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Abstract— This paper is concerned with the problem of
tracking vehicles using radar detections. In particular, we
deal with problems where multiple detections are received
from each target. According to recent studies, automotive
radar sensors often receive detections from a discrete set of
reflection centers. From these results, we develop a family of
sensor models suitable for tracking. A significant difficulty in
performing tracking using models from this family is that it
involves solving a data association problem with a large number
of association hypotheses. To reduce the complexity of this
problem, we propose a framework where similar hypotheses
are joined into groups. Following this approximation, basic
data association algorithms can be implemented and initial
studies using both simulated data and real measurements show
a promising performance.

I. INTRODUCTION

In this paper we consider a vehicle tracking problem

which, in contrast to the traditional point source assumption,

allow for multiple detections to originate from each vehicle.

By using the detections directly in the tracking filter, instead

of forming an average measurement, valuable information

regarding e.g. vehicle orientation can be extracted. To fully

exploit the information in the detections, an accurate vehicle

radar response model is required. A detailed sensor model

is proposed in [1], which describes the radar response as

if each vehicle was an extended object consisting of a

fixed number of point- and plane reflectors. Even though

this sensor model has many promising properties, it was

originally developed for simulation purposes. In this paper,

we suggest modifications and generalizations which result in

a family of sensor models more suitable for tracking.

A significant difficulty with extended object tracking is

data association, i.e. the task of handling uncertainty regard-

ing the origin of the detections. Among recent contributions,

several different approaches are suggested [2], [3], [4]. For

instance, in [2], [3] the data associating problem is treated

by incorporating the association hypothesis into the state

vector; thus the output of the tracking filter is a joint posterior

distribution of the state vector and the association hypothesis.

The idea in [4] is instead to circumvent the data association

problem by modelling the detections originating from each

reflector as a non-homogenous Poisson point process. Both
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approaches can be conveniently implemented using particle

filter techniques.

Although the algorithms suggested in [2], [3], [4] are

useful in many situations, they are not suitable for the

tracking problem we attempt to solve using our family

of sensor models. First, due to the limited resolution of

the radar sensor, there is an uncertainty regarding which

vehicle reflections are resolved and which are clustered. As a

result, the number of association hypotheses is significantly

larger than normal, and an approach similar to that in [2],

[3] will be costly to implement. Second, the sensor model

enables us to calculate the probability of receiving a specific

number of detections from each vehicle. In fact, in many

scenarios the number of vehicle detections are essentially

known, and therefore not adequately modelled by a Poisson

distribution. As a consequence, the non-homogenous Poisson

point process assumption in [4] is inappropriate.

The main contributions in this article are suitable approxi-

mations which reduce the number of association hypotheses.

Instead of associating detections with vehicle reflectors or

reflector clusters, they are associated with reflector groups.

Each group contains a set of reflectors, where each reflector

is likely to be clustered with at least one other reflector in

the group. The number of association hypotheses is often

significantly reduced and we suggest a generalized version

of the joint probabilistic data association (JPDA) technique

[5], [6] to solve the problem.

The paper is organized as follows. In Section II the

tracking problem is formalized and the necessary notation

defined. Sections III, and IV present models required for

solving the tracking problem, and in Section V we present the

approximations for simplifying the data association problem.

Finally, Section VI presents a tracking filter implementation

and Section VII results, both based on simulations and real

measurements.

II. PROBLEM FORMULATION

The objective in this article is to track a known number

of vehicles moving in the vicinity of the host vehicle. In-

formation regarding position and orientation of surrounding

vehicles is collected using a radar sensor mounted on the

host vehicle. The radar response is equidistantly sampled

at times t = {t0, t1, . . .}, and we use k as notation for

the corresponding discrete time index. For each k, the radar
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provides Mk detections, which can either be false detections

(clutter) or reflections from the vehicles. These detections

are stored in a measurement vector yk.

