speed limit can be computed off-line for each maneuver.

Thus a path planning algorithm need only choose path speeds

below the speed limit for each segment, decoupling the path

planning problem from the steering control problem.

Our control method employs the above dichotomy. We

begin by assuming that the path yp is given. This could come

from an operator or a path planning algorithm. The path yp
is constructed from a sequence of feasible maneuvers. Each

path element or maneuver mj(·) is parameterized and the

parameters belong to compact sets. The bounded parameter

sets have been determined such that the execution of a

maneuver will not demand more from the actuators than they

can give.

yp(θ) = {yp,1(θ1), yp,2(θ2), . . . , yp,N (θN )}

yp,i ∈ M (3)

A given vehicle system has a maneuver set M consisting

of a finite number of maneuvers which can be translated,

rotated and scaled in sequence to form a continuous path.

Each maneuver, like a turn or a swerve, can be parameterized

by quantities like initial position, radius of curvature, and

maneuver speed limit θ̇max. It is reasonable to assume that

our path is continuous, hence yp,i(θi,f ) = yp,i+1(θi+1,0).
For the rest of this paper we will focus on individual path

segments or maneuvers and will thus drop the path segment

indices.

III. PATH FOLLOWING CONTROL DESIGN

The path following controller consists of two parts, one

accomplishes a path following task, discussed here, while

the other controls velocity along the path, discussed in the

next section. The first controller will drive the output to the

path yp(θ) given θ and its first two derivatives. The second

controller drives the dynamics of θ(t) to ensure that forward

motion along the path is guaranteed and actuation limits are

respected.

We begin with the path following controller. We employ

the Bicycle Model for steering dynamics [4].

Now let us look at the car steering problem as it fits the

vectorial strict feedback form. (Rolling resistance is ignored).

ξ̇1 =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1









vu
vv
vψ



 (4)

ξ̇2 =





−Cdv
2
u + 2vvvψ

−2vuvψ + c1Fvr(ξ2)
c3Fvr(ξ2)



 +





c1 0
0 c1
0 c2





[

Fu
Fvf

]

(5)

c1 = 2/m, c2 = 2a/I, c3 = − 2b/I (6)

Where m[kg] is the vehicle mass, a[m] is the distance from

the center of gravity (CG) to the front axle, b[m] the distance

from CG to rear axle, and I is the moment of inertia. A
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lumped parameter Cd contains the coefficient of aerodynamic

drag and vehicle frontal cross-sectional area. Note that with

respect to general rigid Newtonian systems in (2) there is no

f1(ξ1) term and G2 is a constant matrix. These features will

simplify our backstepping design.

Another important point is our choice of the forces Fu and

Fvf as control variables. Of course wheel torque and wheel

angle are the real control variables. We utilize the Pacejka

tire model [7] which is a static nonlinear mapping between

vehicle states and wheel angle to tire forces Fu and Fvf . For

the region of normal operation, where the tire is not sliding,

this function is invertible. Thus, provided our controller only

commands forces achievable by the tire through a choice

of wheel angle and torque, then we are free to work with

whichever variable is most convenient. The last section of

the paper addresses obeying these force limits.

ξ̇1 = G1(ξ1)ξ2

ξ̇2 = f2(ξ2) +G2u (7)

A. Backstepping control design

We begin by applying vectorial backstepping as in [1].

First, define our path following error z1. Our control goal is

to find a control law u such that z1(t) → 0 as t→ ∞.

z1 = ξ1 − yp(θ)

ż1 = −ẏp(θ) +G1(ξ1)ξ2 (8)

From here forward we will drop the functional dependencies

except where they are necessary for clarification. We observe

that the state ξ2 is affine in (8), which structurally looks

like a control variable which we call a virtual control.

Backstepping chooses a control law for ξ2 called α1(ξ1, yp)
which would stabilize (8) if we could assign ξ2 arbitrarily.