For each vehicle, l, we define a state vector

zl
k = [ζl

xk
ζl
yk

Ψl
k vl

k Ψ̇l
k v̇l

k]T , (1)

where (ζl
xk

, ζl
yk

) is the position of vehicle l expressed in a

Cartesian coordinate system situated at the host vehicle. As

illustrated in Fig. 1, Ψl
k is the heading angle and vl

k is the

speed in the heading direction of vehicle l. The variables Ψ̇l
k

and v̇l
k are the time derivatives of Ψl

k and vl
k respectively. The

state vectors of all vehicles are stacked to form the complete

state vector

zk = [(z1
k)T (z2

k)T . . . (zNv

k )T ]T , (2)

where Nv is the number of vehicles.

ζx

ζy

(vk, v̇k)

Ψk

(ζxk
, ζyk

)

Fig. 1. Coordinate system used in this paper.

The aim of the tracking filter is to recursively calculate

the posterior probability density function (pdf) p(zk|Y1:k).
Using p(zk|Yk) we can compute estimates and uncertainty

measures of zk, based on all available measurements Y1:k ,

{yl, l = 1, . . . , k}. The calculation of p(zk|Y1:k) is feasible

if we have knowledge regarding two models. The first model,

the motion model, describes how the state vector evolves

with time

zk = fk−1(zk−1, ek−1), (3)

and the second model, the measurement- or sensor model,

gives the relation between the measurements and the state

vector

yk = hk(zk,wk). (4)

In (3), ek is a noise process included to reflect model

uncertainties and wk in (4) is a measurement noise process

capturing both model uncertainties and measurement distur-

bances.

III. VEHICLE MOTION MODEL

A commonly used motion model for target tracking is the

simplistic constant acceleration (CA) model, in which the

lateral and longitudinal motions are decoupled. In related

studies we suggest a more advanced modelling framework,

[7], [8], to improve the model accuracy. For simplicity,

we here employ a simplified version of the well known

bicycle model [9], which introduces a coupled motion

in the lateral and longitudinal dimensions. By assuming

that different vehicles move independently of each other

we can describe their motions individually. In continuous

time the state vector for vehicle l is denoted by zl(t) =
[ζl

x(t) ζl
y(t) Ψl(t) vl(t) Ψ̇l(t) v̇l(t)]T , and the simplified

continuous time bicycle model can be written as

żl(t) =

















vl(t) cos(Ψl(t))
vl(t) sin(Ψl(t))

Ψ̇l(t)
v̇l(t)

0
0

















+

















0
0
0
0

el

Ψ̈
(t)

el
v̈(t)

















, (5)

where el

Ψ̈
(t) and el

v̈(t) are zero-mean Gaussian noise pro-

cesses with variances σ2
Ψ̈

and σ2
v̈ respectively. In the ap-

pendix, we present a discretized motion model which is used

in our implementation.

IV. SENSOR MODEL

In this section, we describe and propose a family of

measurement models for radar detections. The family is an

adjustment and generalization of a model introduced in [1]

for simulation of radar detections from a car. The objective

with the modifications are mainly to make the models more

suitable for tracking. A secondary purpose is to point out that

the models may be applicable in many different settings, e.g.

for various types of radars and vehicles.

A. Radar model

We consider a general radar sensor which delivers data in

the form of detections. At time k we receive M t
k detections

originating from the vehicles, and M c
k false detections,

clutter. All detections are stored in the measurement vector

yk = [(dm
k,1)

T (dm
k,2)