We acknowledge that ξ2 may not equal α1 so we account for

this virtual control error with the term z2 = ξ2−α1. We will

eventually choose our actual controller to drive z2 to zero,

which implies that ξ2 is precisely a stabilizing control to ż1
thus z1 will converge to zero implying zero path following

error.

z2 = ξ2 − α1, (ξ2 = z2 + α1)

ż1 = −ẏp(θ) +G1(z2 + α1)

α1 = G−1

1 [A1z1 + ẏp(θ)] (9)

ż1 = A1z1 +G1z2

Where A1 is chosen as a Hurwitz matrix, and ∃ P1 =
PT1 > 0, Q1 = QT1 > 0 such that P1A1 + AT1 P1 = −Q1.

We choose a quadratic Lyapunov function as follows and

examine its derivative

V1 = zT1 P1z1 (10)

V̇1 = 2zT1 P1(A1z1 +G1z2) (11)

= −zT1 Q1z1 + 2zT1 P1G1z2 (12)

Observe that V̇1 is negative definite when z2 = 0. Thus

rendering ż1 ISS with respect to the perturbation z2. If we

drive z2 → 0, then z1 → 0, and our output ξ1 will converge

to our path yp.

Next, compute the derivative of z2.

ż1 = A1z1 +G1z2

ż2 = ξ̇2 − α̇1

= f2(ξ2) − α̇1 +G2u

If we had a fully actuated system, and G2(ξ) was uni-

formly invertible, then we would be done by choosing

u = G−1

2

[

A2z2 − P−1

2 GT1 P1z1 − f2(ξ) + α̇1

]

. And with

Hurwitz A1, A2 our error system is exponentially stable.

However, since our G2 ∈ R
3×2 is not square, the above

controller is not an option. So let us go with the next best

thing. Since, by assumption, G2 has uniform full column

rank, it has a uniformly invertible 2 × 2 sub-matrix which

we will call G2p, and a left over row called G2d. The p
and d subscripts denote geometric path and dynamic path

respectively. Let us assume that G2 is in the following form,

or has been placed in this form by a permutation

G2 =

[

G2p

G2d

]

=

[

SpG2

SdG2

]

(13)

This partitioning can be accomplished by left multiplying G2

by the following matrices Sp, Sd, which, when stacked, are

the identity matrix. Furthermore, these partitioning operators

can be used on the state z2, the drift term f2(ξ), virtual

control α1 etc.

Sp = [I2 0]2×3, Sd = [0 1]1×3,

[

Sp
Sd

]

3×3

= I3

z2 =

[

z2p
z2d

]

=

[

Spz2
Sdz2

]

, α1 =

[

α1p

α1d

]

=

[

Spα1

Sdα1

]

, etc.

G1 =
[

G1p G1d

]

=
[

G1S
T
p G1S

T
d

]

(14)

Rewriting our system in its new partitioned format we have

ξ̇1 = G1(ξ1)ξ2

ξ̇2p = f2p(ξ) +G2pu

ξ̇2d = f2d(ξ) +G2du (15)

We now repeat the backstepping procedure above. The first

step is the same, with the same α1 and A1 as in (9).

ż1 = A1z1 +G1pz2p +G1dz2d (16)

ż2p = f2p(ξ) +G2p(ξ)u− α̇1p (17)

At this point it is tempting to choose u just like we would

have for the fully actuated system. Augmenting our Lya-

punov function will help us see what is needed. Define

V2p = V1 + zT2pP2pz2p (18)

V̇2p = V̇1 + 2zT2pP2pż2p (19)

= −W1 + 2zT1 P1(G1pz2p +G1dz2d) (20)

+2zT2pP2p(f2p +G2pu− α̇1p) (21)

Where W1 = zT1 Q1z1. We choose u = up + ud focused on

the z2p subsystem, but we leave an additional term ud to

deal with the z2d subsystem, where the up component is

up = G−1

2p

[

A2pz2p − f2p − P−1

2p G
T
1pP1z1 + α̇1p

]

(22)
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We now examine V̇2 with the application of u = up + ud.