T . . . (dm
k,Mk

)T ]T , (6)

where Mk = M t
k + M c

k . Each detection contains the

quantities,

dm
k,i = [rm

k,i ṙm
k,i φm

k,i]
T , (7)

where rm
k,i is related to the range, ṙm

k,i to the range rate,

and φm
k,i to the azimuth angle of the object that gave rise

to the detection. An important difficulty in our tracking

problem, is that the observations are not labelled, i.e., the

origins of the detections are unknown. To deal with this issue,

we introduce a data association vector r
cck

k , of dimension

Mk ×1, parameterized by cck described further down in this

section. This vector details the data association, such that the

jth element of r
cck

k specifies the origin of detection j. If, for

instance, r
cck

k (j) = 0 then dm
k,j is clutter. Otherwise r

cck

k (j)
is a positive integer that connects dm

k,j to a particular vehicle

reflector center, see below. Based on this notation, and an

assumption of additive white Gaussian noise, the model for

the target detections take a simple form,

dm
k,j = dk,r

cck
k

(j) + wk,r
cck
k

(j) ∀j : r
cck

k (j) 6= 0, (8)
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where wk,r
cck
k

(j) ∼ N (0,Σk,r
cck
k

(j). The clutter detections,

on the other hand, are assumed uniformly distributed over the

observations space, whereas the number of clutter detections

is Poisson distributed with mean µc.

B. Vehicle radar response model

In addition to the radar model above, it is essential to

also have a suitable model for the target response. Here we

provide a brief description of the model suggested in [1],

and explain the motivations for the proposed adjustments.

1) Reflection center model: Active radar sensors generally

seek to illuminate a target and observe the echoes. According

to the model in [1], the studied radar only receives reflections

from a discrete set of points, so called reflection centers, on

a vehicle. The different reflection centers are divided into

two categories: point reflectors and plane reflectors. Figure

2 displays the configuration of reflectors suggested in [1],

where the plane reflectors are modelled as circle sectors and

point reflectors are placed in the vehicle wheel houses and

corners. Attached to each point reflector is a visibility region,

indicated by cones in Fig. 2, and the reflector can only give

a reflection if the sensor is within this region. For plane

reflectors, the radar only receives a reflection if the sensor

is placed on the normal to the surface in that point. The

reflecting point on a surface therefore depends on the position

of the sensor, and may change over time.

Apart from the visibility, the probability of detection, Pd,

for a reflector, with index i, also depends on its position in

the sensor coordinate system. More specifically, a reflection

is detected if the signal amplitude, Ak,i, is above a certain

threshold. The amplitude model used in [1] is a deterministic

function of the radar antenna pattern and the reflectors

position and visibility.

Furthermore, given the state vector, reflector i has a

deterministic position in the observation space1

dk,i = D(zk, i). (9)

Typically, rk,i and φk,i are simply the position of the reflector

in the sensor coordinate system, whereas ṙk,i is the time

derivative of rk,i. Note that the vehicle response model

is rather general, and reflectors that yield, for instance, a

different range rate are easily incorporated.

2) Limited resolution: As for all real sensors, the radar has

limited resolution. Therefore, objects located too close in the

measurement space render only one detection. To model this

behavior, a resolution cell is used

∆d = [∆r ∆ṙ ∆φ]T , (10)

and two radar responses not separated more than ∆r, ∆ṙ and

∆φ, in all three dimensions, yield a joint, clustered, detection.

Unfortunately, the situation is more complicated for multiple

reflections, and it is not easy to determine which reflection

that are clustered. Following [1], the following algorithm is

used to divide reflections into clusters:

1From here on, the position of a reflector refers to the resulting three-
dimensional vector in the observation space.

Fig. 2. The figure displays vehicle reflector centers with associated
visibility regions.

i) Find the reflector with the strongest amplitude, Ak,i.

ii) Form a cluster by identifying the reflections which are

within the resolution cell (positioned in dk,i).

iii) Repeat i) and ii) with the remaining reflectors, until no

reflectors are left.

We have previously stated that the measurement noise is

additive and Gaussian, see Eq. (8). To describe the signal

component, ck,i, of a cluster i, containing the reflectors

i1, . . . , iN , we use the equation

ck,i =

N
∑

l=1

wk,il
dk,il

, (11)

from [1], where

wk,il
=

Ak,il
∑N

l=1 Ak,il

. (12)

It is important to observe that, since the amplitudes are

deterministic, so are both the set of clusters and their signal

components.

3) Stochastic amplitude: From a tracking perspective, the

model suggested in [1] and summarized above, is inappro-

priate as it neglects considerable uncertainties. Even given

the state vector, it is typically unrealistic to claim that 1)
we know if a reflector yields a detection or not, 2) the

signal component in a cluster is deterministic and 3) even

in complicated scenarios every cluster always contain the

same reflectors. By employing such a model for tracking, one

would seriously underestimate the posterior uncertainties,

which, in turn, would lead to poor performance and high

probabilities of loosing the track. To avoid these problems

we suggest a modified amplitude model, where the previous

deterministic relation is replaced by a stochastic model. In

this paper, we use a Rayleigh distribution to model the

reflection amplitudes

Ak,i ∼ Rayleigh(σk,i). (13)

The expected value E {Ak,i} = σk,i

√

π/2 is set to the

deterministic value of the amplitude in [1]. For a clustered

reflection, containing signals from reflectors i1, . . . , iN , the

amplitude is also Rayleigh distributed but with the parameter

σk,i =
√

∑N

l=1 σ2
k,il

.
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cck = 2 :

cck = 1 :

1

2

3

1

2

3

Cluster 1

Cluster 1

Cluster 2

Cluster 2

Fig. 3. Simple example of three reflectors and two different cluster
constellations. The dashed line corresponds to a reflector cluster.

It is easy to see that through this simple modification, we

will elude or, at least, alleviate all three model weaknesses

mentioned above. As a reflection is detected if and only if

the amplitude is larger than a threshold, we will find that the

probability of detection, Pd, is now always smaller than 1.

Moreover, the clustering algorithm depends on the amplitude,

and the set of reflectors in a cluster may therefore also be

random. Finally, the signal component, ck,i, in a cluster is

also stochastic as the weights in (12) are functions of the

amplitudes. Unfortunately, even though these properties are

reasonable and desirable, in a sense, they also make the

design of the tracking algorithm more delicate as they worsen

the data association problem.

4) Association hypotheses: To evaluate the measurement

likelihood it is convenient to condition on the data association

vector, r
cck

k , previously mentioned in Section IV-A. Having

described the model in some detail we are now ready to

clarify the interpretation of this vector.

The clustering algorithm above, can be used to divide

the set of all visible reflectors into clusters. We refer to a

description of all resulting clusters as a cluster constellation.

Unfortunately, due to the stochastic nature of the amplitude,

several different cluster constellations may be possible, even

for a given vector zk. For notation, we construct a list

of all possible constellations at time k, and introduce the

variable cck as a pointer to the cluster constellations in the

list. The total number of constellations in the list is denoted

Mcck (and consequently cck ∈ {1, 2, . . . ,Mcck}), and the

number of clusters in constellation cck is Lk(cck). Now, if

r
cck

k (j) = i, the jth detection is associated with the ith cluster

in constellation cck. To illustrate these concepts, Fig. 3 shows

the two possible clutter constellations in a simple example.

Clearly, Mcck = 2 and Lk =
[

2 2
]T

as each constellation

contains two clusters.

We introduce the notation c
cck

k,i to describe the position of

the ith cluster in constellation cck. Similarly, we use d
cck

k,il
as

notation for the lth reflector in cluster i. The measurement

equation (8) can now be reformulated as

dm
k,j = c

cck

k,r
cck
k

(j)
+ wk,r

cck
k

(j) ∀j : r
cck

k (j) 6= 0. (14)

5) A Gaussian signal model: Most tracking algorithms

rely on the possibility to evaluate the measurement likeli-

hood,

p(yk

∣

∣zk, rcck

k ) =

Mk
∏

j=1

p(dm
k,j

∣

∣zk, rcck

k (j)), (15)

at least, pointwise. In Section IV-A, we presented the pdf for

clutter. Also, when cluster j in constellation cck only con-

tains a single reflector, the distribution of dm
k,j

∣

∣zk, rcck

k (j) is

given by Eq. (8) and (9). The aim in this section is therefore

to describe the distribution for a detection associated with a

cluster containing more than one reflector. In the remainder

of this section, the state vector zk is always given but omitted

for notational convenience.