V̇2 = −W2(z) + 2zT1 P1G1dz2d + 2zT2pP2pG2pud (23)

Where A2p is Hurwitz and ∃ P2p = PT2p > 0, Q2p =
QT2p > 0 such that P2pA2p+AT2pP2p = −Q2p, and W2(z) =
zT1 Q1z1 + zT2pP2pz2p > 0, z 6= 0. Finally we must augment

our Lyapunov function one more time to account for the z2d
states, let V2d = V2 + 1

2
z2
2d.

V̇2d=−W2(z) + z2d(2G
T
1dP1z1 + F2d(z)) (24)

+2zT2pP2pG2pud + z2dG2dud

Where P2 =

[

P2p 0
0 1/2

]

. Once again we lack sufficient

degree of freedom to cancel the indefinite term and make

V̇2d negative definite. The next best thing is to guarantee

that |z(t)| <∞ remain bounded. Our error system can now

be written as




ż1
ż2p
ż2d



 =





A1 G1p(ξ1)G1d(ξ1)
−P−1

2p G1p(ξ1)
TP1 A2p 0

0 0 0









z1
z2p
z2d



 +





0
0

F2d(z)



 +





0
G2p

G2d



ud (25)

F2d(z) = f2d(ξ) − α̇1d +

G2dG
−1

2p

[

A2pz2p − f2p − P−1

2p G
T
1pP1z1 + α̇1p

]

From this we see that choosing ud to focus on the z2d states

will cause ud to act as a disturbance to the z2p subsystem.

However, due to Hurwitz A2p, ż2p is ISS and can tolerate

some level of disturbance.

Let µi > 0 be the smallest eigenvalue of each Qi,
and let us suppose that we have an upper bound on the

indefinite term below for some domain of z, 2zT1 P1G1dz2d+
z2dF2d(z) ≤ κ2d‖z‖.

V̇3 ≤−µ1‖z1‖
2 − µ2p‖z2p‖

2 + κ2d‖z‖ +

2zT2pP2pG2pud + z2dG2dud (26)

Then we focus on the ud term multiplied by z2d and choose

a suitable ud.

ud = −κd
GT

2d

‖G2d‖2
‖z‖z2d (27)

Substituting this ud into (26) gives

V̇2d ≤−µ1‖z1‖
2 − µ2p‖z2p‖

2 + κ2d‖z‖

−2κdz
T
2pP2pG2p

GT
2d

‖G2d‖2
‖z‖z2d − κd‖z‖z

2
2d (28)

And since

−2κdz
T
2pP2pG2p

GT
2d

‖G2d‖2
‖z‖z2d ≤ m2‖z‖‖z2p‖|z2d| (29)

We remark that m2 is controllable by the choice of P2p, thus

the bound can be made suitably small. So now our Lyapunov

derivative is bounded by

V̇2d ≤−µ1‖z1‖
2 − µ2p‖z2p‖

2 + κd(m1 − z2
2d)‖z‖

+m2‖z‖‖z2p‖|z2d| (30)

Where m1 = κ2d/κd. Equation (30) shows that for

z2
2d > m1 the third term becomes negative and stabilizing.

Choosing m1 as small as possible is thus better which implies

κd >> κ2d. This will determine our error performance as

z = 0 is an unstable equilibrium, but by choosing m1 we

can drive the error arbitrarily close to 0. The last term says

that for large enough ‖z‖ the system will always become

unstable. This is due to the nonlinear damping term ud
overpowering the linear A2p term as seen in (25). However,

by choosing a small m2 through manipulation of P2p we can

push this instability boundary out to any finite value.

Our underactuated control approach does not cause the

tracking error to converge to zero, and it is not globally

stabilizing. However, it can drive the tracking error arbitrarily

close to zero, and the controller can be made to be stabilizing

for any practical finite error. By virtue of our continuous

control law, we also retain some level of robustness.