For a cluster, the distribution of its position is defined

by Eq. (11), (12) and (13), but is indeed very problematic to

evaluate. The task is made even more intricate by the additive

Gaussian noise in (14), forcing us to calculate the convolu-

tion between the noise and cluster distributions. Having said

that, both difficulties are easily resolved by approximating

c
cck

k,i as Gaussian distributed. The only remaining obstacle,

then, is to calculate the first two moments of c
cck

k,i .

Consider c
cck

k,i given by Eq. (11) and let overscore denote

the expected value of stochastic variables, such that, e.g.,

Āk,i = E {Ak,i}. Further, let ∆d
cck

k,il
= d

cck

k,il
− c̄

cck

k,i ,

∆wk,il
= wk,il

− w̄k,il
and set SN =

∑N

l=1 Ak,il
. Clearly,

c̄
cck

k,i =
N

∑

l=1

w̄k,il
d

cck

k,il
(16)

and straightforward manipulations yield that

C
cck

k,i =

N
∑

s, t=1

∆d
cck

k,is

(

∆d
cck

k,it

)T

E {∆wk,is
∆wk,it

} , (17)

where C
cck

k,i = Cov
{

c
cck

k,i

}

. Thus, the required quantities are

w̄k,il
and Cov{wk,is

, wk,it
}. As the moments of a Rayleigh

variable are well known, approximations of these quantities

are readily found through Taylor expansion,

wk,il
=

Ak,il

SN

≈
Āk,il

S̄N

+
Ak,il

S̄N

−
SN Āk,il

S̄2
N

. (18)

To conclude, the distribution of a clustered variable is ap-

proximated by a Gaussian distribution, which, for given data

associations, results in a nonlinear Gaussian sensor model.

V. DATA ASSOCIATION APPROXIMATIONS

The primary difficulty with utilizing the above sensor

model is to find a well performing and computationally

feasible solution to the data association problem. To reduce

the complexity of this problem, we try to lower the number

of association hypotheses. As a first step, we join similar

hypotheses into groups.
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Group 1 Group 2

Fig. 4. The formation of two reflector groups.

A. Grouping of reflectors

Let a group be a set of reflectors, formed such that for

every reflector i in the group, all reflectors sharing a cluster

with reflector i are also included. Fig. 4 displays one scenario

where two groups are formed from a set of reflectors. In

the same figure, crosses indicate reflectors and dashed lines

surround reflectors in a cluster. A suboptimal, but simplified,

solution to the association problem is obtained by associating

the detections to the reflector groups. By ignoring which

cluster in a group that gave rise to a detection, the number

of hypotheses are reduced substantially.

To lower complexity, each group is viewed as an entity

which can generate multiple, and independent (this is an

approximation), detections. The number of detections from

group n at time k is given by M t
k,n, and the signal component

(the position) for the ith of these is denoted gi
k,n. The associ-

ation of detections to groups is described by the association

vector rk, which classifies the jth detection as clutter if

rk(j) = 0 and associates it to group n if rk(j) = n. Note

that in difference to the previous association vector r
cck

k , the

current vector rk is independent of the cluster constellation.

Since each group can render multiple detections, we define

a vector ik which contains information about the number of

detections associated with each group. For example, if dm
k,j

is the lth detection to be associated with group n we have

ik(j) = l. The measurement equation for detection j is now

dm
k,j = g

ik(j)
k,rk(j) + wk,j ∀j : rk(j) 6= 0. (19)

The vector g
ik(j)
k,rk(j) is a random variable and to evaluate

the likelihood p(yk|zk, rk) we need an expression for the

pdf p(g
ik(j)
k,n |zk, rk). For cluster constellation cck, we let

c
cck

k,l,n correspond to the position vector for the lth cluster

in group n, and Pcck
n (l) denote the detection probability for

this cluster - a probability easily computed from the Rayleigh

assumption in (13). If we assume that all cluster constella-

tions are equally likely, we can express the distribution of

g
ik(j)
k,n |zk, rk as

p(g
ik(j)
k,n |zk, rk) =

Mcck
∑

cck=1

Lk(cck)
∑

l=1

Pcck
n (l)p(ccck

k,l,n = g
ik(j)
k,n |zk, rk)

Mcck

∑Lk(cck)
l=1 P

cck
n (l)

.
(20)

In practise, Eq. (20) is reduced by only considering constel-

lations and clusters within the group.

To solve the data association problem, we need to calculate

the probability for each group n to yield M t
k,n detections.

By introducing Mccn
k as the number of different cluster

constellations for group n, and again assuming that all cluster

constellations are equally likely, we have

P (M t
k,n|zk) =

1

Mccn
k

Mccn
k

∑

cck=1

P (M t
k,n|zk, cck), (21)

where P (M t
k,n|zk, cck) is easily calculated from Pcck

n (l).
To enable a simple implementation, e.g. using the Un-

scented Kalman Filter (UKF) or the Extended Kalman Filter

(EKF) [3], we approximate g
ik(j)
k,n as a normal distribution.

The expected value, ḡ
ik(j)
k,n = E{g

ik(j)
k,n |zk} is given by

ḡ
ik(j)
k,n =

Mcck
∑

cck=1

Lk(cck)
∑

l=1

Pcck
n (l)c̄cck

k,l

Mcck

∑Lk(cck)
l=1 P

cck
n (l)

(22)

and the second moment, Ck,n = E{(g
ik(j)
k,n −ḡ

ik(j)
k,n )(g

ik(j)
k,n −

ḡ
ik(j)
k,n )T

∣

∣zk} by

Ck,n =

Mcck
∑

cck=1

Lk(cck)
∑

l=1

Pcck
n (l)(Ccck

k,l + (ḡk,n − c̄
cck

k,l )(ḡk,n − c̄
cck

k,l )T )

Mcck

∑Lk(cck)
l=1 P

cck
n (l)

.

(23)

B. Joint Probabilistic Data Association

Based on the concept of grouping, there are many well

known techniques that can be exploited to solve the data

association problem [6]. In this article, we employ a gen-

eralized version of the Joint Probabilistic Data Association

(JPDA) algorithm [5], [6], which, in difference to standard

JPDA, can associate multiple detections to each group. In

addition, gating is used for each group, to remove unlikely

detections [6].

For group n, we denote the collection of all detections in-

side its gate by yn
k . Given knowledge regarding the maximum

number of detections generated by group n, it is possible to

construct the set of all local hypotheses, i.e., the set of all

feasible associations between yn
k and group n. By combining

local hypotheses from all groups in an admissible fashion

(such that each detection in yk is associated to precisely one

group, or classified as clutter) we obtain a global hypothesis,

described by the vector rk. The set of all such hypotheses

are denoted Rk.

The idea with JPDA is to update the track using all associ-

ation hypotheses, at time k, weighted by their probabilities,

p(zk|Y1:k) =
∑

rk∈Rk

p(zk|rk,Y1:k)P{rk|Y1:k}. (24)

To make the implementation practical, the posterior distribu-

tion, p(zk|Y1:k), is approximated by a Gaussian distribution

for all times. For each rk, the posterior mean and covariance

of p(zk|rk,Y1:k) are easily approximated, e.g., using the

UKF or the EKF. The latter part of (24) can be expressed as

P{rk|Y1:k} ∝ p(yk|rk,Y1:k−1)P{rk|Y1:k−1}, (25)
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where the distribution

p(yk|rk,Y1:k−1) =

∫

p(yk|rk, zk)p(zk|Y1:k−1)dzk,

(26)

is obtained from the EKF, see Section VI. However, to deal

with the data association prior, P{rk|Y1:k−1}, requires some

new notation.