For arbitrary paths, our path following error z1 will be

bounded, but not zero on z ∈ Dz ⊂ R
2n. Where Dz

is the domain of stable operation, and 0 /∈ Dz . Physical

intuition for a system can help us choose a meaningful, and

not unnecessarily ambitious Dz , as larger Dz comes at the

expense of larger control actions. For the example of the

car steering presented in the final section of this paper, we

could reasonably restrict ourselves to path following errors

of a few meters in position, and ±60◦ for orientation. Then

we design κd to just give us this without overpowering the

system.

B. Making z2d stable independent of ud

While the design presented above generalizes to arbitrary

relative degree systems, its principal drawback is the 0

element in the third column, third row of the matrix affine in

z of equation (25). If this element could be made negative

the z2d state would be ISS. Furthermore, we then would

have the chance for an asymptotically stable equilibrium. It

turns out that the vehicle steering dynamics admits such a

possibility. This comes from careful choice of A1, which is

a component of α̇1. Since α̇1 shows up in F2d it follows that

A1 drives the ż2d dynamics.

We begin by rewriting α̇1 to show z2d explicitly. The ρz
term is singled out as it is the one we will manipulate to

stabilize z2d.

α̇1 = ρ0 + ρ1z2d + ρzz2d + ρ2θ̈

ρz =G−1

1 A1G1d (31)

Let us examine the z2d dynamics more closely.

ż2d = c3Fvr − α̇1d +G2dG
−1

2p (A2pz2p − f2p + α̇1p)

vT = [0 c2/c1] = G2dG
−1

2p

γ = c3Fvr − ρ0d + vT (A2pz2p − f2p + ρ0p + ρ1pz2d)

ż2d = γ + (vT ρzp − ρzd)z2d + (vT ρ2p − ρ2d)θ̈ (32)

If we can choose (vT ρzp − ρzd) < 0, then we gain some

stability margin for z2d. The relevant terms are given below.

(vT ρzp − ρzd) =
c2
c1

(−a1,3 sinψ + a2,3 cosψ) − a3,3 (33)
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From (33) we see that choosing a1,3 = −r c1
c2

sinψ and

a2,3 = r c1
c2

cosψ where r = −r0 + a3,3, r0 > 0 retains A1

as point-wise Hurwitz while making (vT ρzp − ρzd) = −r0.

This is the desired effect.

A1 =





a1,1 0 −r c1
c2

sinψ

0 a2,2 r c1
c2

cosψ

0 0 a3,3





Note that since A1 is diagonal with ai,i < 0 it remains

point-wise Hurwitz. While adding non-constant terms to A1

changes α̇1 as Ȧ1 6= 0, fortunately, it does not change the

dynamics of z2d. It does change the z2p dynamics, but these

are taken care of by up. A careful calculation will show this.

Thus we now have

ż2d = −r0z2d + γ + (vT ρ2p − ρ2d)θ̈ (34)

Finally we need to compute P1A1(ξ1)+A
T
1 (ξ1)P1 = −Q1 to

verify when Q1 is positive definite. We will avoid additional

complexity by trying to find a constant P1. Start with

diagonal.

Q1 =





2p11a11 0 −p11r2 sinψ
0 2p22a22 p22r2 cosψ

−p11r2 sinψ p22r2 cosψ 2p33a33



 (35)

Call b = (−p11r2 sinψ p22r2 cosψ)T , where r2 =
c1
c2

(−r0 + a33), then we can rewrite Q1 as the sum of a

diagonal matrix and a symmetric perturbation.

Q1 =

[

qp 0
0 qd

]

+

[

0 b
bT 0

]

(36)

We know in terms of eigenvalue perturbations, the smallest

(in magnitude) eigenvalue of the diagonal part of Q1, called

λ1, will be perturbed at most by ‖b‖, which is the largest

eigenvalue of the perturbation matrix. Thus, we require that

‖b‖ =< λ1. To simplify matters, we choose p11 = p22 and

we get the following requirement for ‖b‖

(p2
11r

2
2 sinψ2 + p2

22r
2
2 cosψ2)

1

2 = p11r2 (37)

p11r2 ≤ min{p11|a11|, p11|a22|, p33|a33|} (38)

The design goes like this. Pick a33 < 0 and r0 > 0, then

compute r2 = c1
c2

(−r0 +a33). Pick p11 then choose a11, a22

such that the above inequality is satisfied. Finally pick p33

large enough to satisfy the inequality.

Our final error system structure, after application of our

nonlinear damping term is




ż1
ż2p
ż2d



 =





A1 G1p(ξ1)G1d(ξ1)
−P−1

2p G1p(ξ1)
TP1 A2p 0

0 0 −r0









z1
z2p
z2d





+





0
0

γ + ρ3θ̈



 +





0
∆2p

−1



κd‖z‖z2d

ρ3 = (vT ρ2p − ρ2d), ∆2p = −
G2pG

T
2d

‖GT
2d‖

(39)

Remarks: (39) shows that if γ + ρ3θ̈ = 0 then z2d(t) → 0.

With z2d = 0 since the upper 2×2 blocks of (39) are Hurwitz

by construction, we have that z2p(t), z(t) → 0. This is

instructive for designing our path parameter controller.

IV. PATH FOLLOWING ERROR PERFORMANCE

In this section we will examine different ways of designing

a controller for θ(t) to enhance performance, or mitigate

problems. Recall that our path following control design from

the previous section guarantees bounded path following error

for z ∈ Dz . We will first look at choosing path segments or

maneuvers which admit zero path following error. Then we

will look at designing a θ controller which can help reduce

path following error. Finally, we will examine how careful

design of the θ controller can be used to keep the control

within its actuation limits.

A. Maneuver design for zero path following error

To achieve path following with zero error, we must render

the point z = 0 an equilibrium, ideally a stable equilibrium.

From (39) we see that all terms except γ+ ρ3θ̈ are affine in

z. Thus finding paths yp such that (γ+ρ3θ̈)(z = 0) = 0 will

render z = 0 an equilibrium. Specifically we must determine

the condition under which ż2d(z = 0) = 0. First we must

define some notation. Denote

yθp ,
∂yp
∂θ

, yθ
m

p ,
∂myp
∂θm

ẏp(θ) = yθp θ̇, ÿp(θ) = yθ
2

p θ̇
2 + yθp θ̈, . . . (40)

Zero path following error implies

z1 = 0, z2 = 0

ξ1 = yp(θ)

ξ2 = α1(z1, yp(θ)) = G−1

1

[

A1z1 + yθp θ̇
]

Substituting this into our expression for ż2d

ż2d = −(r0 + κd‖z‖)z2d + γ + ρ3θ̈ (41)

We see that the following choice for θ̈ will render z = 0
a stable equilibrium and zero path following error has been

achieved.

θ̈ = −
γ

ρ3

(42)

Of course there are no guarantees that this choice of θ̈ will

not become singular, or that θ will even go in the correct

direction.

Whether or not this update law produces a meaningful

path speed trajectory is a function of the path geometry

itself. For example, requiring a car to move in a straight

line but moving perpendicular to the direction of its wheels

(something impossible except when sliding) will result in a

trivial solution to θ̈, that is θ̇ = 0 is the only solution.

What is required is to define a target range for θ̇ and

if (42) falls within this range then use it. Otherwise, default

to another controller. For example

θ̈ = −κθd(θ̇)

d(θ̇) =







θ̇ − vmin , θ̇ < vmin
θ̇ − vmax , θ̇ > vmax

−1

κθ

sat(− γ
ρ3

) , otherwise
(43)
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where vmin and vmax are the minimum and maximum ac-

ceptable path velocities respectively, and the sat(·) function

is chosen such that d(·) requests only feasible accelerations.

This is one simplistic way to attempt zero path following

error without designing something specific for a given path

segment.

Another option for zero path following error is to consider

the case of constant path speed (θ̈ = 0). Zero path following

error dictates that we must find θ̇ such that γ = 0. We can

rewrite γ = β0 + β1θ̇ + β2θ̇
2 to show the θ̇ dependence

explicitly. Solving this implies finding θ̇ = cnst > 0 such

that γ = 0. This is not likely for most maneuvers, but it may

work out for some.