Naturally, the data association vector, rk, provides perfect

knowledge regarding the number of clutter detections, M c
k ,

and the number of detections from group n, M t
k,n. Hence,

the prior probability for the association vector in (24) is

P{rk|Y1:k−1} = P{rk|M
t
k,M c

k}P{M c
k}P{Mt

k|Y1:k−1},
(27)

where Mt
k =

[

M t
k,1 . . . M t

k,M
g

k

]T

and Mg
k is number

of groups. Among these factors, we have that P{M c
k} =

(µV )Mc
kexp(−µV )/M c

k ! and

P{rk|M
t
k,M c

k} =

M
g

k
∏

n=1

(

Mk −
∑n−1

m=1 M t
k,m

M t
k,n

)−1

. (28)

Finally, we apply the approximation

P{Mt
k|Y1:k−1} ≈

M
g

k
∏

n=1

P{M t
k,n|zk = ẑk|k−1} (29)

where P{M t
k,n|zk} was described in Section V-A, and

ẑk|k−1 = E{zk

∣

∣Y1:k−1} is calculated in the EKF, see

Section VI.

VI. FILTER IMPLEMENTATION

As indicated above, we combine the proposed JPDA

solution with an EKF implementation, to obtain a well

performing, but simple, algorithm. To find the desired distri-

bution p(zk|Y1:k), the above JPDA algorithm only requires

the distributions p(zk|rk,Y1:k), p(yk|rk,Y1:k−1) and the

prediction ẑk|k−1. All these are approximated in the EKF

framework.

A. The EKF components

The EKF filter is based on linearized versions of the

motion model (3) and the measurement model (4). Given

the discrete motion model in the appendix, the linearized

version of (3) is easily derived. Regarding the measurement

model, all detections are independent, conditioned on rk and

zk. It is therefore sufficient to linearize the sensor model

for a scenario with only one detection, as the measurement

updates can be performed sequentially over dm
k,i.

Suppose a detection, dm
k,j , is associated with group n, such

that the sensor model is given by (19)2. The noise covariance

matrix, in this model, is the sum of two components: the

covariance matrix for wk,j and the covariance, Ck,n, for

g
ik(j)
k,rk(j). Furthermore, influence of the state vector enters

through (22), as the cluster means c̄
cck

k,l depend on the

reflector positions. To simplify the linearization of (9), we

2Of course, if the detection is a clutter observation the measurement
update is not performed.

Fig. 5. Simulated trajectories used for scenario I and scenario II,
respectively. In scenario I, the vehicle starts at a speed of 18 km/h and
temporarily decelerates while turning. In scenario II the vehicle performs
two lane change manoeuvres at a constant speed of 32 km/h.

assume that the reflectors move precisely like zk, in real

coordinates. Using the Jacobian for ∇zk
D(z, i), in (9), we

can linearize (16) and thereby express ∇zk
ḡ
ik(j)
k,rk(j) required

in the EKF.

Details regarding the EKF equations can be found, e.g.,

in [3], and are omitted here for brevity.

VII. NUMERICAL EXAMPLES

In this section we evaluate our filter both on simulated

and measured data. The measurements are collected using

a 77 GHz Frequency Shift Keying (FSK) radar (AC10)

from TRW. For comparison we implement a reference EKF

employing the probabilistic data association (PDA) algorithm

[10]. In PDA, at most one measurement can originate from

the object and the presence of multiple measurements is

modelled as clutter. The reference filter compensates for

offset errors using the geometry of the vehicle and its

estimated position. A filter update rate of 40ms (equal to

the measurement rate of the FSK radar) is used both for

simulated and measured data.