One more way to approach this problem is to define a

path speed profile, hence defining θ̈(t), θ̇(t), θ(t), and then

consider the path geometry which will guarantee zero path

following error. In this approach we specify yp(θ) for n− 1
elements, and leave one element free. An example for a

planar vehicle executing an arc turn would be

yp(θ) =





x(θ)
y(θ)
ψ(θ)



 =





r cos θ
r sin θ
ψ(θ)



 (44)

Let us suppose that ψ(θ) = q1θ+q0 is an affine function, and

we will execute the arc at a constant path speed θ̇ = θ̇0. We

must first compute the state trajectories under the assumption

of z = 0.

ξ1(q1, q0) = yp, ξ2(q1, q0) = G−1

1 (yp)y
θ
p θ̇ (45)

Substituting these functions (and the partial derivatives of yp)

into (39) and searching for the pair (q1, q0) which satisfy

γ + ρ3θ̈ = 0 will produce a path geometry which can be

followed with zero error.

Heuristically this approach says that there is one path

variable with which you have some flexibility, while the

remaining n − 1 path variables are not negotiable. In the

above example we suggested that the heading angle ψ was

flexible, while x and y were not.

B. Bounded Actuation

We now take a quick look at control effort, particularly as

it pertains to path speed. Most practical actuators are limited

in the force which they can produce, thus we are keenly

interested in knowing which paths and for which speeds can

zero path following error be had while not requiring control

actions outside their physical limitations.

Looking at our control law assuming z = 0

u(0, yp, θ̇, θ̈) =

G−1

2p

[

−f2p + Sp(ρz + ρ1,1θ̇ + ρ1,2θ̇
2 + ρ2,1θ̈)

]

(46)

Where our virtual control law has been rewritten to show

path dynamic variables α̇1 = ρz + ρ1,1θ̇ + ρ1,2θ̇
2 + ρ2,1θ̈.

For some systems, like wheeled vehicles, G2p is a constant

matrix, thus it has a fixed norm. For this type of vehicle we

see that

|u| ≤ dz‖z‖ + d0 + d1|θ̇| + d1,2θ̇
2 + d2,1|θ̈| (47)

µ2p|f2p + Spρz| ≤ d0, µ2p|Spρi,j | ≤ di,j

where µ2p = ‖G−1

2p ‖. Since control effort is affine in θ̇, θ̇2

and θ̈ it is clear that slower path speeds and accelerations

imply lower control effort. Since the Pacejka tire function

has force limits as a function of velocities vu, vv, vψ .

Our actuation limits are defined by ξ2 through θ̇ assuming

zero error, whereas our commanded force is proportional to

θ̈. Thus, given yp(θ), θ̇ determines the force at any point

on the path, while θ̈ more directly effects the commanded

force. Then for a given path, we can establish a speed and

acceleration limit (again something most likely given as a 2D

feasibility set) such that staying within this set guarantees

control actions below their saturation limit. Define such a

function as [θ̇max θ̈max] = M(yp, umax), where M is a path

dependent speed limit function for bounded controls u ∈ U.

V. CONCLUSIONS

A path following controller has been designed for systems

in vectorial strict feedback form with uniform vector relative

degree. The design was shown in detail for vehicle steering

dynamics using the Bicycle Model. The longitudinal and

lateral forces created by the front tire were considered

as the control variables. With just two forces and three

state variables to control the vehicle is underactuated. The

controller guarantees bounded error trajectories for arbitrary

paths provided the error state lies within a set Dz whose size

is controllable. A redesign of the controller was presented

which added an extra degree of stability to the z2d subsystem

making it possible to have a stable equilibrium in error

coordinates. Finally an analysis of various methods for

obtaining zero path following error with an underactuated

vehicle was presented. Followed by a look at how the path

following methodology can be used to ensure that actuator

bounds are not exceeded by the controller.
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