A. Simulations

The tracking performance is evaluated for two trajectories

displayed in Fig. 5. Both trajectories are generated using our

motion model (5) driven by a known input signal. Detections

are then generated from the sensor model described in

Section IV with ∆d = [1m, 0.1m/s, 1o]T and Σk =
diag{(

√

zk(1)2 + zk(2)2/60)2, 0.52, (0.3π/180)2}. The

sensor model is used without the approximations suggested

in the filtering framework. Hence, we use a more detailed

model to generate data compared to the filter implementation.

In addition to the detections generated from the simulated

vehicle we add clutter with an intensity λ = 0.07.

For both scenarios, the filters are initiated at the true

state vector, and the noise variances are set to σ2
Ψ̈

= 1/16,

σ2
v̈ = 9. In Fig. 6, the result of 100 Monte Carlo simulations

is displayed. The top two graphs correspond to scenario

I, and the other two to scenario II. In the first scenario

we observe a significantly improved performance compared

to the reference filter, whereas in the second scenario the

difference is much smaller. The reason for the variations in

performance is related to the number of visible reflectors on

the vehicle. The ability to utilize more than one measurement

from a single target is greatly improved using the extended
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Fig. 6. Root mean square error (RMSE) for position (ζxk
, ζyk

) and
heading, Ψk for scenario I and II.

Fig. 7. Tracking performance on measured radar data.

object representation. As opposed to the PDA, which will be

less certain when the number of measurements increase, the

proposed filter is able to exploit the information they contain.

B. Results using measurement data

The FSK radar used to collect measurements, separates

objects based on their range rate only, i.e. ∆d = [∞ vres ∞].
The test scenario consist of a car driving at nearly constant

speed at 40 km/h towards a truck, stopping just in front of

the sensor. In Fig. 7, the estimated trajectory is presented,

and the velocities at certain distances are shown in a sub-

figure. The trajectory estimated by the filter, well coincides

with the actual path driven by the vehicle.

APPENDIX

DISCRETIZED MOTION MODEL

A discrete motion model is derived under the assumption

that the noise terms el

Ψ̈
(t) and el

v̈(t) are constant in the

interval (tk−1, tk). For the elements Ψl
k, vl

k, Ψ̇l
k and v̇l

k, the

discrete time model will be linear and take the form








Ψl
k

vl
k

Ψ̇l
k

v̇l
k









=









1 T 0 0
0 1 0 T
0 0 1 0
0 0 0 1

















Ψl
k−1

vl
k−1

Ψ̇l
k−1

v̇l
k−1









+









T 2/2 0
0 T 2/2
T 0
0 T









[

el

Ψ̈k−1

el
v̈k−1

]

,

(30)

where T = tk − tk−1. The remaining two elements in the

state vector (ζl
xk

, ζl
yk

) becomes non-linear and can be written

as

ζl
xk

= ζl
xk−1

+ cos
(

Ψl
k−1

)

(

vl
k−1T +

v̇l
k−1T

2

2
+

el
v̈k−1

T 3

6

)

− sin
(

Ψl
k−1

)





vl
k−1Ψ̇

l
k−1T

2

2
+

(vl
k−1e

l

Ψ̈k−1

+ 2v̇l
k−1Ψ̇)T 3

6

+
(el

v̈k−1
Ψ̇ + v̇l

k−1e
l

Ψ̈k−1

)T 4

8
+

el
v̈k−1

el

Ψ̈k−1

T 5

20





(31)

ζl
yk

= ζl
yk−1

+ sin
(

Ψl
k−1

)

(

vl
k−1T +

v̇l
k−1T

2

2
+

el
v̈k−1

T 3

6

)

+ cos
(

Ψl
k−1

)





vl
k−1Ψ̇T 2

2
+

(vl
k−1e

l

Ψ̈k−1

+ 2v̇l
k−1

˙Ψl
k−1)T

3

6

+
(el

v̈k−1
Ψ̇ + v̇l

k−1e
l

Ψ̈k−1

)T 4

8
+

el
v̈k−1

el

Ψ̈k−1

T 5

20



 .

(32)
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